Journal of Information Hiding and Multimedia Signal Processing (©2016 ISSN 2073-4212
Ubiquitous International Volume 7, Number 4, July 2016

Biomedical Named Entity Recognition Based on
Feature Selection and Word Representations

Ding-Xin Song, De-Gen Huang*, Li-Shuang Li and Hong-Lei He

School of Computer Science and Technology
Dalian University of Technology
No.2, Linggong Road, Hi-Tech Zone, Dalian, 116024, China
songdx@mail.dlut.edu.cn; huangdg@dlut.edu.cn; lilishuang314@163.com;lils@dlut.edu.cn

*:Corresponding author

Received November, 2015; revised Februrary, 2016

ABSTRACT. As an important task in biomedical text mining, biomedical named entity
recognition (Bio-NER) has increasingly attracted researchers attention. Various methods
have been employed to solve this problem and achieved desirable results on the annotated
datasets. In this work, we focus on the feature set to reduce the training cost by feature
selection and template optimization. Also, we integrate three kinds of word representa-
tion learnt in unsupervised way to summarize latent features. The experimental results
show that feature selection, template optimization and word representation can promote
the performance effectively. After post-processing, our methods achieve an F-score of
88.51% and perform better than most of the state-of-the-art systems.

Keywords: Biomedical named entity recognition; Feature selection; Word representa-
tion.

1. Introduction. Biomedical named entity recognition (Bio-NER) is the prerequisite
and key issue in the field of biomedical information extraction. Traditional research meth-
ods for Bio-NER can be mainly classified into three categories which are dictionary-based
methods, rule-based methods and statistical machine learning methods [1]. Especially
statistical machine learning methods have been the mainstream due to their better ro-
bustness and generalization. The used feature set is the most important factor for the
success of machine learning. On the one hand, if the features are independent and cor-
relate well with the class, the learning is easy. Conversely, it will be difficult and even
impossible to learn. On the other hand, artificial features take most of the effort in a
machine learning project [2]. Thus how to select features and integrate unsupervised fea-
tures are important in named entity recognition.

Most researchers concern the learning algorithms and the features are designed ar-
tificially according to domain knowledge and experiences. The redundancy of features
increases the calculation time and space complexity, and affects the performance. Lan-
gley et al. [3] indicated that sample complexity grows exponentially with the number
of redundant features. Li et al. [4] applied SVM Recursive Feature Elimination (SVM-
RFE) [5] which interacts with the SVM classifier to search the optimal feature set and
is less computationally intensive than the subset selection method, to choose a subset of
the most relevant features.

Recently, word representation is introduced efficiently as features into the task of NER.
A word representation is often a vector associated with each word. Each dimensions value
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corresponds to a feature. It is an effective way to learn word representation features with
deep syntactic information from unlabeled corpora and explore them into NER system to
improve the performance. Turian et al. [6] compared several word representations system-
atically on NER and chunking, and showed that each word representation could improve
the accuracy. Kuksa et al. [7] introduced a semi-supervised method Word-Codebook
Learning and obtained relative semantic information from the learnt word vectors. The
experimental results showed that word representation obtained latent semantic informa-
tion from unlabeled corpus and thus improved the performance.

In this paper, we explore feature selection and template optimization to reduce re-
dundancy and improve the performance in Bio-NER, and then to further obtain deep
information from unlabeled text and reduce the effort taking in artificial features. We
introduce three kinds of word representations, that is, word embeddings, non-hierarchical
clustering and hierarchical clustering in NER. Experiments result shows that our methods
perform better than most of the state-of-art systems.

2. Our Method. A workflow to describe our system is shown in Fig.1.
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FiGURE 1. Overflow of our system

2.1. System structure. The corpora we used are PubMed Database and BioCreative
GM corpus. Both of them are employed to train word representations, and BioCreative
GM corpus is used to conduct the feature selection and template optimization experiments
with SVM-RFE and CRF. In the step of integration, two different models, SVM and CRF,
are trained to do the first prediction in which three kinds of word representations and
selected basic features are exploited into SVM model while CRF model just adopting
word embeddings. And then a new CRF model is trained by integrating two predicting
results into selected three word representations, basic features and optimized template to
do the final prediction. At last, the rule-based post-processing is done to improve the
performance.
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2.2. Basic features. According to the common feature in biomedical field, the local fea-
tures used in this work are described as follows:

(1) Word features: the original word, the stemmed and Part-of-speech (POS) tag of
the word where the latter two are obtained from GENIA tagger.

