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Abstract. Sensory data classification is a crucial task in many information processing.
The vector data or matrix data are the most common data format, especially matrix data,
for example, image data. We propose Gaussian kernel constructing method adaptive to
the distribution of the input data for classification. In the current matrix based feature
extraction, the matrix image is transformed to the vector, and the procedure of trans-
forming will increase the ability of a large saving space and computing. And secondly the
different geometrical structures under the different kernel function will bring the different
class discrimination of the input data in the feature space. The performance of kernel
will be increased under the adaptive choosing the parameters of kernel. We present the
matrix Gaussian kernel, Quasiconformal matrix Gaussian kernel, and Quasiconformal
matrix multikernels, and we implement the three kinds of kernels on different classifiers
on ORL and Yale image databases. The experimental results show that the proposed
kernels perform better than the traditional kernel functions.
Keywords: Matrix data, Gaussian matrix kernel, Quasiconformal matrix Gaussian ker-
nel, Image classification.

1. Introduction. Kernel-based image classification systems are widely studied in many
areas [1], and kernel learning is to improve the linear learning methods. The data distri-
bution in the space-based nonlinear feature space is easy to classification, and the data
geometrical structure is determined by the kernel function. The discriminative ability of
the data could be even worse if an inappropriate kernel is used. In the previous work
[2, 3], researchers optimized the parameters of kernel function, but these methods are not
effective through only choosing the parameter from a set of discrete values. The geome-
try structure of data distribution in the kernel space is not be changed only through the
changing the parameters of kernel. Xiong proposed a data-depend kernel for kernel op-
timization [4], and Amari presented support vector machine classifier through modifying
the kernel function [5]. Moreover, multiple kernel learning methods are developed, for
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example, Sparse Multiple Kernel Learning [6], Large Scale Multiple Kernel Learning[7],
lp-Norm Multiple Kernel Learning[8]. And kernel learning method is applied to hyper-
spectral remote sensing imagery classification [1], and the feasibility and excellent per-
formance were also reported in the relative works[9, 10]. Sparse kernel learning [11, 12],
Multiple sparse kernel coding [13, 14, 15], and some other methods were proposed based
on kernel learning method, such as fuzzy kernel learning[17], Semisupervised learning[17],
online learning [18], and these methods are widely used in object tracking[19, 20], machine
vision[21] and other applications areas. Moreover, multiple kernel learning methods are
developed, for example, Sparse Multiple Kernel Learning [22], Large Scale Multiple Kernel
Learning [23], lp-Norm Multiple Kernel Learning[24].In order to improve the performance
of kernel-based classification system, many methods of optimizing the kernel parameters
of the kernel function are developed in recent years (Huang [25], Wang [26] and Chen
[27]). However, choosing the parameters for kernel just from a set of discrete values of
the parameters doesnt change the geometrical structures of the data in the kernel map-
ping space. In order to overcome the limitation of the conventional KDA, we introduce a
novel kernel named quasiconformal kernel which were widely studied in the previous work
[28, 29, 30, 31], where the geometrical structure of data in the feature space is changeable
with the different parameters of the quasiconformal kernel. The optimal parameters are
computed through optimizing an objective function designed with the criterion of max-
imizing the class discrimination of the data in the kernel mapping space.The currently
kernel functions used in kernel learning method are vector-based function. All images
must be transformed to vectors, and these vectors must be saved for the kernel-based
learning system. And in the thus image classification system, the original image and
transformed vector must be saved for the kernel learning. The input of the kernel func-
tion is vector or an [N×1] matrix. For an [m×n] matrix, the matrix must be transformed
to a vector of [M×1], where M = m × n. Thus, the one image matrix and vector must
be saved, that is, for a [m×n] pixels of image, the save space is m×n×2 of pixels for the
traditional kernel learning, but only m×n of pixels of saving space for the matrix-kernel
learning. So, for the proposed matrix-kernel learning will save 50% of memory resources.

In this paper, we proposed a novel Quasiconformal-Matrix-Based Multikernels Learn-
ing for sensory data classification. In this model, firstly the data is to compute the kernel
matrix directly using the matrix data but without transforming the matrix data to vector
data, and secondly the parameter of quasiconformal kernel function is adjusted through
solving the eigenvalue equation, which is adaptive to the input data distribution. Based on
the fact that, the inappropriate selection of kernels will decrease the performance because
the geometrical structures of the data in the feature space will not be changeable, our pro-
posed quasiconformal matrix-kernel function differs from the traditional kernel function,
and the structure of data distribution will be changed through changing the parameter
of quasiconformal kernel. The parameters are solved through solving the constrained op-
timization equation, and the optimization equation is designed by the maximizing the
class discriminative ability. So, the performance of kernel-based classification learning is
improved including recognition accuracy and efficiency.

