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Abstract. To allow rapidly and accurately support tensor machine (STM) image classi-
fication, we developed an algorithm based on tensor principal component analysis (TPCA).
This STM image classification algorithm based on TPCA was specifically developed for
gait recognition. In our system, the STM processes the gait image as a data cube and
then identifies the information classes in tensor space. TPCA is used for preprocessing to
reduce the tensorial data redundancy and to maintain the tensorial structure information
in high-order subspace. The algorithm steps are as follows: Firstly, third-order tensor
image features are constructed based on the structural information of the data. Second,
TPCA is used for feature extraction. Finally, STM classifier is used to directly classify
the image. The experiments show that the proposed algorithm can not only improve the
accuracy of image classification but also reduce the required computational time of the
STM.
Keywords: TPCA, STM, Image classification.

1. Introduction. In the study of computer vision, data mining, and pattern recognition,
data objects are usually represented as tensors. To deal with tensor data, traditional clas-
sification algorithms usually convert them into vectors [1, 2]. However, vector conversion
may lead to two problems. First, this process destroys the inherent higher order struc-
ture and correlation of the original data, leading to the loss of information. Second, it
generates high-dimensional vectors and makes the subsequent learning process prone to
over-fitting. Additionally, the dimensionality contributes to small sample size problems
[3]. Maintenance of tensor data can eliminate the problems result from converting tensors
into vectors. Thus, many researchers have proposed classification algorithms based on the
tensor pattern and extending a support vector machine to support the tensor machine.
In the field of machine learning, determining an effective model and attempting to design
a quick and accurate tensor classification algorithm is a topic currently of high interest
[4]. Principal component analysis (PCA) is a well-known unsupervised linear technique
for dimensionality reduction. In [5], PCA was used to remove the data redundancy and
SVM was used for data classification. The results show that the proposed approach is
effective, and has a high probability of correct classification. Inspired by [5], we extended
the study of TPCA and STM.

Typically, researchers construct a number of support vector machines to manage ten-
sor data by projecting the tensor into multiple modal space. For example, a unified
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framework for supervised tensor learning was proposed by Tao [6]. Based on the STL
framework, the least square tensor classifier was proposed by Cai [7] and Wang [8] for the
two order tensor and Tao generalized least squares support vector machines to general
tensor models. Because the optimization problem given by the STL framework is non-
convex, the alternating projection is used to solve the model, which requires calculation,
time, and memory space, and may result in a local optimal solution. The support tensor
machine only requires solving a convex optimization problem to determine the solution
of the model, which greatly reduces the computational time. Because tensor objects are
usually high-dimensional and contain large amounts of redundancy, in the STM model,
the HOSVD of the tensor is used to replace the original data. This better reflects the
potential and close pattern representation of the tensor data, but does require storage
of all the tensor data in the memory space, thus greatly reducing the required memory
overhead.

Inspired by [5], we extend the PCA + SVM to tensor patterns and propose a novel
tensor-based framework (TPCA + STM) for image classification in this paper. Specifi-
cally, analogous to PCA + SVM, the images are stacked as a feature tensor, and TPCA is
used to reduce the information redundancy in the tensor. The reduced features are then
inputting to an STM for classification. Compared with the previous traditional classifica-
tion algorithms which will result in the following two problems: (1) breaking the natural
structure and correlation in the original data; (2) leading to the curse of dimensionality
and small sample size problem. The proposed method (TPCA + STM) that represents
data with tensor can remain the natural structure and correlation of the data, and avoid
information missing, over-fitting, curse of dimensionality and small sample size. And we
integrate the tensor decomposition into the model to assist its inner product computa-
tion. The tensor decomposition, which is a low-rank approximation of the tensor, can
better embody the structural information and intrinsic correlation of the data, obtain
more compact and meaningful representations of the tensor objects, especially in the case
of higher-order tensor, thus it can improve the effectiveness of inner product computation
and save storage space and computational time.

