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Abstract. This paper presents a novel and effective image splicing forgery detection
method based on the inconsistency of irrelevant components between the original and the
tampered regions. The specific irrelevant components can be described by the minimum
eigenvalues obtained by the principal component analysis (PCA) without knowing any
prior information. To avoid the impact of local structures, a pixel and its nearest neigh-
bors are taken as a block and the input matrix of PCA are gotten through self similarity
pixel strategy (SSS) from the block, which extracts a local minimum eigenvalue for every
pixel. The experimental results on several forged image datasets demonstrate that our
method achieves competitive detection accuracy compared with two other region-based
methods.
Keywords: Splicing forgery; Digital image forensics; Principal component analysis;
Minimum eigenvalue; Self similarity pixel strategy.

1. Introduction. With the rapid development of multimedia and network technology,
digital images, as an effective carrier of information, are having a more and more important
impact on people’s daily lives. However, the image content can easily be tampered with
the increasingly powerful image processing software, which threatens the integrity and
authenticity of digital images. Moreover, if the tampered images were used for illegal
purposes, there would be no doubt causing extremely bad effects on both the individual
and society. Therefore how to effectively detect the tampered images has an urgent and
practical significance. In this paper, we will focus on image splicing forgery detection,
which is a common image manipulation to distort an image by composing or merging two
regions from different source images together.

In recent years, many image splicing detection methods are proposed, which can be
classified into two categories: boundary based methods and region based methods [1].
The boundary based methods, just as the name implies, detect the splicing boundaries
which are the salient parts [2] of an image by extracting the abnormal transient features
to identify the forgery. Fang et al. [3] gave an example that utilized the sharp boundaries
in color images. Similarly, high order spectral (HOS) [4], Hilbert-Huang transform (HHT)
[5] and Wavelet analysis [6] were also used in image splicing forgery detection. Ng T.T.
[7] further developed an edge-profile based method for extraction of CRF signature from
a single image. Zhao et al. [8] proposed another method by using four gray level run-
length run-number (RLRN) vectors along different directions obtained from de-correlated
chroma channels as the input feature for SVM. Then Moghaddasi et al. [9] improved the

610



An Image Splicing Detection Method Based on PCA Minimum Eigenvalues 611

efficiency of RLRN detection algorithm by applying two dimension reduction methods,
namely the PCA and kernel PCA. However, the boundary based methods need to satisfy
some assumptions that splicing boundary doesn’t suffer from blur or compression and
usually cannot localize the tampered region.

The region based methods generally build on inconsistent features extracted from the
splicing and the original regions to identify the forgery by dividing the image into local
blocks or by image segmentation [10, 11]. Jan et al. [12] proposed a method based on
detecting the presence of the camera pattern, which is under the assumption that the
camera noise pattern is available in advance. Popescu et al. [13] established a bilinear
model to describe the correlation caused by Color Filter Array (CFA) interpolation, and
the Fisher classifier is employed for classification. Johnson et al. [14] proposed a model
based on the lighting inconsistency by estimating the direction of light source for different
objects or people in an image relying on some simply hypotheses. Nevertheless, these
methods [12–14] require for certain prior knowledge while in most situations we are only
given a suspicious image without any other information. In contrast to these approaches,
blind noise estimation methods [15–17] work in the absence of the prior knowledge and
achieve a better effect simultaneously, which detect the inconsistency of the background
noise in splicing image.

In this work, taking the region irrelevant component into account, we propose a novel
image splicing detection method based on PCA, through which we can easily get local
minimum eigenvalues as a feature property of an image without knowing any prior infor-
mation. More appealingly, it is affected little by edges, axis and brightness of image itself
and can achieve high detection accuracy on pixel level.

The rest of this paper is organized as follows. In section 2, we introduce the PCA
algorithm that will be used to calculate the minimum eigenvalues. Section 3 describes
the concrete steps of our method. The experiment results and the analysis are minutely
presented in Section 4. Finally, the paper is concluded in Section 5.

2. Principal Component Analysis (PCA).

2.1. Brief Summary of PCA. PCA definition: for a givenm×nmatrixX = [x1 x2 · · · xn],
where xi = [x1i x2i · · · xmi]

T (i = 1, 2, · · · n) denotes a column of X, there is a linear
transformation R = [r1 r2 · · · rn]T , where ri = [ri1 ri2 · · · rin], that

F = RX (1)

F = [f1 f2 · · · fn], which satisfies three conditions: i. ri ⊥ rj, if i 6= j; ii. V ar(f1) ≥
V ar(f2) ≥ · · · ≥ V ar(fn); iii. ‖ ri ‖= 1(i = 1, 2, · · ·m). Then fi can be called the ith
principal component [18].