2. Algorithm.

2.1. Motivation. As the discussion, among these machine learning methods, kernel
learning is a feasible and effective nonlinear feature extraction methods. In the prac-
tical application, the data features of the specific tasks are generally chosen, for example,
for object recognition, image detection, pyramids and HOG feature selection. Polynomial
kernel function, Gaussian kernel function, RBF kernel function should be used in many
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areas. In fact, there are a number of kernel functions, and no optimal kernel function can
be adapted to all the applications. For example, in the kernel-based image processing,
each kind of kernel function can only be used to describe the characteristics of the data
effectively, such as texture, color, edge, etc.. The researchers began to have a significant
interest in the multi kernel function of the combination of basic nuclear functions. The
multiple kernel learning has the different kernel representation for the different feature
subspace. Multiple kernel learning is an effective method to solve the above problems.
Multiple kernel learning method can choose the kernel function according to the different
characteristics of the data, and then combine them. Multiple kernel learning is a feature
extraction method of combining many features, and is better to describe the data features
than the single feature extraction method. The multiple kernels learning can not only
improve the efficiency of feature extraction, but also adjust the weights of the adaptive
selection and the basic kernel function. Multiple kernel learning not only preserves the
nonlinear mapping characteristics of kernel functions, but also shows the possibility of
using different kernel functions and also shows the possibility of a unified framework for
the classical method of nonlinear feature extraction.

Kernel trick is an effective method to solve the nonlinear problems, and system perfor-
mances including such as recognition accuracy, prediction accuracy are largely increased
by the nonlinear kernel mapping. The performance of kernel-based system is largely influ-
enced by the function and parameter of kernel. Optimizing the parameters is not effective
to promote the kernel-based learning system owing to the unchanged data structure with
the changing of the parameter of kernel function. No a universal single kernel is very ef-
fective way to detecting intrinsic information for the complicate sample data in the input
data space. Quasiconformal mapping-based kernel is to change the data structure in the
feature space through adjusting the parameter of quasiconformal function. In order to
improve the performance of kernel learning, we combine the idea of the quasiconformal
kernel and multiple kernel combination. So, in this paper we present a framework of qua-
siconformal mapping-based multiple kernels learning. The learning system is improved
adaptively the data structure in the kernel mapping from the fact that quasiconformal
multiple kernels are combined to more precisely characterize the data for improving per-
formance on solving complex visual learning tasks. We use the Gaussian kernel as the
basic kernel in the proposed quasiconformal mapping-based multiple kernels.

2.2. Definitions.

2.2.1. Quasiconformal matrix kernel. Firstly, we proposed the matrix Gaussian kernel for
image computing. Supposed that n samples Iqp(Iqp ∈ Rm×n), (p = 1, 2, ..., L, q = 1, 2, ..., np

where np denotes the number of samples in the pth class and L denote the number of the
classes. Matrix Gaussian kernel Kg(Ix, Iy) is defined as,

Kg(Ix, Iy) = exp

(
−
∑n

j=1(
∑i=1

m (Ixij − I
y
ij)

2)

2σ2

)
(σ > 0) (1)

where Ix, Iy are the different images, and the following work is to proof of Kg(Ix, Iy) is
a kernel function. Kernel function can be defined in various ways. In most cases, however,
kernel means a function whose value only depends on a distance between the input data,
which may be vectors. As the kernel function, a symmetric function is a sufficient and
necessary condition that its Gram matrix is positive semi-definite. Given a finite data
set I = {I1, I2, ..., IN} in the input space and a function k(., .) , the n × n matrix K
with elements Kij = k(Ii, Ij) is called Gram matrix of k(., .) with respect to I1, I2, ..., IN .
Kg(Ix, Iy) is a symmetric function. The kernel matrix is computed with kernel function
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Kg(Ix, Iy), is positive definite. So, the proposed matrix Kg(Ix, Iy) is the kernel function.
Gaussian kernel denotes the distribution of similarity between two vectors. Similarly
matrix Gaussian kernel also denotes the distribution of similarity between two matrices.
Matrix Gaussian kernel views an image as a matrix, which enhances the computation
efficiency without influencing the performance of kernel-based method.