In order to quickly and accurately classify image, TPCA is first used to conduct feature
extraction and then the tensor is treated as the input of STM. Thus, we propose and
experimentally test a support tensor machine image classification algorithm based on
TPCA.

The remainder of this paper is organized as follows. A brief review of multilinear
algebra is given in the Section II. The proposed STM image classification algorithm based
on TPCA is described in Section III. Experimental results and comparison of TPCA,
TPCA + SVM, PCA + SVM and TPCA + STM for image sequence are provided in
Section IV.

2. Tensor and Multilinear Algebra. The definitions and theorems used in the algo-
rithm are as follows:

Definition 2.1 (Tensor). Tensor can be viewed as a multidimensional array, X ∈
RI1×I2×···×IN represent a order tensor, xi1,i2,··· ,xn represent an element of X, 1 6 in 6 In,
1 6 n 6 N .

Definition 2.2 (Tensor matrix expansion). Tensor matrix expansion is a process of re-
arrangement of the elements in a tensor to obtain a matrix and the N mode expansion
matrix of X ∈ RI1×I2×···×IN is represented as X(n) ∈ RIn×(I1···In−1In···IN ). Fig.1 illustrates
the 1-mode (column mode) unfolding of a third-order tensor [9, 10].
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Figure 1. Visual illustration of the 1-mode unfolding of a third-order tensor

Definition 2.3 (Tensor multiplication). An N th-order tensor is denoted as X ∈
RI1×I2×···×IN . It is addressed by N indices in, i = 1, 2, · · · , N , and each in addresses
the n-mode of X. The n-mode product of a tensor X by a matrix U ∈ RJn×In, denoted by
X ×n U , is a tensor with entries (X ×n U)i1i2···jn···iN =

∑
in

ai1i2···jn···iN · ujnin. Fig. 2 pro-

vides a visual illustration of the multilinear projection [9]. In Fig. 2, a third-order tensor

A ∈ R10×8×6 is projected in the 1-mode vector space by a projection matrix B(1)T ∈ R5×10,
resulting in the projected tensor A ×1 B

(1)T ∈ R5×8×6. In the 1-mode projection, each
1-mode vector of A of length 10 is projected by B(1)T to obtain a vector of length 5 as the
differently shaded vectors in Fig. 2.

Figure 2. Visual illustration of multilinear projection

Theorem 2.1 (HOSVD). Each tensor X ∈ RI1×I2×···×IN can be uniquely decomposed into
X = T ×1 U1 ×2 ×U2 × · · · ×N UN , and meets the following conditions:

(1) U(n) is the orthogonal matrix of In × In.
(2) The row of T(n) is orthogonal.
(3) For any n, ‖Tin=1‖ > ‖Tin=2‖ > · · · > ‖Tin=N‖ > 0.
Tensor T is also called the core tensor, whose HOSVD [11, 12] as follows:
(1) For any n, U(n) is a left matrix which is n mode expansion matrix X(n) of X by

SVD decomposition.
(2) Compute: T = X ×1 U

T
1 ×2 U

T
2 × · · · ×N UT

N .

3. STM Image Classification Algorithm based on TPCA.

3.1. TPCA. TPCA based on higher order singular value decomposition (HOSVD) is
introduced in this paper.
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The basic idea of TPCA [13, 14] is to extract the most significant signal components
for all tensor modes while retaining the data variation of the original data set. TPCA
formulation involves the acquisition of projection matrices and the low-dimensional tensor.

