
Journal of Information Hiding and Multimedia Signal Processing c©2016 ISSN 2073-4212

Ubiquitous International Volume 7, Number 3, May 2016

An Efficient Improvement on Safkhani et al.’s
Hash-Based Mutual Authentication Protocol for

RFID Systems

Wei-Liang Tai

Department of Information Communications
Chinese Culture University

55, Hwa-Kang Road, Yang-Ming-Shan, Taipei, Taiwan
dwl@ulive.pccu.edu.tw

Ya-Fen Chang∗ and Ti-Sheng Kwang

Department of Computer Science and Information Engineering
National Taichung University of Science and Technology
No.129, Sec.3, Sanmin Rd,North Dist.,Taichung, Taiwan

∗Corresponding author: cyf@nutc.edu.tw; guandskun@gmail.com

Received December, 2015; revised March, 2016

Abstract. Nowadays, plenty of radio frequency identification (RFID) systems have
been proposed and used in the real world for convenience. An RFID system requires
advanced properties of confidentiality, indistinguishability, forward security and mutual
authentication to provide a higher security level. Safkhani et al. proposed a hash-based
authentication protocol for RFID systems. Though their protocol possesses the above
properties, the server’s computational load is heavy. In this paper, we propose an au-
thentication protocol for RFID systems to improve the computational efficiency with a
long-term secure value and provide the same security level.
Keywords: RFID, Authentication

1. Introduction. RFID is common and practical because it utilizes radio waves to trans-
mit data and one category can work without a battery embedded. An RFID system has
three main parts: RFID tag, reader and back-end server. RFID tags are used as a label
for item identication or verification, readers are used to send and receive data between
a tag and the back-end server, and the server maintains a database to keep tags’ data
or some secure value to authenticate a tag. The first RFID system for identification is
used in World War II. Up to now, RFID systems are widely used in people’s life such as
electronic wallet, intruder alarms of buildings, and motor vehicles because an RFID sys-
tem provides not only celerity but also convenience. However, for a higher security level,
the above applications require advanced properties, confidentiality, indistinguishability,
forward security, and mutual authentication [1, 2, 3]. Definitions of these properties are
listed as follows.

Confidentiality: Data should be transmitted securely via authentication or encryption.
If a tag transmits data without authentication or encryption, an attacker can analyze its
owner’s private information.

Indistinguishability: An attacker cannot trace a specific tag by the transmitted data.
Therefore, the transmitted data should not be the same as the one transmitted previously.

653



654 W. L. Tai, Y. F. Chang, and T. S. Kwang

Forward security: If the secret of one session is revealed, an adversary cannot trace the
past location of the specific tag.

Mutual authentication: A tag, reader and the back-end server can authenticate each
other for secure communication.

To ensure security and efficiency in RFID systems, many mechanisms have been pro-
posed. In 2003, Vajda and Buttyn proposed a set of extremely lightweight tag authen-
tication protocols for RFID systems and also provided analyses of these protocols [4].
Subsequently, Peris-Lopez et al. proposed an efficient mutual authentication protocol
for RFID systems, EMAP [5]. They claimed that EMAP could offer an adequate se-
curity level for certain applications and also could be implemented by limited low-cost
RFID tags. However, Li and Deng presented two effective attacks against EMAP [6].
Via de-synchronization attack, an attacker can permanently disable the authentication
capability of an RFID tag. Via full disclosure attack, all secret information stored in a
tag will be completely compromised. Some authentication protocols for low-cost RFID
are listed in [7, 8]. In 2011, Cho et al. proposed a hash-based authentication protocol for
RFID systems to overcome the privacy and forgery problems [1]. In Cho et al.’s proto-
col, instead of the secret value, random numbers generated by a tag and the reader are
transmitted. This prevents an attacker from mounting replay attack. However, Safkhani
et al. pointed out that Cho et al.’s protocol suffers from de-synchronization attack, tag
impersonation attack and reader impersonation attack [9]. This results from that the
updated secret value is not verified, and an attacker can tamper the transmitted data
easily. Subsequently, Khedr proposed a new protocol for a low-cost RFID system [2] that
provides mutual authentication between the back-end server and the tag without a secure
channel. In Khedr’s protocol, a tag’s identity is updated after every read operation for
security and synchronization, and the cost is also reasonable.

