
Journal of Information Hiding and Multimedia Signal Processing c©2016 ISSN 2073-4212

Ubiquitous International Volume 7, Number 5, September 2016

High Performance Remote Cloud Datacenter Backup
in Big Data Environment

Bao-Rong Chang

Department of Computer Science and Information Engineering
National University of Kaohsiung

700 University Road, Kaohsiung, 811, Taiwan
brchang@nuk.edu.tw

Hsiu-Fen Tsai

Department of Marketing Management
Shu-Te University

59 Hun Shang Road, Kaohsiung, 824, Taiwan
soenfen@mail.stu.edu.tw

Cin-Long Guo

Department of Computer Science and Information Engineering
National University of Kaohsiung

700 University Road, Kaohsiung, 811, Taiwan
brandon770913@gmail.com

Abstract. HBase and Cassandra are two most commonly used large-scale distributed
NoSQL database management systems; especially applicable to big data processing. Re-
garding storage structure, different structure adopts distinct backup strategy to reduce
the risks of data loss. This paper aims to realize high effective remote cloud datacenter
backup using Thrift Java on NoSQL database HBase and Cassandra. The binary commu-
nications protocol technology from Apache Thrift is employed to establish graphical user
interface instead of using command line interface so as to ease data manipulation. In
order to verify high performance, a stress test has taken on strictly data reading/writing
and remote backup of a large amount of data. Finally, performance index has been eval-
uated for several benchmark databases including two above-mentioned databases. As a
result, the proposed HBase approach outperforms the other databases.
Keywords: NoSQL Database, Hbase, Cassandra, Remote Datacenter Backup, Perfor-
mance Index, Graphical User Interface.

1. Introduction. In recent years, cloud services [1, 2] are applicable in our daily lives.
Many traditional services such as telemarketing, television and advertisement are evolving
into digitized formats. As smart devices are gaining popularity and usage, the exchange
of information is no longer limited to just desktop computers, but instead, information
is transferred through portable smart devices [3, 4], so that humans can receive prompt
and up-to-date information anytime. Due to above reasons, data of all types and forms
are constantly being produced, leaving the mass of un-correlated or un-related informa-
tion, causing conventional databases is not able to handle the workload in a big data
environment. This leads to the emergence of non-relational databases, of which many
notable NoSQL databases that are currently being used by enterprises are HBase [5],
Cassandra [6], and Mongo [7]. Distributed systems are often built under a single-cluster

993



994 B. R. Chang, H. F. Tsai, and C.L. Guo

environment, and contain a preventive measure against the single-point failure problem,
that is, to prevent system crash or data loss. However, it could be happened in such ac-
cidents as power shut-down, natural disaster, or manual error that leads to whole system
collapse and then initiates an remote backup to the remote data center. Even though
NoSQL database uses distributed architecture to prevent the risk of data loss, but it has
neglected the importance of data center remote backup. In addition to considering nodal
independence and providing uninterrupted services, a good database system should also be
able to support instant cross-cluster or cross-hierarchy remote backup. With this backup
mechanism, data can be restored, and prevent further data corruption problems. This
paper will implement data center remote backup using two remarkable NoSQL databases,
and perform stress tests with a large scale of data, for instances, read, write, and data cen-
ter remote backup through graphical user interface we proposed instead of command line
interface. The experimental results of data center remote backup using database HBase
and Cassandra will show normalized performance index, average normalized performance
index, and performance index to indicate the performance evaluation [8].

2. Large-scale database in data center. This paper will realize data center remote
backup for the two distributed databases HBase and Cassandra. Both designs achieved
two of the three characteristics that are consistency (C), availability (A), and partition
tolerance (P) in C.A.P theory [9]. HBase, a distributed database, works under the master-
slave [10] framework, where the master node assigns data to the slave node to realize the
distributed data storage, meanwhile emphasizing on consistency and partition tolerance
characteristics. Regarding data center remote backup, a certain data center with data-
base HBase has the following advantages: (1) retain data consistency, (2) activate instant
reading or writing of massive information, (3) access to large-scale unstructured data, (4)
expand new slave nodes, (5) provide computing resources, and (6) prevent a single-node
failure problems in the cluster. Cassandra, a distributed database, works under the peer-
to-peer (P2P) [11] framework, where each node contains totally identical backup data to
realize the distributed data storage with uninterrupted services, at the same time empha-
sizing on availability and partition tolerance characteristics. As for data center remote
backup, a certain data center with database Cassandra has the following advantages: (1)
each node shares equal information, (2) cluster setup is quick and simple, (3) dynamically
expand new nodes, (4) each node has the equal priority of its precedence, and (5) cluster
does not have a single-node failure problem.