It can be derived from the definition that the variance of F is

V ar(F ) = V ar(RX) = diag(λ1, λ2, · · · , λm) (2)

Let Σ denote the covariance matrix of X

Σ = Cov(X) =
1

n− 1
(X −X)(X −X)T (3)

and X = E[X] = 1
n

∑n
i=1 xi. There is an orthogonal matrix V

Σ = V TΛV,Λ = diag(λ1, λ2, · · · , λm) (4)

where λi is the ith eigenvalue of Σ in descending order, vi is the eigenvector corresponding
to eigenvalue λi. V meets the conditions of R, i.e., F = V X is a PCA expression of X.
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2.2. Image PCA Model. Let matrix Y represent an observed image which includes the
original image X and the Gaussian noise Ng . Assume that X can be decomposed into a
low-rank component L whose rank is lower than X ′s and a small perturbation component
N0 [19]. It can be given as

Y = X +Ng = L+N0 +Ng (5)

where L denotes the relevant component of an observed image and N(N = N0 + Ng)
denotes the irrelevant component. Then

Cov(Y ) = Cov(L+N) = E(LLT ) + E(NNT ) = Cov(L) + Cov(N) (6)

Let ΣY = Cov(Y ), ΣL = Cov(L), ΣN = Cov(N) and the eigenvalue decomposition is

ΣY = V T
Y ΛY VY = V T

L ΛLVL + ΛN = V T
L (ΛL + ΛN)VL (7)

It can be inferred that

ΛY = ΛL + ΛN (8)

And the PCA transformation matrix of L is the same as Y , i.e., VY = VL.

2.3. Minimum Eigenvalue. This paper focuses on the eigenvalues ΛY obtained from
above. Let ΛY = diag(λ1, λ2, · · · , λm), ΛL = diag(λL1, λL2, · · · , λLm), ΛN = diag(σ2

1, σ
2
2, · · · ,

σ2
m) , ΛN0 = diag(λ2N01

, λ2N02
, · · · , λ2N0m

), ΛNg = diag(λ2Ng1
, λ2Ng2

, · · · , λ2Ngm
). Because

Rank(L) < m, if Rank(L) = k, we will get that λLi 6= 0(i ≤ k) and λLi = 0(k < i ≤ m).
According to the equation (8), the minimum eigenvalue is

λmin = λm = λLm + σ2
m = σ2

m (9)

Hence, we will discuss the item σ2
m in detail. Since N = N0 + Ng and σ2

Ngi
= σ2(i =

1, 2, · · · ,m), where σ2 is the variance of the Gaussian noise, that

λmin = σ2
N0m

+ σ2 (10)

Thus the perturbation component and the Gaussian noise decide the minimum eigen-
value together. If there is no perturbation component, the minimum eigenvalue will simply
equal to the variance of the Gaussian noise that depends on the background noise.

3. METHODOLOGY. In this section, the proposed image splicing forgery detection
scheme is presented which is illustrated by Fig.1. The subsections are organized as follows:
first, an image is segmented into pixel-centered overlapping image blocks. Each block is
resampled by the self similarity pixel strategy (SSS) introduced in subsection 3.1. Then,
analyze the local minimum eigenvalues of the sample matrix calculated by PCA and
present the theory of splicing detection in subsection 3.2. Finally, the proposed algorithm
is summarized.

Image 

Segmentation
Sampling PCA Threshold

Input Blocks Sample LMEs

Tamper 

Localization

Figure 1. Proposed image splicing detection scheme.
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3.1. Self Similarity Pixel Strategy. For a two-dimensional digital image, each pixel’s
gray value and spatial location contain all the characteristics of the whole image. As for
the local structure characteristic of an image, it is represented by the connected neighbor
areas with different gray values. Thus, in order to retain the local structure characteristic
of the image better, the self similarity pixel strategy (SSS) is employed to get sufficient
samples with a sliding window.

For an image block B with size L×L , set a K×K sliding window and model the neigh-
bor pixels within the window as a vector which is denoted by xi = [x1i x2i · · · xmi]

T (i =
1, 2, · · · n), m = K×K, as shown in Fig.2, the red window means the first sampling with
the window length of K×K, and then moves the window from left to right and top to bot-
tom with one pixel point, just like the yellow window. Therefore, (L−K+1)2 samples can
be obtained to constitute a sample matrix X = [x1 x2 · · · xn], where n = (L−K + 1)2.
This sample method is called self similarity pixel strategy (SSS) [20] which permits a
reliable similarity measure involving perturbation pixels falling far away from each other.

K K

Figure 2. Sampling model.

(a) (b)

Figure 3. (a)LMEs com-
puted directly; (b)LMEs
computed by SSS.

