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Abstract. Using graphs to match two feature sets through embedded high-order rela-
tions points has many possible applications in criminal justice, security, and high tech-
nology. In this paper, we analyze the method of using the random walk framework to
establish correspondence between two skeleton graphs and find out matching points be-
tween two shapes. The graphs are matched using a skeleton graph with the descriptors of
the relationship between the two edges of the end-nodes ranked on an association graph.
Through adopting individual jumps with a reweighting scheme, the new proposed approach
effectively reflects the one-to-one matching constraints during the random walk process.
Experiments on several benchmark data sets show that the proposed approach clearly out-
performs existing algorithms, especially in the presence of noise and outliers.
Keywords: Skeleton graph, Image matching, Shape retrieval, Skeleton graph matching,
Random walks.

1. Introduction. Shape matching is a fundamental aspect of many applications in com-
puter vision, and pattern recognition, including object or scene recognition, solving for 3D
structure from multiple images, stereo correspondence, and moving tracking [1]. Estab-
lished correspondence between two feature sets and finding each corresponding feature
in the other set while preserving the other related features are widely applied to solve
the various vision problems [1, 2]. Recent years have witnessed a popular way in which
skeleton involved in the image matching problems[3, 4]. Skeleton can be defined as the
set of centers of all maximally inscribed disks that are contained inside the object but not
contained in any other such disk [3]. Integrating geometrical and topological feature of the
object provides an efficient shape descriptor for object recognition. In some applications
included the content-based image retrieval systems, character recognition systems, circuit
board inspection systems, and analysis of biomedical images, the skeletal descriptor was
applied as an efficient shape descriptor to obtain the better results than those obtained
from the other methods which based on boundary or shape descriptors in the presence of
partial occlusion and articulation of parts [5, 6, 7].

However, the automatic object skeletal recognizability has also the drawback due to
the sensitivity of the skeletons with the object boundary deformations. Fig.1 illustrates
the skeleton-based shape matching that faces the difficulties. Siddiqi et al., proposed a
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Figure 1. Visually similar shapes have very different skeleton graphs

method called Shock graph as a myriad method based on the skeleton [8]. Since the
skeleton contains important structural information of shape, it is natural to organize
them into attribute-relational graphs (ARG).The similarity between two objects can be
measured by the matching their ARG graphs. The shock graph contains both topology
and geometry information of the shape. The geometry information of the shape included
the end-points, branch points, and their skeleton segments existed in the shock. Bone
graph is an extension of the shock graph, which only retains the non-ligature structures
of the shock graph and offers improved stability [9, 10, 11]. Although this method leads to
fairly good matches, the errors of fundamental flows can violate the hierarchical relations
among parts of the shape. Because the ARG matching task is proven to be NP-hard,
several algorithms are proposed to obtain approximate solutions. Zaboli et al., defined the
edited distance between the shock graphs [12]. However, its computational complexity is
high due to the complex edit operations. A relatively small change in the shape causes the
root change into an entirely different topology for the similarity skeleton. The skeleton tree
conversion processing may cause the important structural information losing, therefore,
the shape matching results could be obtained some negative effects. Han et al.,[13] apply
an EM algorithm to learn both the structure of the super-graph and the correspondences
between the nodes of the sample graphs. They mainly focused on the topological structure
and the general graph matching problem. Bai et al.,[14] represented each end point by
the skeletal shortest paths emanating from it and addressed skeleton graph matching by
matching the sequence of end points of the pruned skeletons. It didn’t explicitly consider
the topological structure of the skeleton graphs. Instead, they focused on the similarity
of paths connecting the skeleton end points. However, these methods depend heavily on
the selection of pruning parameters selected by heuristic. The different objects can have
appropriate pruning thresholds are different. Thus, these methods are only suitable for
objects with simple and distinctive shapes.