Let {αm,m = 1, 2, · · · ,M} be a set of M tensor samples in RI1 ⊗RI2 ⊗ · · ·⊗RIN . The

total scatter of these tensors is defined as S
(n)
YΩ

=
M∑
m=1

(αm(n)− ᾱ(n))
T, where α is the mean

tensor calculated as ᾱ = 1
M

M∑
m=1

αm. The n-mode total scatter matrix of these samples is

then defined as S
(n)
YΩ

=
M∑
m=1

(αm(n) − ᾱ(n))
T, where αm(n) is the n-mode unfolded matrix of

αm.
The goal of TPCA is to define a multidimensional linear projection matrix {Ũ(n) ∈

RIn×Pn , n = 1, 2, · · · , N}, which can project the data in the original tensor space RI1 ⊗
RI2 ⊗ · · · ⊗ RIN into tensor subspace RP1 ⊗ RP2 ⊗ · · · ⊗ RPN (P < In, n = 1, 2, · · · , N).
Because of P < In, the feature extraction of data is realized in the projection process and
the key information of the original data is retained in the target tensor object.

βm = αm ×1 Ũ
(1)T ×2 Ũ

(2)T · · · ×N Ũ (N)T (m = 1, 2, · · · ,M) (1)

βm ∈ RP1 ⊗RP2 ⊗ · · · ⊗RPN ,m = 1, 2, · · · ,M

The optimal projection matrix should satisfy the following conditions:

{Ũ (n) ∈ RIn×Pn , Pn ≺ In, n = 1, 2, · · · , N} = arg max
Ũ(1),Ũ(2),··· ,Ũ(N)

Ψβ (2)

Ψβ =
M∑
m=1

‖βm − β̄‖2F

The optimum solution of (2) is {Ũ (n) ∈ RIn×pn , n = 1, 2, . . . , N}, matrix Ũ (n) contains

maximum PN feature vector corresponding to the eigenvalue of ϕ(n) =
M∑
m=1

(αm(n) − ᾱ(n))

Ũ
(n)T
ϕ (αm(n)− ᾱ(n))

T, where Ũ (n) is defined as Ũ
(n)
ϕ = (Ũ (n+1)⊗ Ũ (n+2)⊗· · ·⊗ Ũ (N)⊗ Ũ (1)⊗

Ũ (2) ⊗ · · · ⊗ Ũ (n−1) ⊗ Ũ (n).

3.2. STM. Traditional machine learning methods can only directly deal with the input
vector mode. There are two ways to process the input samples of the image pattern. First,
the matrix structure must be collapsed to make vector inputs to be used in the algorithm.
One common way is connecting each row (or column) of a matrix to reformulate a vector.
Second, the structure and parameters of the classifier can be improved so that the input
samples of the image pattern can be processed directly.

It should be noted that the conventional vector-based analysis approach need to unfold
the cubic features into vectors for feature description and classification owing to traditional
classifiers can only process vector inputs. However, the proposed STM is able to directly
model the gait image sequence tensor, which is naturally aligned as a cube for image
interpretation. Compared with the traditional SVM, the characteristic presents a main
methodological advantage of STM.

STM is a generalization of support vector machine, which uses the tensor as a running
sample instead of vector. Taking the order tensor as an example, this paper briefly
introduces the STM. Support tensor machine [15, 16] was designed in this paper based
on some methods of two-dimensional classifier, which improves the construction of the
classifier and also can classify directly tensor data. It is known a running sample has
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N M-th order tensors Xi ∈ RL1×L2×···×LM and its corresponding class is yi ∈ {+1,−1},
i = 1, 2, · · · , N , so the optimal classification flat is

y(X) = X
M∏
k=1

×kωk + b (3)

It is easy to see from Eq. (3) that projection vector ωk ∈ Rnk(k = 1, 2, · · · , N) and
offset b ∈ R are the unknown parameters in the classification flat. We can solve the
optimal problem using Eq. (4):

min
ωk,|Mk=1b,ξ

1

2

N∏
k=1

‖
M
⊗
k=1

ωk‖2 + c
N∑
i=1

ξi

s · t · yi[Xi

M∏
k=1

×kωk + b] 6 1− ξi
ξi > 0

(4)

As seen from Eq. (4), we solve the model as follows:
(1) Construct the Lagrangian function, where αi and ki are the Lagrange multiplier