On the other hand, Cho et al. proposed a hash-based mutual authentication protocol for
RFID systems [3]. Cho et al. claimed that their protocol has properties of confidentiality,
indistinguishability, forward security, and mutual authentication. However, Safkhani et
al. [10] showed that Cho et al.’s protocol suffers from de-synchronization attack, tag
impersonation attack, and reader impersonation attack. Safkhani et al. also proposed
an improvement to overcome these found weaknesses. After analyzing Safkhani et al.’s
protocol, we find that the server’s computational load is heavy because the server cannot
identify the tag. That is, the server needs to check all entries stored in the database to
find the matched one. This approach places a burden on the back-end server.

In this paper, we will propose a mutual authentication protocol based on hash function
for RFID systems by improving Safkhani et al.’s protocol with a long-term secure value
to have the sever identify the tag easily. The rest of this paper is organized as follows.
We briefly review Safkhani et al.’s mutual authentication protocol in Section 2. Our
improvement is shown in Section 3, and security and efficiency analyses are given in
Section 4. Finally, some conclusions are drawn in Section 5.

2. Review of Safkhani et al.’s Authentication Protocol. Safkhani et al. pro-
posed an improved protocol to overcome the weaknesses of Cho et al.’s. In Safkhani
et al.’s protocol, the server first chooses a one-way hash function h(.). To initialize the
kth tag, the server chooses two secret values st and sr shared between the server and
the kth tag. The kth tag is initialized with (IDk, h(.), st, sr), and the server stores
the entry (IDk, st1, s

t
0, s

r
1, s

r
0, DATA

k) for the kth tag, where IDk is the identifier of
the kth tag, DATAk is the kth tag’s related information, st1 = st0 = st, and sr1 =
sr0 = sr. After i − 1 successful authentication rounds, the entry stored by the server is
(IDk, sti, s

t
i−1, s

r
i , s

r
i−1, DATA

k) and the tag contains (IDk, h(.), sti, s
r
i ) or (IDk, h(.), sti−1, s

r
i−1).



Improvement on Safkhani et al.’s Authentication Protocol for RFID Systems 655

To simplify the illustration, we assume that tag contains (IDk, h(.), sti, s
r
i ). As to the ith

round, the details are as follows:
Step 1: The reader randomly generates a number Rr and sends a request to the tag

with Rr.
Step 2: After receiving the request, the tag randomly generates a number Rt, computes

RIDt
i = h(Rt⊕ sti) and α = h(IDk⊕Rt⊕Rr⊕RIDt

i), and sends α and Rt to the reader.
Step 3: Upon receiving α and Rt, the reader passes them with Rr to the back-end

server.
Step 4: When receiving α, Rt, and Rr from the reader, the server computes RIDt

i
′ and

α′ for the kth tag with tuples (IDk, sti, s
r
i ) and (IDk, sti−1, s

r
i−1), where k = 1, 2, ..., n and

n is the number of entries stored by the server. If the received α and the retrieved α′ are
equal, the server utilizes the corresponding (IDk, sti, s

r
i ) or (IDk, sti−1, s

r
i−1) to authenti-

cate the tag. Assume that (IDk
i , s

t
i, s

r
i ) is the tuple used to authenticate the kth tag. The

server updates the entry by choosing new secrets sti+1 and sri+1, setting (sti, s
t
i−1, s

r
i , s

r
i−1) to

(sti+1, s
t
i, s

r
i+1, s

r
i ), and storing (IDk, sti+1, s

t
i, s

r
i+1, s

r
i , DATA

k). The back-end server gener-
ates DATAk ‖ h(RIDr

i ⊕RIDt
i) ‖ RIDr

i ⊕ sti+1 ‖ RIDt
i ⊕ sri+1 ‖ h(sti+1 ‖ sri+1) and sends

it to the reader, where RIDr
i = h(Rr ⊕ sri ).