In this paper, we propose a novel scheme based on the skeleton graph for effective
shape matching. In the proposed method, the establishing correspondences between two
graphs are considered to model a skeleton hyper-graph (SHG) to overcome the limitations
mentioned above. The complex relations among correspondences between two skeleton
graphs are called hyper-edges that used in the SHG. A centroid of a node and k-nearest
neighbors are used to form a hyper-edge. In this way, both the higher order grouping
information and the local relationship between nodes within each hyper-edge are described
as the model that is known as a hyper-graph matching. The shape matching problems
is now considered as a hyper-graph matching problem, which can be solved feasibly by
ranking on an association hyper-graph via random walks [15]. Furthermore, the parameter
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of the re-weighted random walks is adjusted as a scheme of ranking process by iteratively
updating and exploiting the confidences of candidate correspondences. By this way, the
unreliable matches are eliminated, and the robust performance is produced, therefore the
accuracy of the proposed method of matching is significantly improved even in noise and
distortion fields.

2. Generalized Hyper-graph Matching.

2.1. Problem Formulation. A skeleton graph can be represented by hyper-graph G.
Let V be a finite set of vertices and E be a family of subsets of V such that ∪e∈E = V .
The hyper-graph G = (V , E ,A) consists of nodes v ∈ V , hyper-edges e ∈ E , and attributes
a ∈ A associated with the hyper-edges. The goal of the hyper-graph matching problem is
to establish a mapping between nodes of two hyper-graphs GP = (VP , EP ,AP ) and GQ =
(VQ, EQ,AQ). Suppose a set of all possible node correspondences C = VP × VQ, and δ-

tuples cw1 = (vPi1, v
Q
i1), ..., cwδ = (vPiδ, v

Q
iδ) ∈ C among them. For hyper-graph matching, the

similaritiesHw1,...,wδ of the δ-tuples are measured by comparing attributes of two δ-th order

hyper-edges ePi1,...,iδ and eQj1,...,jδ, which mean the hyper-edges connecting vPi1, ..., v
P
iδ and

vQj1, ..., v
Q
jδ respectively. The solution of hyper-graph matching is determined as a subset of

candidate correspondences C and efficiently represented using a binary assignment matrix

X ∈ {0, 1}n
p×nQ , where nP and nQ are the numbers of nodes in GP and GQ, respectively.

Xia = 1 implies that node vPi corresponds to node vQa , e.g., node i in graph P is matched
to node a in the graph Q, and Xia = 0 otherwise. The hyper-graph matching problem is
mathematically formulated as the following IQP problem that is, finding the assignment
vector x∗, which maximizes the matching score function Score(x) as follows.

x∗ = arg max
x

Score(x) (1)

st.x ∈ {0, 1}nPnQ , X1nQ×1 � 1nP×1, X
T1nP×1 � 1nQ×1, (2)

Here, Score(x) =
∑

w1,...,wδ
Hw1,...,wδxw1...xwδ, the product xw1...xwδ will be equal to 1 if

the points vPi1, ..., v
P
iδ are all matched to the points vQj1, ..., v

Q
jδ, and 0 otherwise. Hw1,...,wδ

is a similarity measure, which will be high if the sets of features vPi1, ..., v
P
iδ similar to the

set vQj1, ..., v
Q
jδ. Using tensor notation [16], Equation(1) under the constraints (2) can be

rewrite as:

x∗ = arg max
x

(H ⊗1 x...⊗δ x) (3)

where the two-way constraints refer to the one-to-one matching from GP to GQ.

2.2. Random Walk for hyper-Graph Matching. The formulation of Equation(3) is
called the integer quadratic programming (IQP), which is proven to be NP-complete, thus
approximate solutions are required. Zass and Shashua proposed hyper-graph matching
[17], which introduces a novel view that the matching problem and its corresponding
solution are related by the Kronecker product. Tensor matching [16] is a higher-order
extension of spectral matching [18]. It takes rank-1 approximation of the affinity tensor
as a solution by using higher-order tensor power iteration. Chertok and Keller [19] also
focused on rank-1 approximation of the affinity tensor by taking the leading left singu-
lar vector of the unfolded affinity tensor. However, all these are unable to effectively
incorporate the matching constraints during their rank-1 approximation stage. Recently,
Lee et.al.[15] proposed a novel state-of-the-art algorithm to solve (3) by ranking on an
association hyper-graph via random walks, which effectively reflects matching constraints
to produce a robust performance to large deformation and outlier noise. The entire the
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reweighted random walks scheme on the hyper-graph is is briefly described in Algorithm
1, see [15] for more details.

