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Abstract. Tensor Compressive Sensing (CS) is an emerging approach for higher-order
data representation applications, such as medical imaging, video sequences, and multi-
sensor networks. Because the characteristics of CS acquisition differ considerably from
those of traditional image acquisition, traditional image compression solutions may not be
particularly applicable. In this paper, we propose a tensor-based coding scheme for Three-
dimensional (3D) images. To establish this scheme, we first designed a 3D CS method
via Tucker decomposition to secure favorable reconstruction quality for the acquired 3D
images. Next, we designed a tensor quantization for the obtained 3D CS measurements
that works without transforming the tensor into vectors. Finally, we applied the methods
in the Compressive Sensing Imaging (CSI) system for efficient encoding of the 3D images.
We confirmed through a series of experiments that the proposed method outperforms other
similar methods in terms of both reconstruction accuracy and processing speed.
Keywords: Compressive sensing, Lossy compression, 3D image

1. Introduction. Compressed Sensing (CS), the theory of which is based on the observa-
tion that various cases of natural signals are approximately sparse with respect to certain
bases or frames has garnered considerable attention from researchers and developers in
recent years [1-4]. To allow for digital transmission and storage of CS measurements, the
measurements must be accurately quantified-that is, the measurements must be repre-
sented by finite symbols from a finite alphabet. The most intuitive method of quantifying
measurements maps each of them to the closest element from the alphabet [5-6].

In practical CSI applications, CS acquisition is assumed to be implemented in some
type of analog image-acquisition hardware such as a single-pixel camera. The acquired CS
measurements are real-valued, which creates a large amount of data that must be stored
and transmitted. The lossy compression of CS measurements is thus a necessary part of
the CS acquisition process [7]. Most approaches to lossy CS measurement compression
focus on problems involving 1D signals or 2D image data encoded in vectors, however,
many important applications involve higher-order signals (e.g., 3D videos) [8-10].
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Designing an efficient lossy compression of 3D CS acquisitions requires that two main
questions to be addressed: How does one represent the image signal for the best possible
CS reconstruction? Also, how does one efficiently quantify the 3D CS measurements?
The main contribution of this paper is an efficient lossy compression solution for 3D CS
acquisition of images in the CSI system. We developed the proposed solution by consid-
ering both the low-rank representation of images and quantization of CS measurements
(i.e., the two questions mentioned above). In brief, in this study, we 1) designed a 3D CS
algorithm by introducing a new Tucker decomposition algorithm and 2) designed a tensor
quantization for the 3D CS measurements.

The remainder of this paper is organized as follows. Section 2 explains the theoretical
background and describes the methods we used to validate the proposed approach. Section
3 presents a comparison among the reconstruction results of the proposed method and
other existing methods, and Section 4 contains a brief summary of our contribution and
conclusion.

To facilitate the distinction between scalars, vectors, matrices, and higher-order ten-
sors, the type of a given quantity is reduced here by its representation: scalars are denoted
by lower-case letters (x), vectors are written as capitals (x), matrices corresponding to
bold-face capitals (X) and tensors are written as calligraphic letters (X ).

2. TCS-based lossy compression. In traditional signal acquisition systems, analog
signals are often low-pass filtered to limit their bandwidth based on the Shannon-Nyquist
sampling theorem prior to acquisition. The reconstruction quality can be improved by
minimizing aliasing effect, which is caused by unlimited signal bandwidth of the signal
[6]. In a CS acquisition system, reconstruction quality degrades due to the vectorization
of multidimensional signals: futher, this is rather time consuming and not applicable in
practice. Below, we introduce a tensor-based method of avoiding vectorization for CS
acquisition in the CSI system that can be used to improve reconstruction quality. We
designed a tensor quantization method which extends traditional vector quantization into
its 3D version for coding, as also discussed below. The entire system, as shown in Fig.1,
can be divided roughly into two parts: encoding and decoding.

Figure 1. 3D CSI system framework designed via proposed method

2.1. Encoding. Let X ∈ RN1×N2×N3 and assume that Φi ∈ RNi×Mi (Ni > Mi)satisfies
the NSP properties. Define the following

S = X ×1 ΦT
1 ×2 ΦT

2 ×3 ΦT
3 (1)
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where S ∈ {si1,i2,i3}, i1 = 1, · · · ,M1; i2 = 1, · · · ,M2; i3 = 1, · · · ,M3 and ”×k” is the
d-mode multiplication of HOSVD[11-12].

Let C ∈ {cj1,j2,j3} , i1 = 1, · · · ,m1; i2 = 1, · · · ;m2; i3 = 1, · · · ,m3 represent the
codebook and Pj1,j2,j3 be the encoding region associated with codeword ci1,i2,i3 . Let P ∈
{Pj1,j2,j3} denote the partition of the space. If the source si1,i2,i3 is in the encoding region
Pj1,j2,j3 , its approximation is cj1,j2,j3 and:

Q(si1,i2,i3) = cj1,j2,j3 , ifsi1,i2,i3 ∈ Pj1,j2,j3 , (2)

Assuming a squared-error distortion measure, the average distortion is given by:

Di1,i2,i3,j1,j2,j3 = ‖si1,i2,i3 − cj1,j2,j3‖2 (3)

Let (j∗1 , j
∗
2 , j
∗
3) be the index which achieves the minimum, and set:

(j∗1 , j
∗
2 , j
∗
3) = argminDi1,i2,i3,j1,j2,j3 (4)

Update the code word as follows:

C
(l+1)
j1,j2,j3

=

∑
Q(si1,i2,i3 )=c

(l)
j1,j2,j3

si1,i2,i3∑
Q(si1,i2,i3 )=c

(l)
j1,j2,j3

1
(5)

This condition implies that the code tensor is the average of all those training tensors
located in the encoding region. During implementation, one must ensure that at least one
training tensor belongs to each encoding region.