3. Remote data center backup.

3.1. Remote HBase and Cassandra data centers backup. Remote HBase data
center backup architecture [12] is as shown in Fig. 1. The master cluster and slave cluster
must possess its own independent Zookeeper in a cluster [13]. The master cluster will
establish a copy code for the data center, and designate the location of the replication, so
to achieve offsite or data center remote backup between different sites. Remote Cassandra
data center backup architecture [14] is as shown in Fig. 2. Cassandra is of peer-to-peer
(P2P) framework connects all nodes together. When data have written into data center
A, a copy of the data is immediately backed up into a designated data center B, as well,
each node can designate a permanent storage location in a rack [15]. This paper expands
the application of a single-cluster replication mechanism to the replication of data center
level. Through adjusting the replication mechanism between data center and nodes, the
corresponding nodes from two independent data centers are connected and linked through
SSH protocol, and then data have distributed and written into these nodes by master node
or seed node to achieve data center remote backup.



High Performance Remote Cloud Datacenter Backup in Big Data Environment 995

Figure 1. Remote HBase
data center backup

Figure 2. Remote Cassan-
dra data center backup

3.2. Cross-platform data transfer using Apache Thrift. Apache Thrift [16] was
developed by the Facebook team [17], and it was donated to the Apache Foundation in
2007 to become one of the open source projects. Thrift was designed to solve Facebooks
problem of large number of data transfers between various platforms and distinct pro-
gramming languages, and thus cross-platform RPC protocols. Thrift supports a number
of programming languages [18], such as C++, C#, Cocoa, Erlang, Haskell, Java, Ocami,
Perl, PHP, Python, Ruby, and Smalltalk. With binary high performance communication
properties, Thrift supports multiple forms of RPC protocol acted as a cross-platform API.
Thrift is also a transfer tool suitable for large amounts of data exchange and storage [19];
when comparing with JSON and XML, its performance and capability of large-scale data
transfer is clearly superior to both of them. The basic architecture of Thrift is as shown in
Fig. 3. In Fig. 3 the Input Code is the programming language performed by the Client.
The Service Client is the Client side and Server side code framework defined by Thrift
documents, and read()/write() are codes outlined in Thrift documents to realize actual
data read and write operations. The rest are Thrifts transfer framework, protocols, and
underlying I/O protocols.

Using Thrift, we can conveniently define a multi-language service system, and select
different transfer protocol. The Server side includes the transfer protocol and the basic
transfer framework, providing both single and multi-thread operation modes on the Server,
where the Server and browser are capable of interoperability concurrently. The use of
Thrift to achieve cross-platform data transfer for either HBase or Cassendra in data
center remote backup works in our proposed approach and a system diagram has shown
below in Fig. 4 as well.

4. System implementation. This section will realize data center HBase and Cassendra,
and implement the remote backup of data center as well. After that, the efficiency of the
remote backup has done according to performance index.

4.1. Data transfer, data integrity checking, and graphical user interface. The
following algorithm will implement data centers using database HBase and Cassandra
underlying the operating system CentOS 6.4, and achieve the goal of remote backup.



996 B. R. Chang, H. F. Tsai, and C.L. Guo

Figure 3. Apache Thrift architecture.

Figure 4. Structure of HBase or Cassendra in data center remote backup

Next, this paper will test the efficiency of data centers against reading, writing and remote
backup of large amounts of data.
Algorithm: Datacenter setup and remote backup

Input: CentOS, Hadoop, Cassendra, Testing data with the size of 1.5 Terabyte
Output: Remote backup of HBase and Cassendra in two datacenters
Step 1. control CentOS’s firewall to use the transfer ports and pre-set the settings.
Step 2. set up HBase and Cassandra data centers and examine the status of all nodes.
Step 3. create forms with identical names in HBase system for both data centers. The

primary data center will execute command (add peer) [12], and backup the infor-
mation onto the secondary data center.