Algorithm 1 Reweighted Random Walks of Hyper-graph Matching

Input: The weight matrix H, the reweight factor α, and the inflation factor β.
Output: The mapping matrix x.

1: Initialize the mapping matrix x uniformly
2: dmax = maxw(H ⊗2 1...⊗δ 1)w
3: Initialize the transition matrix P = H/dmax
4: repeat
5: x = P ⊗2 x...⊗δ x
6: y = exp(βx/maxx) {Reweighting with two-way constraints}
7: repeat

8: yia = yia /
∑nQ

a=1 yia {normalize across rows}
9: yia = yia /

∑nP

i=1 yia {normalize across columns}
10: until y converges
11: y = y /

∑
yia

12: x = αx + (1− α)y {Random walking with reweighted jumps}
13: x = x /

∑
xia

14: until x converges
15: Discretize x by the matching constraints

The reweighting procedure consists of two steps: inflation and bistochastic normaliza-
tion. The inflation step of exp(βx/maxx) attenuates small values of x and amplifies large
values of x. In this way, unreliable correspondences contribute insignificantly through the
individual exponentials over the components of x. Then, for the two-way constraint that
a node in the graph GP must correspond to only one node in the graph GQ and vice
versa. The bistochastic normalization step makes the current state distribution become
more likely to be a permutation matrix, which satisfies the one-to-one constraints. In
the final discretization step, any linear assignment algorithm can be adopted, such as a
Greedy algorithm or the Hungarian algorithm.

3. Proposed Method. This section describes the skeleton hyper-graph matching prob-
lem based on random walks, and the proposed algorithm in the framework is explained.

3.1. Skeleton Graph Presentation. To better describe the proposed method, some
common related skeletal concepts are clarified first. A set of skeleton points S is considered
to be a continuous and connected set of the medial axis points of a closed curve, and they
assumed that the skeleton curve is one pixel wide. Furthermore definitions of endpoint,
connection point, skeleton branch, skeleton path and path distance could be found in [20].
Two points in a set are said to be connected if they can be joined by a continuous path
of points also in the set. A skeleton point having only one adjacent point is an endpoint.
The sequence of connection points between two endpoints is called a skeleton branch.
A skeleton path p(vi, vj) is the shortest skeleton branch between a pair of nodes vi, vj.
Let R(vi, vj)(t) be the radius of the maximal disk at the skeleton point with index t in
p(vi, vj). A vector of the radii of the maximal disks centered at the M sample points on
p(vi, vj) is denoted as:

R(vi, vj) = (R(vi, vj)(t))t=1,2...M = (r1, r2, ..., rM) : (4)
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where, R(vi, vj)(t) is approximated with the values of the distance transform DT (t) at
each skeleton point with index t and they are normaled the following original shape S to
make the proposed method invariant to the scale:

R(vi, vj)(t) =
DT (t)

1
N0

∑N0

i=1DT (Si)
(5)

where Si(i = 1, 2, ..., N0) varies over all N0 pixels in the shape. The path distance between
p(vi, vj) and p(v′i, v

′
j) is defined as:

pd(p(vi, vj), p(v
′
i, v
′
j)) =

M∑
k=1

(rk − r′k)2

rk + r′k
+ γ

(l − l′)2

l + l′
(6)

where γ is the weight factor and l and l′ are the lengths of p(u, v) and p(u′, v′), respectively.
Both the radii and the length are normalized to ensure that the path distance is scale
invariant.

Then, we construct an skeleton graph G = (V,E,A) by considering each endpoint as a
node vi ∈ V for the graph, and the skeleton path between two nodes vi and vj as an edge
eij ∈ E. Each edge attribute aij ∈ A represents the geometric relationship between the
node vi and vj in graph G. We present the skeleton graph G by distance matrix ω:

ω =


R(v1, v1) R(v1, v2) · · · R(v1, vN)
R(v2, v1) R(v2, v2) · · · R(v2, vN)

...
. . .

...
R(vN , v1) R(vN , v2) · · · R(vN , vN)

 (7)

where, N is numbers of nodes in G, each row of ω can be seen as a descriptor for a node
which contains sequences to all other nodes of the same graph.