Secondly, the quasiconformal matrix kernel function Kqg(Ix, Iy) can be denoted as

Kqg(Ix, Iy) = f(Ix)f(Iy)Kg(Ix, Iy) (2)

where f(I) is a positive real valued function I.

f(I) = b0 +

NXM∑
k=1

bkexp

−δ n∑
j=1

(
m∑
i=1

(
Iij − Ĩij

)2)1/2
 (3)

where Ĩij is the elements of matrix Ĩ(n = 1, 2, ..., NXM), and δ is a free parameter, and

Ĩij, 1 ≤ n ≤ NXM , are called the expansion matrices (XMs) in this paper, NXM is the

number of XMs, and bi ∈ R is the expansion coefficient associated with Ĩij.

2.2.2. Quasiconformal matrix multi-kernels. We extend the quasiconformal kernel to qua-
siconformal multi-kernels. Different from the single quasiconformal kernel in (9), only the
expension paramters need to computed by constrain equation. While on the quasiconfor-
mal multi-kernels, the weight parameter and expansion coefficient need to be computed
through the equation. The quasiconformal multi-kernels version has the higher ability on
describing the data distribution than the quasiconformal kernel.

Kqmk(Ix, Iy) = q(Ix)

NXM∑
i=1

dikg,i(Ix, Iy)q(Iy) (4)

where kg,i(Ix, Iy) is the ith matrix kernel, NXM is the number of candidate basic kernels
for combination, di ≥ 0 is the weight for the ith basic kernel, q(.) is the factor function
given by

f(I) = a0 +

NXM∑
k=1

akexp

−δ n∑
j=1

(
m∑
i=1

(
Iij − Ĩij

)2)1/2
 (5)

The definition of the quasiconformal kernel shows that the geometrical structure of the
data in the kernel mapping space is determined by the expansion coefficients with the
determinative XMs and the free parameter.

The procedure of the algorithm is shown as follows.
Step 1. Optimize the weights of multiple kernels
On multiple kernels learning, the crucial step is to choose adaptively the weights of

multiple kernels through the comprehensive consideration on the computation efficiency
and classification accuracy on hyperspectral image classification.

Step 2. Optimize the coefficients of Quasiconformal kernels
This step is to optimized the coefficients of the quasiconformal kernels based on the

classification criterion, for example, Fisher criterion. The method is similar to the single
kernel based quansiconformal kernel method [2]. On the multiple classes of classification
problems, we solve the optimal coefficients in the in the empirical feature space. The
detailed information about the kernel optimization can be referred to [2].

3. Experimental results.
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3.1. Experiment setup. In the practical applications, the kernel function is adaptively
chosen subject to the training samples set. The training sample set is constructed by the
training images, and the kernel function can be adaptively chosen by kernel machine. In
the experiments, we choose the procedural parameters through cross-validation method
for the practical application. Its not estimate the algorithms parameter using the entire
dataset, but only training dataset. In the algorithm evaluation, the dataset is divided into
training and test dataset. The cross-validation method is only implemented in the train-
ing dataset. We applied the k-fold cross-validation method. In K-fold cross-validation,
the original image sample dataset is randomly partitioned into K subsamples dataset.
Of the K subsamples dataset, a single subsample is retained as the validation data for
testing the model, and the remaining K-1 subsamples are used as training data. The
cross-validation process is then repeated K times (the folds), with each of the K sub-
samples used exactly once as the validation data. The K results from the folds then can
be averaged (or otherwise combined) to produce a single estimation. The advantage of
this method over repeated random sub-sampling is that all observations are used for both
training and validation, and each observation is used for validation exactly once. 10-fold
cross-validation is used in the experiment. For the detail description, the training dataset
is randomly divided to training sub-dataset and test sub-dataset, and the parameters is
to train the classifier with training sub-dataset then the test sub-dataset is to test the
performance of the parameters. In the practical applications, we choose it with expert ex-
perience for some applications. In the most applications, two kinds of kernel functions are
applied, including Polynomial kernel and Gaussian kernel. But it depends on the expert
experience to choose the kernel. Kernel selection is usually done by minimizing either an
estimate of generalization error or some other related performance measure. This paper
focuses the improving of Gaussian kernel for image-based system. But in the practical
application, how to select the kernels is proposed in the previous work [32]. It establishes
the connection between the spectral perturbation stability and the generalization error
through minimizing the derived generalization error bound, and then the kernel selection
criterion is to guarantee good generalization properties. In the criterion, the perturbation
of the eigenvalues of the kernel matrix is efficiently computed by solving the derivative
of a newly defined generalized kernel matrix. And the detailed parameter will be solved
through optimizing the constrained equations.