High Performance Remote Cloud Datacenter Backup in Big Data Environment 997

Figure 5. Writing of Data
shopTime: 09:00-22:00 into
Rowkey: MA00001 (HBa-
seX)

Figure 6. Writing of Data
shopTel: 005-754-9982 into
Rowkey: MA00001 (Canssan-
draX)

Figure 7. Search shopCity:
MA Boston and shopPhone:
(617) 536-0290 (HBaseX)

Figure 8. Search age: 40
and phone: 07-5919000 (Cas-
sandraX)

Step 4. edits Cassandra’s file content (cassandra-topology.properties), then sets the names
of data center and the storage location of the nodes (i.e., rack number).

Step 5. edit Cassandra’s file content (cassandra.yaml), and then change the content of
endpoint snitch [14] to PropertyFileSnitch (data center management mode).

Step 6. execute command (create keyspace test with strategy options = {DC1:2,DC2:1}
and placement strategy=‘NetworkTopologyStrategy’) in Cassandra’s primary data
center, and then creates a form and initialize the remote backup.



998 B. R. Chang, H. F. Tsai, and C.L. Guo

Figure 9. Read Single
Data Rowkey: MA00001
(HBaseX)

Figure 10. Read Multiple
Data Rowkey M10100001 to
M1010003 (CassandraX)

Step 7. test writing, reading, and offsite data backup against large amounts of data using
Thrift Java, and check their performance.

The binary communications protocol technology from Apache Thrift is employed to
establish graphical user interface instead of using command line interface. As shown in
Figs. 5, 6, 7, 8, 9, and 10, the graphical user interface provides functions of importing of
external files, and writing, reading, and secondary indexing of mass data which is similar
to that of Solandra (Solr+Cassandra). But it requires constant updates to Cassandra
database and Solr [20] search engine; in addition, identical query result to that of Cassan-
dra’s cannot be guaranteed for each and every reading or secondary index. The graphical
user interface in this paper ensures that the data accessed each time we are connected to
the database is consistent, and that we are able to connect to different data nodes without
access failure.

4.2. Performance index. In order to develop the assessment of the proposed approach,
the necessitated equations are derived from first measuring a single datum access time for
a certain database on Eq. 1, next calculating average access time based on a variety of
data size on Eq. 2, then inducing a normalized performance index among the databases
on Eq. 3, and finally resulting in a performance index according to different tests on Eq.
4. In these equations we denote the subscript i the index of data size, j the index of
database, and k the index of test category as well as the subscript s indicates a single
datum. Eq. 1 calculates the average access time (AAT) for each data size. In Eq. 1
AATijk represents average access time with the same data size, and Nik represents the
current data size. Eq. 2 calculates the data center’s average access times overall AATSjk

for each test (i.e. write, read, remote backup), in which AATSijk
represents the average

access time of each data size, please refer back to Eq. 1. The following formula will
evaluate the performance index (PI) [8]. Eq. 3 calculates the data center’s normalized
performance index. Eq. 4 calculates the data center’s performance index overall, SFl is
constant value and the aim is to quantify the value for observation.



High Performance Remote Cloud Datacenter Backup in Big Data Environment 999

AATSijk
=

AATijk

Nik

, where i = 1, 2, ..., l, j = 1, 2, ...,m, k = 1, 2, ..., n (1)

AATSjk
=

l∑
i=1

wi · AATSijk
, where j = 1, 2, ...,m, k = 1, 2, ..., n,

l∑
i=1

wi = 1 (2)

PIjk =

1

AATSjk

max
h=1,2,...,m

(
1

AATShk

)
, where j = 1, 2, ...,m, k = 1, 2, ..., n (3)

PIj = (
n∑

k=1

Wk·PIjk)·SFl, where j = 1, 2, ...,m, k = 1, 2, ..., n, SFl = 102,
n∑

k=1

Wk = 1 (4)

5. Experimental Results and discussion. This section will go for the data center
remote backup, the stress test, as well as the performance index among various data
centers. Finally, the performance evaluation for a variety of data bases has carried out
according to performance index.