(2) Chunking: In general, biomedical named entities appear in noun phrase and often
share the same critical section.

(3) Domain specific feature: It checks whether the current word is an ATCGU sequence,
a nucleoside name, a nucleotide name, a nucleic acid, a short/long form of amino acid
name or an amino acid with positional information.

(4) Morphological feature I: Digits in the current word are replaced by ‘“*’ and capital
letters are lowercased. If the word has no digits, it is replaced by “no*” (e.g. CD4—cd*,
cell-no*).

(5) Morphological feature II: Each character of the word is replaced by ‘-
vowels (i.e., a, e, i, 0, u). For example, “cancer” is replaced by “-a--e-”.

(6) Hot words: 250 words are extracted from training corpus as hot words according to
their frequency.

(7) Word length: The length of the word which may be 1, 2, 3-5 or>6.

(8) Word shape: To get the word shape of each word, capitalized characters are replaced
by ‘X’, non-capitalized characters are replaced by ‘x’, digits are replaced by ‘1’.

(9) Brief word shape: We shorten consecutive strings appear in each word shape to one
character to get the brief word shape for each word. E.g. “xxxxXX” — “xX".

(10) Trigger words: Frequent words appear before the named entity in training corpus,
e.g. “activate”, “contain”, “express”.

(11) Prefix and suffix: 2-g, 3-g and 4-g prefix and suffix of the word, for example, the
2-g prefix and suffix feature of “Flur” is “F1” and “ur”.

(12) Orthographic feature: This feature is to get the word digital, capitalization, punc-
tuation, and other characteristics.

Y
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2.3. Feature selection. SVM-RFE is a popular technique for feature selection which is
based on heuristic search strategy and package-evaluation criteria. It uses the discriminate
function of SVM as ranking criterion to sort features, and removes features with minimal
impact on performance recursively according to sequential backward selection. Important
features are reserved and thus optimal feature subset can be obtained.

In our work, all of the basic features are in initial features set. Then SVM-RFE is
executed to sort features and remove redundant features. And the selected features are
employed in the subsequent part.

2.4. Template optimization. Intuitively, context information can provide clues for Bio-
NER. But which kind of contexts playing an important role is not explicit. Therefore it
is necessary to select and optimize the context information. In this work, the context and
joint information of each feature in optimal feature subset obtained by SVM-RFE in CRF
template are optimized employing sequential forward selection method.

First, the context and joint information of each basic feature is added in CRF template
successively. And then the performance is calculated after train and test. The context or
joint information with the highest performance is selected and added in CRF template.
This process is stopped until the performance decrease after adding certain information.

The context information of each feature in optimal subset is our candidate context
while the joint of the word and other features in subset is our candidate joint information
due to the importance of word in NER.
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2.5. Word representation. Three kinds of word representation, including word embed-
dings, K-means and Brown clusters, are compared in the task of Bio-NER and described
as follows.

(1) Word embeddings

Word embeddings have recently been proposed to address several NLP problems and
have achieved great successes [8, 9, 10, 11]. Aiming at a much lower computational
cost, Mikolov [9, 10, 11] recently developed the Word2Vec tool for computing continuous
distributed representations of words. The tool implemented the Skip-gram model [9] ex-
panded on the n-gram model architectures, which aimed to employ the current word to
train other words which are in the fixed window before and after the current word in the
same sentence.

We obtain word embeddings from large-scale unannotated corpus downloaded from
PubMed. In our experiment, the dimension of vector is set to 50, 100, 200 and 400 re-
spectively to evaluate the influence of dimension. The vectors of words with the same
semantic or syntactic information in word embeddings is closer to each other, shown as
Fig.2, which shows word embeddings can capture rich linguistic regularities.