L(ωk|Mk=1, b, ζ, α, κ) =
1

2
‖

M
⊗
k=1
‖2 + c

N∑
i=1

ξi −
N∑
i=1

κiξi −
N∑
i=1

αi(yi[Xi

M∏
k=1

×kωk + b]− 1+ξi)

=
1

2

M∏
k=1

ωT
k ωk + c

N∑
i=1

ξi − bαTy +
N∑
i=1

αi − αTξ − κTξ −
N∑
i=1

αiyi(Xi

M∏
k=1

×kωk) (5)

(2) L in Eq. (5) respect to ω, b and ξ, taking the derivative of L with respect to ω, b
and ξ, we have:

∂L

∂ω
= 0⇒ ωj =

1
k 6=j∏
k=1

ωT
k ωk

·
N∑
i=1

αiyi(Xi

M∏
k=1

×jωj)

∂L

∂b
= 0⇒ αTy = 0 (6)

∂L

∂ξ
= 0⇒ c− α− κ = 0

(3) Its dual form is:

max
α,κ

minL(ωk|Mk=1,b, ξ, ε, κ) (7)

Eq. (7) is a linear programming problem. We solve the optimization problem in an
alternative way.

3.3. Newly proposed TPCA + STM. Real tensor data, such as medical images,
remote sensing images, video images and so on, have a lot of redundant information,
which seriously affects the ability of the recognition of learning machine. The dimension
of tensor data is higher, and the storage data requires a lot of memory space and disk
space, therefore it takes a long time to train. In order to solve the above problems, support
tensor machine image classification algorithm based on TPCA is proposed in this paper.

The advantage of this algorithm is that it can not only improves the recognition ability
of the tensor machine, but also speeds up the learning speed of the support tensor machine.
The processing procedure of the algorithm is as follows:

Step1: TPCA is used for the running set and test set to conduct feature extraction,
and then obtain the tensor after feature extraction.
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Step2: The tensor after feature extraction is used as input for model (4), using the
Lagrange multiplier algorithm to solve the model.

Step3: The trained classifier is used to classify the test set.

4. Experiments. A total of six tensor databases are used in the experiments, where
two of them (Yale, ORL) are second-order Face Recognition Database. And others (USF
Gait17-32×32×10, USF Gait17-128×88×20, CASIA Gait-190×120×20, CASIA Gait-
240 × 352 × 20) are third-order Gait Recognition Databases. To better understand the
tensor structures of experimental data, we illustrate with one example for some databases
that are shown in Fig.3 and Fig.4.

(a)

(b)

Figure 3. Second-order face recognition databases. (a) Yale samples. (b)
ORL samples.

(a)

(b)

Figure 4. Gait silhouette sequence for third-order gait recognition data-
base. (a) A frame sample of a video; (b) Image sequence of a frame sample.
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To verify the effectiveness of the proposed tensor-based classification framework, the
proposed TPCA + STM is compared with TPCA + SVM, TPCA and PCA + SVM. The
difference of the four algorithms are as follows: TPCA is used to reduce the tensorial data
redundancy and to maintain the tensorial structure information in high-order subspace,
and then the reduced features are converted into vectors as the input of KNN for clas-
sification. TPCA + SVM is used to reduce the information redundancy in the tensor,
then the tensor data is converted into vector model as the input of the SVM classifier.
The TPCA + STM algorithm, which is a tensor-based dimensionality reduction method
(TPCA), is used in the preprocessing of the STM classification. Specifically, analogous to
TPCA + STM, PCA + SVM is used to reduce the information redundancy in the vector,
then the reduced features are input to an SVM for classification.

The four algorithms, TPCA + STM, TPCA + SVM, TPCA and PCA + SVM, were
compared for recognition rate and running time in different databases. The experimental
results are shown in Table 1.