5.1. Stress test of data read/write in data center. All of tests have performed on
IBM X3650 Server (denoted data center A) and IBM BladeCenter (denoted data center
B). Data centers A and B have been installed a variety of databases, that is, the latest
version of Apache HBase (hbase-0.94.27), Apache Cassandra (the latest stable release
2.1.6), Cloudera HBase, DataStax Cassandra, and Oracle MySQL. We are going to launch
a series of the tests to measure their system performance and efficiency. The first four
databases are of remarkable NoSQL type database employed to the tests, and the last
one is a well-known SQL type databases. Writing and reading tests of large amounts
of data are launched to/from these databases. A number of various specific data sizes
were applied, and the average time of a single datum access was logged for each data
size. Hadoop provides a file system where in Fig. 11 we import prepared data, and in
Fig. 12 we upload this raw data to HDFS. We need to create a definite row-key in raw
data because of no providing auto-generating row-key in HBase. HBase didnt provide an
auto-generated row-key format for any input. Fig. 11 presents our prepared data format,
which it construct with row-key, category, shop-name, telephone, province and address.
The source of these data is grabbed from the yellow page in U.S.A. We separate raw datas
fields by comma qualifier.

Figure 11. The format of inputting data.



1000 B. R. Chang, H. F. Tsai, and C.L. Guo

Figure 12. Uploading data to HDFS.

(1) Data centers A and B perform the large amounts of information writing test through
Thrift Java. In Table 1, five consecutive writing times among various databases were
performed where the various specific data sizes applied for writing test. We substitute
the results into Eq. 1 to calculate the average time of a single datum write for several
databases as shown in Fig. 13.

(2) Data centers A and B perform large amounts of information reading test through
Thrift. In Table 2, five consecutive writing times among various databases were per-
formed where the various specific data sizes applied for reading test. We substitute
the results into Eq. 1 to calculate the average time of a single datum read for several
databases as shown in Fig. 14.

Table 1. Data write test (unit: sec.)

Data Size Apache HBase
Apache

Cassandra
Cloudera

HBase
DataStax
Cassandra

Oracle
MySQL

103 1.6 1.2 3.2 2.9 11.7
104 17.1 14.9 18.9 17.4 37.8
105 158.5 137.8 178.4 148.3 297.2
106 1798.4 1277.8 1942.8 1438.4 2318.7
107 15983.1 11437.7 20114.2 14983.7 21291.7
108 41753.8 49238.3 44277.9 42829.4 53872.6
109 267832.2 241911.8 354219.2 336949.1 508727.6

(Note: Unit of data size is the number of rows where one row contains five columns)

5.2. Stress test of data center remote backup. The remote backup testing tool,
Thrift Java, is mainly used to find out how long does it take to backup data each other
remotely between data centers A and B as shown in Table 3. As a matter of fact, the
experiment shows that the average time of a single datum access for the remote backup
of Apache HBase and Apache Cassandra only takes a fraction of mini-second. Further
investigations found that although the two data centers are located at different network
domains, they still belonged to the same campus network. The information might have
only passed through the campus network internally, but they never reach the internet
outside, leading to speedy the remote backup. Nonetheless, we do not need to setup
new data centers elsewhere to conduct more detailed tests because we believe that data
exchange through internet will get the almost same results just like performing the remote



High Performance Remote Cloud Datacenter Backup in Big Data Environment 1001

Figure 13. Average time of a single datum write in database.

Table 2. Data read test (unit: sec.)

Data Size Apache HBase
Apache

Cassandra
Cloudera

HBase
DataStax
Cassandra

Oracle
MySQL

103 1.5 1.9 3.4 4.1 11.9
104 4.6 5.2 9.8 10.7 67.2
105 44.6 64.1 55.8 70.5 378.5
106 604.9 658.8 694.7 732.8 672.8
107 5981.3 6317.1 6759.4 7189.6 7916.3
108 42398.1 43381.6 45792.9 46990.4 51481.1
109 319627.7 326960.4 344192.1 358910.7 509751.9

(Note: Unit of data size is the number of rows where one row contains five columns)

backup tests via intranet in campus. Five consecutive backup times among various specific
databases between two distinctive datacenters have been logged when applying different
data sizes in the test. We substitute the results into Eq. 1 to calculate the average time of
a single datum backup for several databases between two distinctive datacenter as shown
in Fig. 15.