3.2. Skeleton Graph Matching. Given two skeleton graphs GP with nP nodes and
and GQ with nQ nodes, their nodes are V P = {vP1 , ..., vPnP } and V Q = {vQ1 , ..., v

Q
nQ
}

respectively. The goal is to find node correspondences between two graph GP and GQ,
which best preserve the attribute relations under the matching constraints. Previous work
[20] only used node-to-node and pair-to-pair comparisons for their matching. However,
in this work, we make a change of high-order relations of nodes, and compare the tuples
of nodes. So, we define tensors representing high-order relations of nodes by hyper-graph
formulations. Let V be a finite set of vertices and E a family of subsets of V such that
∪e∈E = V . The SHG G= (V , E ,A) consists of nodes v ∈ V , hyper-edges e ∈ E , and
attributes a ∈ A associated with the hyper-edges. As illustrated in Fig.2, we construct
SHG G = (V , E ,A) by considering each node as a centroid node and form a hyper-edge
by a centroid and its k-nearest neighbors. A skeleton hyper-graph presents not only the
local grouping information, but also the similarities between nodes in hyper-edges. In this
way, the correlation information among nodes is more accurately described.

Figure 2. [16] Left: A simple graph with six nodes {v1, ..., v6} in 2-D
space. Right: A hyper-graph is built, in which each vertex and its 2 nearest
neighbors form a hyper-edge.
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The SHG matching problem between GP and GQ is equivalent to selecting reliable
nodes in the graph Gw since the selected nodes in Gw correspondents to graph or sub-
graph matching between GP and GQ. To select the nodes in Gw, we adopt the statistics of
the Markov random walks [15] which has been used to compute the ranking or relevance
of graphs. Thus, graph matching between GP and GQ can be transformed into the node
ranking and selection problem by random walks on Gw. To solve such problem, we need
to define an association SHG. As illustrated in Fig.3, we construct an association SHG
Gw = (Vw, Ew,Aw) by considering each candidate correspondence cw = (vPp , v

Q
q ) as a node

vw ∈ Vw. Here, a random walk from a node vw1 to another node vw2 on this graph
Gw implies a walk from a correspondence cw1 to another correspondence cw2 between
GP and GQ. A hyper-edge ew1,...,wδ in the association skeleton hyper-graph Gw embeds
the similarity value Hw1,...,wδ of the δ-tuple and assigned as the attribute weight. For
δ-th order skeleton hyper-graph matching, the similarities of the δ-tuples are measured
by comparing attributes of two δ-th order hyper-edges ePp1,...,pδ and eQq1,...,qδ. Since each

hyper-edge derived from δ-tuple of correspondences cw1 = (vPp1, v
Q
q1), ..., cwδ = (vPpδ, v

Q
qδ),

we need to estimate the matching cost of each corresponding (vPpi, v
Q
qi). Consider two nodes

vPi = {ωPi1, ωPi2, ...ωPinP } and vQj = {ωQj1, ω
Q
j2, ...ω

Q
jnQ
}, which are described by the i-th row

of matrix ωP and the j-th row of matrix ωQ in Equation(7) correspondingly. We find an

optimal correspondence ϕ : {ωPi1, ωPi2, ...ωPinP } → {ω
Q
j1, ω

Q
j2, ...ω

Q
jnQ

, φ}, where ωPi ∈ vPi is

mapped to ϕ(ωPi ) ∈ vQj , and we allow a many-to-one mapping to φ. This is a sequence
matching problem, so we compute all distances between the two sequences and obtain
the matrix φ(ωPi , ω

Q
j ) whose entry is the path distance between any two paths emanating

from the two nodes.

φ(ωPi , ω
Q
j ) =


pd(ωPi1, ω

Q
j1) pd(ωPi1, ω

Q
j2) · · · pd(ωPi1, ω

Q
jnQ

)

pd(ωPi2, ω
Q
j1) pd(ωPi2, ω

Q
j2) · · · pd(ωPi2, ω

Q
jnQ

)
...