Step 5: After getting the reply DATAk ‖ h(RIDr
i ⊕ RIDt

i) ‖ RIDr
i ⊕ sti+1 ‖ RIDt

i ⊕
sri+1 ‖ h(sti+1 ‖ sri+1), the reader acquires the information of the tagged object and passes
h(RIDr

i ⊕RIDt
i) ‖ RIDr

i ⊕ sti+1 ‖ RIDt
i ⊕ sri+1 ‖ h(sti+1 ‖ sri+1) to the tag.

Step 6: Upon receiving the reader’s response, the tag computes RIDr
i = h(Rr

i ⊕ sri )
and h(RIDr

i ⊕RIDt
i). Then the tag checks whether the computed h(RIDr

i ⊕RIDt
i) and

the received one are equal. If it holds, the back-end server is authenticated successfully
by the tag; otherwise, this protocol terminates.

Step 7: The tag extracts sti+1 and sri+1 from RIDr
i ⊕ sti+1 and RIDt

i⊕ sri+1, respectively.
Consequently, the tag verifies the integrity through the received h(sti+1 ⊕ sri+1). If sti+1

and sri+1 are valid, the tag updates sti to sti+1 and sri to sri+1.

3. Our Proposed Authentication Protocol. Safkhani et al.’s protocol overcomes the
weakness of Cho et al.’s. However, its computational load is heavy because the back-
end server needs to compute RIDt

i
′ and α′ to authenticate a tag with all (IDk, sti, s

r
i )’s

and (IDk, sti−1, s
r
i−1)’s in Sept 4. When the number of entries stored in the database is

large, the back-end server needs to execute hash function plenty of times. To improve
computational efficiency and ensure security, we propose an improvement.

In our protocol, the server first chooses a long-term secure value l and a one-way hash
function h(.). To initialize the kth tag, the server chooses two secret values st and sr shared
between the server and the kth tag. The kth tag is initialized with (IDk, h(.), st, sr, l),
and the server stores the entry (IDk, st1, s

t
0, s

r
1, s

r
0, DATA

k) for the kth tag, where IDk

is the identifier of the kth tag, DATAk is the kth tag’s related information, st1 = st0 =
st, and sr1 = sr0 = sr. The server also keeps l in its database. After i − 1 successful
authentication rounds, the entry stored by the server is (IDk, sti, s

t
i−1, s

r
i , s

r
i−1, DATA

k)
and the tag contains (IDk, h(.), sti, s

r
i , l) or (IDk, h(.), sti−1, s

r
i−1, l). For simplicity, we

assume that tag contains (IDk, h(.), sti, s
r
i ). As to the ith round, the details are as follows:

Step 1: The reader randomly generates a number Rr and sends a request to the tag
with Rr.

Step 2: After receiving the request, the tag randomly generates a number Rt and
computes RIDt

i = h(Rt⊕sti), α = h(IDk⊕Rt⊕Rr⊕RIDt
i), and L = h(Rt ‖ Rr ‖ l)⊕IDk.

The tag then sends α,L, and Rt to the reader.
Step 3: Upon receiving α,L, and Rt, the reader passes them with Rr to the back-end

server.



656 W. L. Tai, Y. F. Chang, and T. S. Kwang

Step 4: When receiving α,L,Rt, and Rr from the reader, the server computes IDk ′

= h(Rt ‖ Rr ‖ l)⊕L. Then the server uses IDk ′ as the index to get the corresponding entry
(IDk, sti, s

t
i−1, s

r
i , s

r
i−1, DATA

k). If no such entry exists, the server terminates the protocol
immediately; otherwise, the server computes RIDt

i
′= h(Rt ⊕ sti) and α′ = h(IDk ′⊕Rt ⊕

Rr⊕RIDt
i
′). If α′ = α, the tag is authenticated successfully. The server updates the entry

by choosing new secrets sti+1 and sri+1, updating (sti, s
t
i−1, s

r
i , s

r
i−1) to (sti+1, s

t
i, s

r
i+1, s

r
i ), and

storing (IDk, sti+1, s
t
i, s

r
i+1, s

r
i , DATA

k). The back-end server computes RIDr
i = h(Rr ⊕

sri ), generates DATAk ‖ (RIDr
i ⊕ RIDt

i) ‖ RIDr
i ⊕ sti+1 ‖ RIDt

i ⊕ sri+1 ‖ h(sti+1 ‖ sri+1),
and sends it to the reader.