5.3. Performance evaluation and discussion. The following subsection will evaluate
the performance index for the above-mentioned databases. We first substitute the average
execution times from Tables 1, 2, and 3 into Eq. 2 to find the average access time based
on a variety of data size in the test. Next we substitute those results into Eq. 3 to find
the normalized performance index as listed in Table 4 and shown in Fig. 16. Finally, we
substitute those results into Eq. 4 to find average normalized performance index as listed
in Table 5 and the performance index of databases as listed in Table 6. In Table 6, we
have found that Apache HBase and Apache Cassandra obtain higher performance index,
whereas MySQL get the lowest one. MySQL adopts the two-dimensional array storage



1002 B. R. Chang, H. F. Tsai, and C.L. Guo

Figure 14. Average time of a single datum read in database.

Table 3. Remote backup test (unit: sec.)

Data Size Apache HBase
Apache

Cassandra
Cloudera

HBase
DataStax
Cassandra

Oracle
MySQL

103 0.8 1.3 2.2 2.9 10.1
104 1.1 2 3.1 3.9 21.9
105 5.4 16.3 9.1 20.7 181.1
106 18.4 108.6 25.9 137.7 1079.7
107 191.3 1081.6 273.1 1281.9 4381.8
108 2307.3 2979.1 3209.6 3419.1 7319.1
109 24468.3 27953.1 29013.8 29567.3 39819.3

(Note: Unit of data size is the number of rows where one row contains five columns)

structure and thus each row can have multiple columns. The testing data used in this pa-
per is that considering each rowkey it has five column values, and hence MySQL will need
to execute five more writing operations for each data query. In contrast Apache HBase
and Apache Cassandra adopting a single Key-Value pattern in storage, the five column
values can be written into database currently, namely, no matter how many number of
column values for each rowkey, only one write operation required. Figs. 13 and 14 show
that when comparing with other databases, MySQL consume more time; similarly, as
shown in Fig. 15, MySQL consumes more time in the remote backup as well. To draw a
conclusion from the above results, NoSQL database has gained better performance when
facing massive data processing. Particularly, based on C.A.P theory [9], in the remote
datacenter backup, Apache HBase outperforms Apache Cassandra a lot because Apache
Cassandra need to take a longer time to follow the property of partition tolerance. Con-
versely, in data writing test, Apache Cassandra is superior to Apache HBase because
Apache HBase have to keep the property of availability to take a time-consuming work



High Performance Remote Cloud Datacenter Backup in Big Data Environment 1003

Figure 15. Average time of a single datum backup in the remote data center.

for the data replication between storage segments. The latest version of Apache HBase
has performed better than Cloudera HBase so far.

Table 4. Normalized performance index

Operation Apache HBase
Apache

Cassandra
Cloudera

HBase
DataStax
Cassandra

Oracle
MySQL

Write 0.805 1 0.621 0.735 0.302
Read 1 0.851 0.612 0.534 0.175

Remote Backup 1 0.541 0.386 0.274 0.067

Table 5. Average normalized performance index

DataBase Total Average

Apache HBase 0.935
Apache Cassandra 0.798
Cloudera HBase 0.540

DataStax Cassandra 0.514
Oracle MySQL 0.181

6. Conclusions. This paper realizes the remote data backup for HBase and Cassandra
data centers, and the performances evaluation for various databases has been carried out
according to the performance index. As a result, HBase and Cassandra can best perform
the others, provided that this paper indeed gives us an insight into how to evaluate the
performance for the remote datacenter backup.



1004 B. R. Chang, H. F. Tsai, and C.L. Guo

Figure 16. Normalized performance index of various databases.

Table 6. Performance index

DataBase Performance Index

Apache HBase 93
Apache Cassandra 80
Cloudera HBase 54

DataStax Cassandra 51
Oracle MySQL 18

Acknowledgment. This work is fully supported by the Ministry of Science and Tech-
nology, Taiwan, Republic of China, under grant number MOST 103-2221-E-390-011.