Each word in the corpus is represented as a fixed-dimension vector, and each dimension
of the word embeddings is adopted as an unsupervised word feature.
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FiGure 2. Word embeddings

(2) K-means

K-means algorithm, a non-hierarchical clustering algorithm will divide the n vectors
x1, x2,...,xn into k clusters, where k<n. Different from word embeddings, the vector
clustering representation puts the words that are close in the vector space into a cluster
based on the K-means algorithm.

In this work, we employ K-means algorithm to perform clustering on the word vectors
(the vectors in word embeddings). The max iteration C is set to 1000, and the number of
clusters is set to 256, 512, 1024, 2048 and 4096. Thus each word gets an identifier from 1
to the number of clusters indicating its cluster which is viewed as additional unsupervised
word feature.

(3) Brown clusters feature

Different from the non-hierarchical K-means algorithm, Brown algorithm is a classic hi-
erarchical clustering algorithm based on n-gram language models. One shortage of Brown
clusters is that it is based solely on bi-gram statistics, and does not consider words in a
wider context. In this algorithm, each word gets its own cluster initially. Then, the algo-
rithm repeatedly picks two clusters with the maximum mutual information and merges
them into a single cluster until the number of the clusters is equal to the given parameter.
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The result of Brown clustering algorithm is a binary tree, where each word occupies a leaf
node, and where each leaf node contains a single word. A particular word can be assigned
a binary string by following the traversal path from the root to its leaf, assigning 0 for
each left branch, and 1 for each right branch.

The number of Brown clusters are set 32, 64, 128, 256 and 1024 respectively to se-
lect the optimal one. As the same as K-means, Brown clusters are viewed as additional
unsupervised word feature.

2.6. Post-processing. In corpus, some punctuation marks such as parenthesis, brackets
or double quotation marks are always paired. However, sometimes the machine learning
models identify their first part as a part of a name entity without recognizing the second
part, which causes mismatching. We adopt some rules to detect those mismatching marks
and correct them.

Take “Trap(transposon- associated protein)” as example, which is a name entity in
test set. “(” is identified successfully by the trained model, but «)” is failed. Thus, two
wrong biomedical named entities “Trap” and “transposon- associated protein” are put
into the result. After post-processing, “Trap(transposon-associated protein)” is identified
correctly.

3. Experiment.

3.1. Data and evaluation. 5.33 million biomedical abstracts (5.6GB unannotated text)
are downloaded from PubMed using protein as a keyword. This unlabeled text with
BioCreative II GM corpus is used to train three kinds of word representation where
BioCreative I GM corpus is supplied public by the evaluation task. The organization of
this evaluation task supplies evaluate script and F-score, an popular evaluation criteria in
information processing field, is used to evaluate performance. The formulation of F-score
is as follows:

2%« Px R
F-score = ———— 1
P+ R (1)
where P is short for precision measuring the proportion of the correct identified names
in recognized names and R represents Recall evaluating the degree of how many correct
identified gene names in given results.

3.2. Result of feature selection. The used features are orderly word, stem, POS,
chunking, domain specific feature, morphological feature I, morphological feature II, hot
words, word length, word shape, brief word shape, trigger words, prefix-2, suffix-2,prefix-
3, suffix-3,prefix-4, suffix-4,orthographic feature and are numbered 0 to 18. The order
after conducting SVM-RFE is 0, 2, 4, 5, 8, 10, 13, 15, 14, 18, 17, 16, 12, 9, 6, 1, 3, 7 and
11. It shows that word, POS and morphological features play an important role in NER.

Features will be successively added to the feature subset according to the sorted order,
and the variance of F-score is shown in Fig. 3. The F-score does not vary linearly with
the increasement of the number of features. The F-score reaches the best until the 16th
feature added with an F-score of 80.24% and is 0.33% higher than that using all features
(19 basic features with F-score 79.91%) used. The number of the used features is reduced
by 3. This shows that SVM-RFE can remove redundant features and further improves
the performance.
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FIGURE 3. Feature selection of SVM-RFE

TABLE 1. The influence of separate context feature

Methods P (%) | R (%) | F-score (%)

Baseline 82.62 78 80.24
Baseline+SCF of word 84.15 | 80.3 82.17
Baseline+SCF of stem 84.26 | 80.56 82.36
Baseline+SCF of POS 83.37 | 79.44 81.36