Step 5: After getting the reply DATAk ‖ h(RIDr
i ⊕ RIDt

i) ‖ RIDr
i ⊕ sti+1 ‖ RIDt

i ⊕
sri+1 ‖ h(sti+1 ‖ sri+1), the reader acquires the information of the tagged object and passes
h(RIDr

i ⊕RIDt
i) ‖ RIDr

i ⊕ sti+1 ‖ RIDt
i ⊕ sri+1 ‖ h(sti+1 ‖ sri+1) to the tag.

Step 6: Upon receiving the reader’s response, the tag computes RIDr
i = h(Rr

i ⊕ sri )
and h(RIDr

i ⊕RIDt
i). Then the tag checks whether the computed h(RIDr

i ⊕RIDt
i) and

the received one are equal. If it holds, the back-end server is authenticated successfully
by the tag; otherwise, this protocol terminates.

Step 7: The tag extracts sti+1 and sri+1 from RIDr
i ⊕ sti+1 and RIDt

i⊕ sri+1, respectively.
Consequently, the tag verifies the integrity through the received h(sti+1 ‖ sri+1). If sti+1

and sri+1 are valid, the tag updates sti to sti+1 and sri to sri+1.
Note that if the tag contains (IDk, h(.), sti−1, s

r
i−1, l), the sever will authenticate the tag

with (IDk, sti−1, s
r
i−1) instead of (IDk, sti, s

r
i ). In Step 4, the server will update the entry

by choosing new secrets sti+1 and sri+1, updating (sti, s
t
i−1, s

r
i , s

r
i−1) to (sti+1, s

t
i−1, s

r
i+1, s

t
i−1),

and storing (IDk, sti+1, s
t
i−1, s

r
i+1, s

t
i−1, DATA

k).

4. Security and Efficiency Analyses. In this section, we make discussions on security
levels and computational loads of our protocol and Safkhani et al.’s. By the following,
it is shown that our protocol provides an equivalent security level and possesses better
computational efficiency.

4.1. Security analyses. Safkhani et al.’s protocol overcomes the weaknesses, tag imper-
sonation, reader impersonation and de-synchronization attack, which Cho et al.’s protocol
suffers from. Because the difference between our protocol and Safkhani et al.’s is that ours
utilizes a long-term secure value to have the server identify the tag easily, we first make
discussions on tag anonymity. To ensure security, why our protocol can resist common
attacks are also shown as follows.

4.1.1. Tag anonymity. In our protocol, the tag computes L = h(Rt ‖ Rr ‖ l) ⊕ IDk in
Step 2. Later, the back-end server can obtain the corresponding entry with the retrieved
identity IDk. An attacker cannot obtain the information embedded in the tag, but the
transmission media is public but insecure. That is, an attacker can intercept random
numbers Rt and Rr. However, he still cannot obtain the tag’s identity IDk without the
knowledge of l. As a result, tag anonymity is ensured.

4.1.2. Tag impersonation. In Step 2 of the proposed protocol, the tag generates a number
Rt, computes RIDt

i = h(Rt ⊕ sti), α = h(IDk ⊕ Rt ⊕ Rr ⊕ RIDt
i), and L = h(Rt ‖ Rr ‖

l) ⊕ IDk, and sends α,L, and Rt to the reader, where Rr is the random number chosen
by the reader. In Step 4, the server first computes IDk ′= h(Rt ‖ Rr ‖ l) ⊕ L to get the
corresponding entry (IDk, sti, s

t
i−1, s

r
i , s

r
i−1, DATA

k), computes RIDt
i
′= h(Rt ⊕ sti) and

α′ = h(IDk ′⊕Rt ⊕ Rr ⊕ RIDt
i
′), and checks if α′ = α to authenticate the tag. Only the

legal tag possesses sti to compute RIDt
i and α with random numbers Rt and Rr to have

itself authenticated. Because α is computed by h(IDk⊕Rt⊕Rr⊕RIDt
i), an attacker may



Improvement on Safkhani et al.’s Authentication Protocol for RFID Systems 657

attend to impersonate the tag by retransmitting α,L, and Rt
new to the reader, where Rr

new

and Rt
new are random numbers for the present session, Rr

old and Rt
old are random numbers

for the past intercepted session, and Rr
new⊕Rt

new = Rr
old⊕Rt

old. However, this attack will
not threaten our protocol as well. It is because the retransmitted RIDt

i equals h(Rt
old⊕sti)

instead of h(Rt
new ⊕ sti), and the server computes IDk ′ by h(Rt

new ‖ Rr
new ‖ l)⊕ L instead

of h(Rt
old ‖ Rr

old ‖ l) ⊕ L. According to the above analyses, the proposed protocol can
resist tag impersonation.