. . .
...

pd(ωPinP , ω
Q
j1) pd(ωPinP , ω

Q
j2) · · · pd(ωPinP , ω

Q
jnQ

)

 (8)

where pd(., .) is the distance between two skeleton paths computed by Equation(6). Since
GP and GQ may have different numbers of nodes, standard comparison methods cannot
effectively. We therefore need an algorithm to calculate the matching cost of feature
vectors with different length. The Optimal Subsequence Bijection algorithm (OSB) [21]
can work for elastic matching of two sequences of different lengths m and n. The goal of
OSB is to find subsequences a′ of a and b′ of b such that a′ best matches b′, so it can be
adapted to compute the dissimilarity of two nodes vi and v′j. By applying OSB to the

matrix φ(ωPi , ω
Q
j ), we obtain the dissimilarity of two nodes vPi and vQj :

Ω(ωPi , ω
Q
j ) = OSB(φ(ωPi , ω

Q
j ) (9)

Here, the optimal alignment of two series is not very considered much but rather the
total matching cost is considered as a measure of their similarity. In order to define
tensors representing high-order relations of nodes, we use the properties of the triangle
formed by three points (δ = 3) as shown in Fig. 4. The basic idea is that under a similarity
transformation the angles of a triangle are unchanged [16]. In practice, we describe each
triangle by the sines of its three angles. Thus, the similarity value Hw1,w2,w3 is defined as
follows:

Hw1,w2,w3 = exp

[
− 1

σ2

3∑
i=1

‖sin(ϕAwi)− sin(ϕBwi)‖2
]
, (10)
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Figure 3. Six possible correspondences between two graphs of an associ-
ation hyper-graph [15]. (a): There are two and three nodes in the graph
GP and GQ, respectively. (b): Five hyper-edges which connect some of
candidate correspondences.

Figure 4. Three candidate correspondences C1, C2, C3 form two triangles
in calculating higher-order similarity [16]. Higher-order similarity can be
calculated by comparing corresponding angles

where ϕAwi and ϕBwi denote angles of nodes related to the correspondence wi in the domain
A and B, respectively. The construction of association skeleton graph Gw allows us to solve
the skeleton hyper-graph matching problem by selecting reliable nodes vw ∈ Vw in Gw. By
applying Algorithm.1 to the weight matrix in (10), we obtain the node correspondences
between two graph GP and GQ.

4. Experiment results. In this section, the experimental evaluation of the proposed
method is presented in two parts:(1)matching the nodes in the skeleton graphs,(2) the
retrieval performance of the proposed method on shape databases. Three shape database
in the Kimia’s 99 and Kimia’s 216 dattabase that were provided by Kimia’s group [22] and
the MPEG-7 CE-Shape-1 (Part B) database [23] are used to test the quality performance
of the proposed method. The experimental results are compared with those obtained from
some popular shape matching methods [22, 24, 20, 25]. For each shape in database, we
first compute the skeleton with the algorithm in [23] using default parameters. Then, we
formulate the skeletons in the form of graphs and calculate the correlation between two
graphs by the proposed method with the parameters M,γ, α, β, tuning empirically as 50,
40, 0.2 and 30, respectively.

4.1. Correspondence matching. Several scenarios are tested for the object matching
process which are shown in the figures 5, 6 and 7. Fig.5 shows the correspondence between
two horses that one is the nonrigid transformation of the other one. Fig.6 illustrates that
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the proposed method works correctly if object parts are significantly altered (shortened in
this case). Fig.7 demonstrates that the proposed method doesn’t explicitly consider the
topological structure of the skeleton graphs. The obtained correspondences demonstrate
that our matching process has strong performance.

Figure 5. The correspondence in the presence of articulation

Figure 6. The correspondence between two persons with different num-
bers of legs

Figure 7. The correspondence between two elements that have not the
same topological structure

4.2. Robustness of retrieval. Setting the same condition for running the proposed
method with the other methods to compare the results. The experimental results of the
proposed method are compared with those obtained from some popular shape matching
methods such as: Graph Edit-distance [22], Path similarity [20], Inner Distance method
[24], and Distortion-free Embedding [25].