Baseline+SCF of domain specific | 82.42 | 77.68 79.98
Baseline4+SCF of morphological I | 82.54 | 78.32 80.37
Baseline+SCF of morphological IT | 83.80 | 80.32 82.02
Baseline4+SCF of word length 82.20 78 80.04
Baseline+SCF of word shape 83.06 | 79.68 81.33
Baseline+SCF simple word shape | 82.97 | 79.86 81.38

Baseline+SCF of preffix-2 82.13 | 76.48 79.20
Baseline+SCF of suffix-2 82.73 | 79.36 81.01
Baseline+SCF of preffix-3 83.02 | 79.04 80.98
Baseline+SCF of suffix-3 83.07 | 80.88 81.96
Baseline+SCF of preffix-4 83.29 | 79.36 81.27
Baseline+SCF of suffix-4 82.40 | 80.16 81.26

Baseline+SCF of orthographic 82.56 | 77.68 80.04

3.3. Result of template optimization.

(1) The optimization of separate context feature
Based on feature selection, the separate context feature of each word is added, and the
first iteration result is shown in Table 1 below.

The context information is added successively. In the first four iterations, the per-
formance is improved gradually. But the performance decreases from the fifth iteration.
And thus the forward sequence selection is stopped. The F-score of each iteration result
is shown in Fig.4. The selected features include the context of stem, simple word shape,
POS and the current word.

The F-score reaches 83.87% by template optimization and is improved by 3.63% than
the original feature set with F-score 80.24%. 16 separate features, the context informa-
tion of current word, stem, POS and simple word shape are adopted in this optimization.

(2) The optimization of joint information

Besides the separate context feature, we employ the combined context feature to im-
prove the system performance. The first iteration results are shown in Table 2.
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TABLE 2. The influence of the combined context feature

Methods P (%) | R (%) | F-score (%)

Baseline 85.94 | 81.91 83.87
Baseline+CCF of word 86.13 | 82.23 84.13
Baseline+CCF of stem 86.07 | 82.08 84.02
Baseline+CCF of POS 85.98 | 82.11 84.00

Baseline+CCF of domain specific | 84.45 | 78.75 81.51
Baseline4+CCF of morphological I | 83.67 | 79.56 81.56
Baseline+CCF of morphological IT | 83.96 | 81.73 82.82
Baseline4+CCF of word length 83.41 | 79.34 81.32
Baseline+CCF of word shape 85.16 | 81.83 83.46
Baseline4+CCF of simple word shape | 84.87 | 82.17 83.49

Baseline+CCF of preffix-2 83.31 | 79.38 81.29
Baseline+CCF of suffix-2 84.23 | 80.56 82.35
Baseline+CCF of preffix-3 84.64 | 81.36 82.96
Baseline+CCF of suffix-3 84.98 | 81.87 83.39
Baseline+CCF of preffix-4 84.76 | 81.43 83.06
Baseline+CCF of suffix-4 83.92 | 81.15 82.51

Baseline+CCF of orthographic 83.67 | 79.23 81.38

The same iteration method is used as the separate context feature experiment. The
forward sequence selection is stopped at the sixth iteration (the F-score of first five times
is shown in Fig.5.), and the F-score is 84.45%, 4.21% higher than the initial score.

(3) The influence of optimization information

On the base of feature selection, we add the optimized template as Table 3, such as the
before and after word of the current word, the POS of before and after word. The F-score
added optimized template is improved by 5.36%.

3.4. Word representation.
(1) Experiment of three word representation methods
To investigate the influence of the dimension of word embeddings and the number
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TABLE 3. The impact of feature selection and template optimization

Features P (%) | R (%) | F-score (%)
Basic Features 85.30 | 78.13 81.56
Feature selection and template optimization | 90.25 | 83.82 86.92

of clusters, we set several values and select the optimal one. The dimension of word
embeddings is set to 50,100,200 and 400 respectively by Word2vec. The number of K-
means cluster based on word embeddings is set to 256, 512, 1024, 2048 and 4096. In
Brown cluster, the number of clusters is 32, 64, 128, 256, 512 and 1024. The results
of different settings are shown in Table 4. It shows that the F-score do not rise with
the increase of the dimension or the number of clusters. Finally the dimension of word
embedding, the number of K-means clusters and Brown clusters are set to 50, 4096 and
64 respectively. Word embeddings lead to the decrease of F-score by 0.36% with precision
decreased by 0.93%. However, the F-scores are increased by 0.39% and 0.2% respectively
when K-means and Brown clusters added.