3.2. Local Minimum Eigenvalue. Since the image local structure feature can be de-
scribed by a set of neighbor pixels, an overlapped segmentation scheme is introduced.
To compute the minimum eigenvalue at each pixel location (i, j), the block Bi,j collected
from all surrounding rectangular windows of (i, j) is used for sampling. Further, the SSS
is employed to recreate textures and get sufficient samples from the block Bi,j, which
can reduce the effect of small samples and perturbation pixels. All of these minimum
eigenvalues are called Local Minimum Eigenvalues (LMEs).

As shown in Fig.3, the edge and texture will been treated as the noise if Bi,j is taken
directly as the input image of PCA. However, the LMEs mostly depend on the background
noise and have a stable distribution after sampling by SSS. Below the LME refers to the
local minimum eigenvalue obtained after sampling by SSS if there’s no declaration.

Fig.4 is the frequency histogram and the kernel density estimation of the LMEs. It
shows that the LMEs concentrate on a small interval. We select the LMEs corresponding
to the peak of the kernel density curve as the ME of the image. Fig.5 shows the mean
ME of images in TID2008 database [21] changing with the additive noise. From the Fig.5,
the ME is sensitive to the noise. What’s more, the changing trend of the ME and the
noise level are consistent, which gives the basis to distinguish the tampered region from
the original image with different background noises.

In order to measure the concentricity of LMEs, the Lorenz curve is drawn, which is
shown in Fig.6 and the responding Gini coefficient is computed. In particular, if all data
are concentrated in several intervals, Lorenz curve will become concave fold line. For a
quantification measure, the Gini coefficient G is obtained by G = A/(A + B). If G is
closer to 1, it indicates the distribution is more centralized and vice versa.
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Figure 4. Frequency his-
togram and the kernel esti-
mation of the LMEs
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Figure 5. The changing
trend of the ME and density
estimation of the LMEs
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Figure 6. Lorenz curve of
the cameraman image
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Figure 7. Detection threshold

The concentration degree of LMEs is tested by using some of existing image datasets
[21–23], and the result is shown in Table 1. As can be seen, the LMEs are highly concen-
trated in a certain interval and affected little by edges, axis and brightness etc. According
to the different intervals that images having different background noise focus on, as shown
in Fig.7, we can detect tampered images and localize the tampered region by threshold
T at the same time.

Table 1. Concentration degree

Dataset Gini Mean Coefficient Gini Variance Coefficient Image Number

BSDS300(test) 0.9158 0.0042 100
BSDS500(test) 0.9206 0.0040 200
Tid2008 0.9293 0.0048 25

3.3. Algorithm. The proposed method can be summarized as follows:

• Image segmentation. The block Bi,j collected from all surrounding rectangular win-
dows of (i, j) at each pixel location (i, j) with an overlapping segmentation.
• Sample collection. Sample each image block Bi,j by using the self similarity pixel

strategy(SSS) described in subsection 3.1.

• PCA. For each sample matrix Xi,j, apply PCA to it and obtain the LME λ
(i,j)
m .

• Thresholding. Set a threshold T to separate the LMEs into two clusters. The thresh-
old T can be obtained by the frequency histogram shown in Fig.7. The detection
region can be localized:

region(i, j) =

{
0 , if λ

(i,j)
m < T

1, else
(11)

• Post-processing. Use an area threshold to remove small isolated regions.
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3.4. Complexity analysis. The proposed image splicing detection method mainly con-
tains two phases: the first phase is image overlapping segmentation and the second phase
is the application of PCA to each block. For a N1 × N2 image, N1 × N2 image blocks
are obtained by using pixel-centered overlapping segmentation method. Then, PCA is
applied to each image block which is sampled by a sliding window with size K×K to get
the minimum eigenvalue and the time complexity of PCA is O(K4[(L−K + 1)2 +K2]).
Thus, the total time complexity of our method is O(N1N2K

4[(L−K + 1)2 +K2]), where
m = K ×K, n = (L−K + 1)2, that is O(N1N2m

2(m+ n)).

4. Experiment results and analysis.

4.1. Image datasets and Evaluation metrics.

4.1.1. Datasets. In this paper, the Columbia uncompressed image splicing detection eval-
uation dataset [24] is employed in our experiments and the compared methods are also
conducted on this dataset.

There are total 180 spliced images with almost similar illumination, each of which is
stored in the TIFF format and has a resolution ranging from 757×568 pixels to 1152×768
pixels without any post processing. The authentic images are taken with 4 cameras:
Canon G3, Nikon D70, Canon 3500 Rebel XT, and Kodak DCS 330. Every 30 spliced
images are created for each camera pair, therefore we get total 180 images in the spliced
category. Moreover, every spliced image has its own color reference map indicating the
original and spliced regions, which can be used for performance evaluation.