4.1.3. Reader impersonation. In the proposed protocol, the reader performs as a relay
and possesses no secret. In the proposed protocol, readers are connected to the back-end
server, and the tag only can determine whether the reader is legal or not by the data
sent by the server. In Step 4, the server stores (IDk, sti+1, s

t
i, s

r
i+1, s

r
i , DATA

k), computes
RIDr

i = h(Rr⊕ sri ), generates DATAk ‖ h(RIDr
i ⊕RIDt

i) ‖ RIDr
i ⊕sti+1 ‖ RIDt

i⊕sri+1 ‖
h(sti+1 ‖ sri+1), and sends it to the reader. Then the reader passes h(RIDr

i ⊕ RIDt
i) ‖

RIDr
i ⊕ sti+1 ‖ RIDt

i ⊕ sri+1 ‖ h(sti+1 ‖ sri+1) to the tag. In Step 6, the tag computes
RIDr

i = h(Rr
i ⊕ sri ) and h(RIDr

i ⊕RIDt
i) after receiving the reader’s response. Then the

tag checks whether the computed h(RIDr
i ⊕ RIDt

i) and the received one are equal. If it
holds, the back-end server is authenticated successfully by the tag. Meanwhile, the reader
is also authenticated because the reader is incapable of computing these parameters, and
only the legal reader which is connecting to the server can pass them. According to the
above analyses, the proposed protocol can resist reader impersonation.

4.1.4. De-synchronization attack. In Step 4, the server updates the entry by choosing
new secrets sti+1 and sri+1, updating (sti, s

t
i−1, s

r
i , s

r
i−1) to (sti+1, s

t
i, s

r
i+1, s

r
i ), and storing

(IDk, sti+1, s
t
i, s

r
i+1, s

r
i , DATA

k) after authenticating the tag successfully. In Step 6, the
tag computes RIDr

i = h(Rr
i ⊕sri ) and h(RIDr

i ⊕RIDt
i) and checks whether the computed

h(RIDr
i ⊕ RIDt

i) and the received one are equal to authenticate the back-end server. In
Step 7, the tag extracts sti+1 and sri+1 from RIDr

i ⊕ sti+1 and RIDt
i ⊕ sri+1, respectively.

Consequently, the tag verifies the integrity through the received h(sti+1 ‖ sri+1). If sti+1 and
sri+1 are valid, the tag updates sti to sti+1 and sri to sri+1. If the data passed by the reader
is modified by an attacker, the back-end server cannot be authenticated by the tag. That
is, the tag will keep (IDk, h(.), sti, s

r
i ) instead of (IDk, h(.), sti+1, s

r
i+1). Although the entry

stored by the server has been updated to (IDk, sti+1, s
t
i, s

r
i+1, s

r
i , DATA

k), the tag still can
be authenticated by the back-end server with (IDk, h(.), sti, s

r
i ) in the proposed protocol.

Consequently, our protocol can resist de-synchronization attack.

4.2. Efficiency analyses. In Step 2, the tag computes L = h(Rt ‖ Rr ‖ l) ⊕ IDk

and sends it to the reader. Later, the back-end server can reveal IDk by computing
IDk = h(Rt ‖ Rr ‖ l)⊕ L. Therefore, the server does not need to compute RIDt

i
′ and α′

for all (IDk
i , s

t
i−1, s

r
i−1)’s and (IDk

i , s
t
i, s

r
i )’s.

In our protocol and Safkhani et al.’s, only simple operations are used, and one-way hash
function is the most time-consuming and complex one. Thus, only the time to execute
a one-way hash function is taken into consideration in efficiency analyses. The efficiency
comparisons between our protocol and Safkhani et al.’s are shown in Table 1, where T(h)
denotes the time needed to compute a one-way hash function and n is the number of
entries stored by the server.