(2) The influence of combinations of word representation

We also combine the three word representation methods and the results are shown in
Table 5 below. The F-score decreases when word embeddings is added, while it increases
when the K-means clusters and Brown clusters are combined with basic features. However,
the best performance is from the basic feature combined with K-means clusters only.

(3) The influence of context of word representation

We conduct several experiments to further explore the influence of K-means based word
embeddings and Brown cluster in two different window sizes. When the current word,
the two words before and after the current word are used, we define the window size is 5
which is similar to 3.As is shown in Table 6, it achieves the best with 87.64% F-score and
is improved by 0.72% when K-means based word embeddings and Brown cluster of words
in window size 5, the selected basic features and the its joint information are adopted.

In a word, K-means cluster based on word embeddings and Brown cluster loading rich
semantic information and their combinations improve the performance, especially the
latter. However, the performance decreases when adding word embeddings.
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TABLE 4. The influence of dimension of word embeddings and the number
of clusters

Methods P (%) | R (%) | F-score (%)
Baseline 90.25 | 83.82 86.92
Baseline+WR50 89.32 | 83.96 86.56
Baseline+WR100 88.53 | 83.55 85.97
Baseline+WR200 | 88.16 | 83.17 85.59
Baseline+WR400 87.97 | 82.76 85.29
Baseline+WR-K256 | 89.96 | 84.41 87.09
Baseline+WR-K512 | 89.90 | 84.23 86.97
Baseline+WR-K1024 | 90.01 | 84.04 86.93
Baseline+WR-K2048 | 90.27 | 84.29 87.18
Baseline+WR-K4096 | 90.45 | 84.39 87.31
Baseline+B32 90.35 | 83.90 87.01
Baseline+B64 90.61 | 83.88 87.12
Baseline+B128 90.50 | 83.68 86.95
Baseline+B256 90.46 | 83.73 86.96
Baseline+B512 90.39 | 83.82 86.98
Baseline+B1024 90.50 | 83.73 86.98

TABLE 5. Comparison of three word representations’ combinations

Methods P (%) | R (%) | F-score (%)
Baseline+WR1+WR2 89.43 | 83.93 86.59
Baseline+WR1+WR3 89.48 | 83.88 86.59
Baseline+WR2+WR3 90.59 | 84.10 87.23

Baseline+WR1+WR2+WR3 | 89.74 | 83.77 86.65

TABLE 6. The influence of context of word representation

Methods P (%) | R (%) | F-score (%)
BL+WR2+WR3 90.59 | 84.10 87.23
BL+WR21WR3(3 word) 00.33 | 84.50 | 87.37
BL+WR2+ WR3(5 word) 00.32 | 84.61 | 87.37
BL+WR2(3 word) - WR3 0052 | 84.18 | 87.24

BL+WR2(3 word)+WR3(3 word) | 90.26 | 84.53 |  87.30
BL+WR2(3 word)+ WR3(5 word) | 90.25 | 84.83 | 87.46

BL+WR2(5 word)+WR3 00.58 | 84.36 | 87.36
BL+WR2(5 word)+WR3(3 word) | 90.52 | 84.67 |  87.50
BL+WR2(5 word)+WR3(5 word) | 90.48 | 84.97 | 87.64

3.5. Combination of SVM and CRF.

(1) The impact of three word representations and their combinations on SVM model

The same experiment conditions of CRF are employed on SVM model again, the results
are shown as Table 7. The F-score is 85.26% when basic features are adopted and it
increases by integrating K-means cluster, Brown cluster and their combinations. The
performance of basic feature combining both K-means cluster and Brown cluster reaches
the best with F-score 86.58% improved by 1.32%.