The pseudo-code used for tensor-based encoding is presented in Algorithm 1.

Algorithm 1
Input:
(1) 3D image X
(2) Sensing matrices Φ1,Φ2,Φ3;
(3) ε
Output:
Code tensor C
Start:
(1) Compute S according to formula (1) ;
(2) Generate C ∈ Rm1×m2×m3 randomly.
(3) for l = 1 : L, do:

for i1 = 1 : M1, i2 = 1 : M2, i3 = 1 : M3, do:
for j1 = 1 : m1, j2 = 1 : m2, j3 = 1 : m3, do:

Compute Di1,i2,i3,j1,j2,j3 according to (3)
end for

Find the optimal index (j∗1 , j
∗
2 , j
∗
3) and set Q(si1,i2,i3) = c

(l)
j1,j2,j3

end for

Update the all code words c
(l+1)
j1,j2,j3

If (D(l−1) −D(l))/D(l−1) > ε , break;
end for

2.2. Decoding. De-quantify S̃, which is based on the quantization tensor C . See the
following:

s̃i1,i2,i3 = wi1,i2,i3,j1,j2,j3 · cj1,j2,j3 (6)

where wi1,i2,i3,j1,j2,j3 =

{
1, ifsi1,i2,i3 ∈ Pj1,j2,j3

0, else
are the weights.
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Figure 2. Reconstruction of foreman by PC-CS
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Figure 3. Reconstruction of mobile by KSC
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To reconstruct X̃ from S̃ and Φd(d=1,2,3), we’ll introduce the following tensor-based
reconstruction algorithm [12]:

X̃ = S ×1 (Z1S
†
(1))×2 (Z2S

†
(2))×3 (Z3S

†
(3)) (7)

We assume that the following set of compressive multi-way measurements is available:

Z(n) = X ×1 Φ1 ×2 · · · ×n−1 Φn−1 ×n+1 Φn+1 ×n+2 · · · ×N ΦN (8)

and that
Z(n) = (Z(n))(n) (9)

where ”† ”stands for the pseudo-inverse of a matrix [12]. The pseudo-code used for tensor-
based encoding is presented in Algorithm 2.

Algorithm 2
Input:
(1) Code tensor C
(2) Weight tensor W
(3) Sensing matrices Φ1,Φ2,Φ3

Output:

X̃
Start:

(1) De-quantizate S̃ according to formula (6)
(2) Compute Z(n) according to (8) and (9)

(3) Reconstruct X̃ according to (7)

3. Simulation Results and Analysis. We experimentally demonstrated the perfor-
mance of our TCS-based lossy compression methods by using it to reconstruct three 3D
video sequences: ”Foreman”, ”Mobile”, and ”Hall”. We also reconstructed the same
videos using two other state of the art methods, Kronecker-based Compressive Sensing
(Kronecker CS) [13] and CANDECOMP/PARAFAC-based Compressed Sensing (CP-CS)
[14], for the sake of comparison.

Each frame of the video sequence was preprocessed to 128128 pixels with 128 frames,
the video data together was represented by a 128128128 tensor. The randomly constructed
Gaussian measurement matrix for each mode was 128 × Md(d = 1, 2, 3) in size after
preprocessing, and the code tensor wasm1×m2×m3, so the normalized number of samples
wasm1×m2×m3

1283
.

3.1. Reconstruction results. Table 1 depicts the PSNR of the two 3D video sequences
(to save space, only two of the three videos are shown) recovered by all the three methods

with sampling rates of 0.76 ≈ (117)3

(128)3
, 0.56 ≈ (106)3

(128)3
, and 0.25 ≈ (80)3

(128)3
. Figures 2-7 show

the reconstruction performance of the three methods, where the proposed method well
and clearly outperformed the other two.

3.2. Computational complexity analysis. We also compared the computational com-
plexity of the three algorithms. The most complex procedure for reconstructing the orig-
inal signal of KCS-based compression is Basis Pursuit (BP): the average number of BP
iterations for all 3D samples was about 1000, and the most complex procedure of CP-
CS-based compression was the twice 11-norm algorithm, which took an average of 79
iterations to reconstruct the original signal of all 3D samples. The proposed compres-
sion method, which is based on Tucker-TCS, does not involve iterations and as such is
extremely fast. The computation time (specifically, the average computation time of the
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Figure 4. Reconstruction of mobile by PC-SC

experiments at all sampling ratios) required in each case confirmed that the proposed
algorithm provides much faster computation than the other two, as shown in Table 2.

Table 1. PSNR (dB) comparison of the three methods

Sampling Rate Methods Foreman Hall Mobile

0.76
KCS 37.23 25.99 35.31
CP-CS 24.96 19.57 30.80
Proposed 43.34 31.42 45.53

0.56
KCS 30.69 21.21 27.14
CP-CS 24.68 19.40 30.52
Proposed 38.01 27.46 40.66

0.25
KCS 22.19 16.45 19.22
CP-CS 24.02 18.92 29.50
Proposed 31.22 22.68 33.88

Table 2. Comparison of computation time (s)

Methods Foreman Hall Mobile
KCS 4334 4220 3419
CP-CS 2081 2070 1997
Proposed 2.89 2.62 2.77
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Figure 5. Reconstruction of mobile by the proposed method

4. Conclusions. In this study, we developed a tensor quantization method for efficient
lossy compression of 3D CS acquisitions. Simulation results showed that the proposed
solution achieves better performance and subjective quality of the CSI system compared
to two other similar methods, with lower computational complexity.
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