Two Kimia’s data sets are carried out to test the proposed method. The first data set
(Kimia’s 99) consists of 99 instances from nine classes, and each category has 11 shapes
with some shapes have protrusions or missing parts. The second data set (Kimia’s 216),
which consists of 216 instances with 18 categories, and each category has 12 shapes with
variations in form and occlusion of parts. Each shape in the database is used as a query,
which is matched against all other shapes in the database. The difference between shapes
is computed with the Hungarian algorithm on mapping matrix x in the final step of
algorithm. Recognition scores are given as the number of kth closest matches that fall
into the correct class, where k=1,...,10 for Kimia’s 99 dataset and k=1,...,11 for Kimia’s
216 dataset, respectively. The results are presented in Table 1 and Table 2 show that the
proposed method performs comparably to the best methods reported on these datasets.
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Clearly, the proposed method provides the results that outperforms the other methods.
It is the best case of the obtained results from the methods based on the total number of
mismatches in top 10 retrieval results on Kimia’s 99 database and top 11 retrieval results
on Kimia’s 216 database are boldface. These results are recorded as 34, 32, 51, 28, 22 on
Kimia’s 99 database and 132, 95, 100, 67, 48 on Kimia’s 216 database for Graph Edit-
distance, Inner Distance, Path Similarity, Distortion-free Embedding and the proposed
method, respectively.

Table 1. The number of kth closest matches that fall into the correct class
are shown for several algorithms on Kimia’s 99 database. The best possible
score in each match is 99.

The number of k−th closest matches
Algorithms 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Shock Edit [22] 99 99 99 98 98 97 96 95 93 82
IDSC + DP [24] 99 99 99 98 98 97 97 98 94 79

Many-to-many [25] 99 99 98 99 98 97 98 97 92 84
Path Similarity [20] 99 99 99 99 96 97 95 93 89 73

The proposed method 99 99 99 99 98 97 97 97 94 89

Table 2. The number of kth closest matches that fall into the correct
class are shown for several algorithms on Kimia’s 216 database. The best
possible score in each match is 216.

The number of k−th closest matches
Algorithms 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Shock Edit [22] 216 216 216 215 210 210 207 204 200 187 163
IDSC + DP [24] 216 216 215 216 215 210 210 209 205 190 179

Many-to-many [25] 216 216 216 216 215 213 210 209 206 199 193
Path Similarity [20] 216 216 215 216 213 210 210 207 205 191 177

The proposed method 216 216 216 216 216 215 211 211 209 205 197

Furthermore, we illustrate proposed method on the MPEG-7 dataset. This data set
consists of 1400 silhouette images from 70 classes and each class has 20 shapes. Similar
to the retrieval experiments presented above, every shape in the database is compared
to all other shapes, and the number of shapes from the same class among the 40 most
similar shapes are counted. The retrieval score is the ratio of the number of correct hits
of all shapes to the complete matches hits, which was so-called the bull’s eye score. The
retrieval score is calculated as following:

Retrieval score=

N∑
i=1

Si

D ×N
(11)

where S is the number of the first corrected hits in a class of similarity shapes, N is number
of images in a data set, and D is number of the shapes in a class. The total possible
most similar shapes were counted as (20 × 1400). Table 3 lists some of the reported
results about the retrieval rates and average matching times of different approaches on
the MPEG7 database. Fig.8 shows the numbers of each individual class. Obviously, the
proposed method gives rise to the better results in most of the cases in comparisons with
those obtained from other method of [20]. This is because such shape observes large
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variation in deformation, which can be captured by proposed method, but is difficult for
the method [20].

Table 3. Retrieval rates and average matching times of different ap-
proaches for the MPEG7 dataset

Algorithm Shock Edit [22] IDSC + DP [24] Path similarity [20] Proposed method
Score % 87.70 85.40 86.70 89.05
Time (s) - - 0.09 0.15

Figure 8. Detailed retrieval rate for some individual class.

5. Conclusion. In this paper, we proposed a method of matching points between two
shapes based on their skeleton graph for the automatic object recognition applications.
In the proposed method, a skeleton hypergraph model (SHG) was used to represent the
relationships among relevant nodes. A centroid node was identified by computing based
on its skeleton and a hyper-edge is formed by a hybrid between the centroid and k -
nearest neighbor method. Matching between the two shapes was considered as a SHG
matching problem. Through ranking on an association SHG in random walks, the best
solution to this problem can be found out effectively, and reweighting scheme was used
to establish correspondences between two SHGs. In experimental section, the silhouette
database [22] and MPEG-7 database [26] were used to validate the proposed method
quality. Experimental results show that the proposed approach clearly outperforms the
other algorithms, especially in the presence of noise and outliers.
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