Table 1. Comparison of experimental results of the four algorithms

Database Algorithms Accuracy Running Time

Yale

PCA + SVM 85.21% 1.383s
TPCA 86.33% 0.732s

TPCA + SVM 86.48% 0.642s
TPCA + STM 87.33% 0.544s

ORL

PCA + SVM 96.50% 34.299s
TPCA 97.75% 17.997s

TPCA + SVM 97.84% 16.251s
TPCA + STM 98.50% 13.208s

USFGait17-32×32×10

PCA + SVM 75.83% 20.869s
TPCA 78.79% 12.962s

TPCA + SVM 76.39% 12.371s
TPCA + STM 79.60% 7.693s

USFGait17-128×88×20

PCA + SVM 75.69% 83.394s
TPCA 79.83% 16.537s

TPCA + SVM 77.53% 15.337s
TPCA + STM 82.60% 8.214s

CASIA Gait-190×120×20

PCA + SVM 87.37% 218.471s
TPCA 91.86% 19.333s

TPCA + SVM 91.35% 18.363s
TPCA + STM 91.67% 14.621s

CASIA Gait-240×352×20

PCA + SVM 87.37% 314.375s
TPCA 92.27% 25.363s

TPCA + SVM 91.89% 24.795s
TPCA + STM 92.43% 18.836s

From table 1, we have the following observations:
1) In terms of recognition rate, the recognition rate of PCA + SVM is the smallest

on all databases, and the recognition rate of TPCA + STM is the highest on the most
databases except CASIA Gait-190× 120× 20. The recognition rates of all algorithms are
increasing with the increasing of the input data on the third-order databases. PCA +
SVM is compared with TPCA + STM, the recognition rate of the latter is higher than
the former, where TPCA + STM has a better effect in the process of feature extraction
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directly of tensor data. TPCA + SVM is compared with TPCA + STM, the recognition
rate of the latter is higher than the former, where TPCA + STM has a better effect in
the process of classification of tensor data.

2) In terms of running time, the running time of the four algorithms, PCA + SVM,
TPCA, TPCA + SVM and TPCA + STM, is reduced in turn on the all databases. The
running time of TPCA + STM is the shortest among the four algorithms when the amount
of data is very large.

Table 2. Comparison of the memory of four algorithms

Input
d1 × d2 × d3

PCA+SVM TPCA TPCA+SVM TPCA+STM

Each vector
Occupied memory

1× d21d22d23 1× d1d2d3 1× d1d2d3
1× 1× d1
1× d2 × 1
d3 × 1× 1

Total memory d21d
2
2d

2
3 d1d2d3 (d1d2d3 − 1)/2 d1d2d3 d1 + d2 + d3

The memory usage of the main operations link for the four methods were compared for
the same input samples, as shown in Table 2. TPCA + STM used the smallest amount
of memory, so when the amount of data is very large, the speed of TPCA + STM is fast
and the running time of TPCA + STM is short.

We conclude that TPCA + STM offers improved performance for large-scale matrix
data, especially if the amount of data is very large. The recognition rate of TPCA + STM
is high and the running time of TPCA + STM is short, allowing rapidly and accurately
image classification.

5. Conclusion. We have presented a new tensor-based framework for the classification
of image sequence. This efficient STM extends the traditional vector-based feature rep-
resentation and classification strategy to a tensor-based version. STM can be used for
matrix data classification. We have used one left and two right projection vectors to
formulate objective function and construct constraints. Because there are three weight
vectors, STM can be classified directly for a three order tensor. In particular, tensor-based
processing is naturally appropriate for image sequence, which has an intrinsic tensor data
structure. Furthermore, our work reveals that information redundancy exists in the sparse
and high-dimensional feature space for the data. As a result, redundancy reduction be-
comes a crucial issue, particularly when the tensor data representation is considered.
Accordingly, we introduced an TPCA, which is a tensor-based dimensionality reduction
algorithm, and then constructed a novel TPCA + STM classifier. TPCA + STM takes
advantage of tensor feature extraction and at the same time solves the problem of infor-
mation redundancy. The experimental results show that the proposed algorithm allows
rapidly and accurately image classification with reduced computation time.
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