According to Table 1, although one more hash function operation is executed by the
tag in our protocol, the server’s performance is greatly improved because the server does
not need to compute RIDt

i
′ and α′ for all (IDk

i , s
t
i−1, s

r
i−1) ’s and (IDk

i , s
t
i, s

r
i )’s. When

the server keeps a large amount of entries, our protocol must be superior to Safkhani et
al.’s.



658 W. L. Tai, Y. F. Chang, and T. S. Kwang

Table 1. Performance comparisons

Server Tag
Safkhania et al.’s 4nT(h)+ 3T(h) 4T(h)
Our proposed 8T(h) 5T(h)

5. Conclusions. Safkhania et al. proposed a hash-based authentication protocol for
RFID systems to in compliance with essential security properties. After analyzing their
protocol, we find that the server requires excessive computation of the hash function such
that the server’s computational load is heavy. In this paper, we propose an improvement
to make the server identify the tag easily. According to security and efficiency analyses,
it is ensured that our protocol provides an equivalent security level and possesses better
computational efficiency. This makes our protocol superior to Safkhania et al.’s and
practical to be implemented in the real world.

Acknowledgment. This work was supported in part by Ministry of Science and Tech-
nology under the Grants MOST 104-2622-E-034-004 -CC3, MOST 104-2221-E-034-004-,
and MOST 104-2221-E-025-006-.

REFERENCES

[1] J. S. Cho, S. S. Yeo, and S. K. Kim, Securing against brute-force attack: A hash-based RFID mutual
authentication protocol using a secret value, Computer Communications, vol. 34, no. 3, pp. 391–397,
Mar. 2011.

[2] W. I. Khedr, SRFID: A hash-based security scheme for low cost RFID systems, Egyptian Informatics
Journal, Vol. 14, no. 1, pp. 89–98, Mar. 2013.

[3] J. S. Cho, Y. S. Jeong, and S. O. Park, Consideration on the brute-force attack cost and retrieval cost:
A hash-based radio-frequency identification (RFID) tag mutual authentication protocol, Computers
& Mathematics with Applications, vol. 69, no. 1, pp. 58–65, Jan. 2015.

[4] I. Vajda and L. Buttyn, Lightweight authentication protocols for low-cost RFID tags, Proc. of the
2nd Workshop on Security in Ubiquitous Computing, Seattle, WA, Aug. 2003.

[5] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and A. Ribagorda, EMAP: An
efficient mutual-authentication protocol for low-cost RFID tags, On the Move to Meaningful Internet
Systems 2006: OTM 2006 Workshops, LNCS 4277, pp. 352–361, Nov. 2006.

[6] T. Li and R. Deng, Vulnerability analysis of EMAP-an efficient RFID mutual authentication protocol,
Proc. of the Second International Conference on Availability, Reliability and Security, pp. 238–245,
Apr. 2007.

[7] C. M. Chen, S. M. Chen, X. Zheng, L. Yan, H. Wang, and H. M. Sun, Pitfalls in an ECC-based Light-
weight Authentication Protocol for Low-Cost RFID, Journal of Information Hiding and Multimedia
Signal Processing, vol. 5, no. 4, pp. 642–648, Oct. 2014.

[8] C. M. Chen, S. M. Chen, X. Zheng, P. Y. Chen, and H. M. Sun, A Secure RFID Authentication
Protocol Adopting Error Correction Code, The Scientific World Journal, vol. 2014, ID 704623, 12
pages, 2014.

[9] M. Safkhani, P. Peris-Lopez, J. C. Hernandez-Castro, N. Bagheri, and M. Naderi, Cryptanalysis
of Cho et al.’s protocol, a hash-based mutual authentication protocol for RFID systems, IACR
Cryptology ePrint Archive, Report 331, Jun 2011.

[10] M. Safkhani, P. Peris-Lopez, J. C. Hernandez-Castro, and N. Bagheri, Cryptanalysis of the Cho et
al. protocol: A hash-based RFID tag mutual authentication protocol, Journal of Computational and
Applied Mathematics, vol. 259, Part B, no. 15, pp. 571–577, Mar. 2014.