3.2. Results on ORL and Yale databases. In this section, we implement Kernel Prin-
cipal Component on ORL and Yale databases to evaluate the performance of Gaussian
kernel, matrix Gaussian kernel, Quansiconformal matrix Gaussian kernel. ORL database,
developed at the Olivetti Research Laboratory, Cambridge, U.K., is composed of 400
grayscale images with 10 images for each of 40 individuals. The variations of the images
are across pose, time and facial expression. The Yale database was constructed at the Yale
Center for Computational Vision and Control. It contains 165 grayscale images of 15 indi-
viduals. These images are taken under different lighting condition (left-light, center-light,
and right-light), and different facial expression (normal, happy, sad, sleepy, surprised, and
wink), and with/without glasses. In our experiments, to reduce computation complexity,
we resize the original ORL images sized 112 × 92 pixels with a 256 gray scale to 48×48
pixels. We randomly select 5 images from each subject, 200 images in total for training,
and the rest 200 images are used to test the performance. Similarly, the images from Yale
databases are cropped to the size of 100 × 100 pixels. Randomly selected 5 images per
person are selected as the training samples, while the rest 5 images per person are used to
test the performance. In the experiments on ORL and Yale databases, the number of iter-
ations is 150 for optimal parameter section. We have the detailed analysis and results on
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the performance of multiple kernels version of Gassian matrix-based kernel. The results
are shown in Table.1 and Table.2. As experimental results on the performance of qua-
siconformal single kernel leanring and quasiconformal multiple kernels learning on ORL
and Yale image databases, we can conclude that, the quasiconformal single kernel learn-
ing performs better than basic kernel, and quasiconformal multiple kernels performance
than other methods. Quasiconformal single kernel structure changes the data structure
in the kernel empirical space. And then, quasiconformal multiple kernels are combined to
more precisely characterize the data for improving performance on solving complex visual
learning tasks, so the proposed framework outperforms others in the different datasets.
The parameter beta is the final optimal parameter through solving the optimization equa-
tion. The efficiency will be influenced owing to the iteration solution method, but we can
optimize it in the off-line. So in the practical application, the efficiency will be balanced
considered compared with the recognition accuracy.

Table 1. Performance on ORL database.

Feature dimension 20 40 60 80 100 120 140

Gaussian kernel 0.61 0.66 0.72 0.77 0.78 0.80 0.82
Matrix Gaussian kernel 0.70 0.75 0.78 0.79 0.79 0.81 0.83

Quasiconformal matrix kernel 0.73 0.77 0.79 0.80 0.81 0.83 0.84
Quasiconformal-Matrix-Based-

Multikernels-Learning
0.75 0.79 0.81 0.82 0.83 0.85 0.87

Table 2. Performance on Yale database.

Feature dimension 20 40 60 80 100 120 140

Gaussian kernel 0.715 0.755 0.775 0.780 0.785 0.790 0.795
Matrix Gaussian kernel 0.717 0.758 0.778 0.785 0.789 0.795 0.797

Quasiconformal matrix kernel 0.720 0.760 0.780 0.790 0.793 0.805 0.815
Quasiconformal-Matrix-Based-

Multikernels-Learning
0.731 0.770 0.790 0.811 0.815 0.823 0.831

4. Conclusions. We present the matrix Gaussian kernel, Quasiconformal matrix Gauss-
ian kernel, and Quasiconformal matrix multi-kernels, and we implement the three kinds
of kernels on different classifiers on the ORL and Yale image databases. The experimental
results show that the proposed kernels perform better than the traditional kernel func-
tions. The proposed Gaussian kernels views images as matrices, which saves the storage
and increase the computational efficiency of feature extraction. The proposed kernels
can be used in other areas, such as content-based image indexing and retrieval as well as
video and audio classification. In this work, we only consider the Gaussian kernel for the
kernel-based learning machine. Other kinds of kernel functions based on matrix will be
studied in the future work. Our work only pays attention to the classification problem
based on kernel learning. So the experiments show the classification performance, and the
criterion of kernel optimization is created by increasing the classification performance. So,
the kernel optimization criterion is not adaptive to clustering. The clustering application
based kernel optimization is our future research work. On the computation efficiency, the
iteration solution method will cost much time.
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