REFERENCES

[1] B. R. Chang, H. F. Tsai, and C. M. Chen, Empirical analysis of server consolidation and desktop vir-
tualization in cloud computing, Mathematical Problems in Engineering, vol.2013, article ID.947234,
11 pages, 2013.

[2] B. R. Chang, H. F. Tsai, C. Y. Chen, and Y. C. Tsai, Assessment of in-cloud enterprise resource
planning system performed in a virtual cluster, Mathematical Problems in Engineering, vol.2014,
article ID.520534, 8 pages, 2014.

[3] B. R. Chang, H. F. Tsai, C. M. Chen, and C. F. Huang, Intelligent adaptation for uec video/voice
over ip with access control, International Journal of Intelligent Information and Database Systems,
vol.8, no.1, pp.64–80, 2014.

[4] C. Y. Chen, B. R. Chang, and P. S. Huang, Multimedia augmented reality information system for
museum guidance, Personal and Ubiquitous Computing, vol.18, no.2, pp.315–322, 2014.

[5] D. Carstoiu, E. Lepadatu, and M. Gaspar, Hbase-non SQL database, performances evaluation,
International Journal of Advanced Computer Technology, vol.2, no.5, pp.42–52, 2010.

[6] A. Lakshman, and P. Malik, Cassandra: a decentralized structured storage system, ACM SIGOPS
Operating Systems Review, vol.44, no.2, pp.35–40, 2010.

[7] N. O’Higgins, MongoDB and Python: Patterns and Processes for the Popular Document-Oriented
Database, O’Reilly Media Inc., Sebastopol, CA, USA, 2011.



High Performance Remote Cloud Datacenter Backup in Big Data Environment 1005

[8] B. R. Chang, H. F. Tsai, and C. M. Chen, Assessment of in-cloud enterprise resource planning system
performed in a virtual cluster, Mathematical Problems in Engineering, vol.2014, article ID.947234,
11 pages, 2014.

[9] J. Pokorny, NoSQL databases: a step to database scalability in web environment, International
Journal of Web Information Systems, vol.9, no.1, pp.69–82, 2013.

[10] A. Giersch, Y. Robert, and F. Vivien, Scheduling tasks sharing files on heterogeneous masterslave
platforms, Journal of Systems Architecture, vol.52, no.2, pp.88–104, 2006.

[11] A. J. Chakravarti, G. Baumgartner, and M. Lauria, The organic grid: self-organizing computation
on a peer-to-peer network, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, vol.35, no.3, pp.373–384, 2005.

[12] L. George, HBase: the Definitive Guide, O’Reilly Media Inc., Sebastopol, CA, USA, 2011.
[13] E. Okorafor, and M. K. Patrick, Availability of jobtracker machine in hadoop/mapreduce zookeeper

coordinated clusters, Advanced Computing: An International Journal, vol.3, no.3, pp.19–30, 2012.
[14] V. Parthasarathy, Learning Cassandra for Administrators, Packt Publishing Ltd., Birmingham, UK,

2013.
[15] Y. Gu, R. L. Grossman, Sector: a high performance wide area community data storage and sharing

system, Future Generation Computer Systems, vol.26, no.5, pp.720–728, 2010.
[16] M. Slee, A. Agarwal, and M. Kwiatkowski, Thrift: scalable cross-language services implementation,

Facebook White Paper, vol.5, 8 pages, 2007.
[17] J. J. Maver, and P. Cappy, Essential Facebook Development: Build Successful Applications for the

Facebook Platform, Addison-Wesley Professional, Boston, MA, USA, 2009.
[18] R. Murthy, R. Goel, Low-latency queries on hive warehouse data. xrds: crossroads, The ACM

Magazine for Students, vol.19, no.1, pp.40–43, 2012.
[19] A. C. Ramo, R. G. Diaz, and A. Tsaregorodtsev, Dirac restful api, Journal of Physics: Conference

Series, vol.396, no.5, ID.052019, 2012.
[20] R. Kuc, Apache Solr 4 Cookbook, Packt Publishing Co, Birmingham, UK, 2013.