(2) The impact of integrating predictions from CRF and SVM
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TABLE 7. The impact of word representations and their combinations on

SVM model
Methods P (%) | R (%) | F-score (%)
YamCha (BL) 87.90 | 82.78 85.26
YamCha (BL+WR1) 8348 | 77.93 | 82.87
YamCha (BL+WR2) 83.42 | 83.60 | 85.04
YamClha (BLLWR3) 83.82 | 83.74 | 86.21

YamCha (BL+WR1+WR2) 88.65 | 7823 | 83.11
YamCha (BL+WR1+WR3) 89.27 | 79.27 |  83.97
YamCha (BL+WR2+WR3) | 89.15 | 84.15 | 86.58
YamCha (BL+WR1+WR2+WR3) | 89.11 | 79.38 |  83.96

To further improve the performance, we try to explore information from other models.
We only exploit word embeddings with 50 dimension to construct another CRF model and
evaluate it on test set. It achieves 75.10% F-score and demonstrates that word embeddings
load rich information. And the prediction from this CRF model can be integrated into
features. Meanwhile, the best prediction from SVM is also exploited. The result of
exploring CRF and SVM predictions and post-processing is shown in Table 8 in which
the F-score reaches 88.51%.

TABLE 8. The result of integrating predictions from CRF and SVM

Methods P (%) | R (%) | F-score (%)
BL+WR2+WRS3 90.48 | 84.97 87.64
BL4+WR2+WR3+COM14+COM2 90.66 | 85.57 88.04
BL+WR2+WR3+COM14+COM2+PPk | 91.11 | 86.05 88.51

3.6. Comparison with other systems. The best F-score achieved in the task of BioCre-
ative IT competition was 87.21% where semi-supervised structural method was adopted.
Multi models based on rich features were adopted in the systems ranked the second and
third in that task [12].

Li et al. [1] adopted the ensemble method and achieved better performance. Hsu et
al. [13] exploited bi-direction parse model of CRF and dictionary filter and reached an
F-score of 88.30%. Li et al. [14] proposed feature coupling generalization which could
extract semantic information from unlabeled text and matched terms in dictionary com-
bined with machine learning method. They achieved an F-score of 89.05%. Our method
obtains an F-score of 88.51% without additional resources just adopting features relative
with words and latent deep information. Although our method does not outperform Li
et al. [14], several techniques such as multiple classifiers, dictionary matching and rich
external resources were not used in our method.

4. Discussion. In this work, four aspects contribute to the improvement.

First, feature selection removes irrelative, redundant or weak influence features and
reduces training cost. And thus it improves the performance by 0.33%.

Second, important context information in CRF template is optimized using sequential
forward selection method and obtains an improvement of F-score by 5.36%.

Third, word representations, which are learnt in unsupervised way and can effectively
measure the similarity between words, improves the performance by 0.72%. Especially it
achieves an F-score of 75.10% when only word embeddings adopted and illustrates word
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TABLE 9. Comparison with other systems

Methods P (%) | R (%) | F-score (%)
BioCreativell competition(best)
(semi-supervised method combined with dictionary) 88.48 | 85.97 87.21
BioCreativell competition(rank 2)
(multi-classifiers combined with dictionary)
BioCreativell competition (rank 3) 403 | 88.98 8657
(multi-classifiers)
Li [1](ensemble methods) 90.15 | 86.75 88.42
Hsu [13](CRF bi-direction parse
model combined with dictionary) 88.95 | 87.65 88.30
Li [14)(CRF combined with dictionary) 90.52 | 87.63 89.05
Our method(semi-supervised) 91.11 | 86.05 88.51

89.30 | 84.49 86.83

representations loads rich semantic and syntactic information.

The last but not least, prediction integration can utilize the predictive results efficiently
which are learnt from different models with different feature sets and increases the F-score
by 0.4%.

5. Conclusion. The proposed method improves the performance of Bio-NER, achieving
an F-score of 88.51% and outperforming most of published works. Feature selection and
template optimization help choose a better feature set. And word embeddings play an
important role which implies a lot of syntactic and semantic information, and achieve ac-
ceptable performance. Finally, the integration of predictions from SVM and CRF further
improves the performance.

Though the efforts in Bio-NER, there is room for improvement. In the future, more
feature selection methods for different features should be researched. And deep learning
for Bio-NER is another trend to further reduce the cost taking in feature engineering.
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