Additionally, to further demonstrate the effectiveness of our method, we ourselves com-
pose some spliced images with unnoticeable splicing boundary.

4.1.2. Evaluation Metrics. To evaluate the performance of the proposed method, the vi-
sual detection results are first displayed and analyzed from the qualitative perspective.
Then, several metrics are employed to evaluate the performance in terms of TPR (True
Positive Rate), FPR (False Positive Rate) and ACC (Accuracy) quantitatively, which are
calculated by

TPR =
TP

TP + FN
× 100% (12)

FPR =
FP

FP + TN
× 100% (13)

ACC =
TP + TN

TP + FN + FP + TN
× 100% (14)

For the full dataset, we employ the Area Under roc Curve (AUC) curve obtained
through the receiver operator characteristics (ROC) curve as a measurement in the Columbia
dataset.

4.2. Detection Performance.

4.2.1. Results on single spliced image. The images used in the experiment are picked
randomly from the Columbia dataset [24]. For visual contrast, a tampered image is
taken as an example and the detection procedure is show in detail in Fig.8. Fig.8 (a) is
the original image suffering from splicing tampering. By refactoring all LMEs obtained
through PCA, a LMEs feature image can be get, which is presented in Fig.8 (b). The
tampered and original regions are able to be differentiated initially. However the regions
are neither clear nor certain. Then a hard threshold or a clustering method can be
used to segment the regions. In this paper, the threshold can be obtained through the
histogram directly, which is illustrated in Fig.7. The segmented image is shown in Fig.8(c).
There is a clear distinction between tampered and original area except for some small
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deviations. Finally, an area threshold is applied to remove small isolated regions for
connecting the detected regions. The final result is displayed in Fig.8 (d). The detection
results demonstrate that the proposed method can find the tampered region and locate
the region with reasonable accuracy.

(a) (b) (c) (d)
Figure 8. Detection processing analysis.

In order to explain the performance, we compare our method with two region based
methods [15, 17]. Four examples of the forged images, together with their detection results
by these two methods are shown in Fig.9. It is obvious that our segmentation area is more
complete, more continuous and exists less false or missed detection points, which gives
a visual representation that our method is much more effective to distinguish tampered
regions from those in the original images.

Forged images Mahdian [15] Pan [17] Our method
Figure 9. Comparison results.

Table 2. Detection accuracy of the four images by three methods

Image Metrics Mahdian et al. [15] Pan et al.[17] Proposed method

Image 1
TPR 36.28% 89.81% 94.79%
FPR 5.55% 3.17% 0.31%
ACC 62.93% 93.03% 97.45%

Image 2
TPR 91.44% 84.45% 99.98%
FPR 0.41% 0.59% 2.30%
ACC 94.79% 93.55% 98.59%

Image 3
TPR 32.09% 76.87% 99.34%
FPR 5.19% 4.82% 6.67%
ACC 85.56% 92.48% 94.22%

Image 4
TPR 32.98% 83.47% 99.42%
FPR 2.69% 0.54% 1.17%
ACC 90.12% 97.67% 98.90%

Furthermore, we make a numerical experiment to compare the proposed methods with
Mahdian et al. [15] and Pan et al.[17]. For each detection image, we compared it to the
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respective color reference map at the pixel level and calculated the TPR, FPR, and ACC
metrics as shown in Table 2. The quantitative results show that the proposed method has
a higher TPR and ACC than the other two methods, which well suggests the availability
of our method.

As a more realistic test, three images are manipulated by Photoshop. As shown
in Fig.10, these forgeries have realistic appearance after being manipulated and post-
processed. The proposed method can achieve a higher detection precision under the same
condition by contrast. What’s more, the detection regions by proposed method are more
integrated and tampered edges are much more continual.

Original 1 Original 2 Forged image Pan [17] Our method
Figure 10. A realistic test.

4.2.2. Results on full dataset. The experiment above has primarily indicated that the
proposed method tends to have a better result on the single image. Next, we will illustrate
its effect on the full Columbia dataset by giving the ROC curves of these three methods
(both the false position rate and the true position rate are the mean of this image set)
in Fig.11 (a). It shows that the proposed method can achieve a higher TPR at the same
FPR, which is obvious that the proposed method and the method in [17] have a better
performance. Hence, to further demonstrate the detection effect of the proposed method,
the AUCs of each image in the Columbia dataset obtained by these two detection methods
are compared with by a scatter chart in Fig.11 (b). It can be seen that our method’s
performances are much better than the Xunyu Pan’s in most cases.
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Figure 11. (a) Mean ROC of Columbia dataset; (b) AUC comparison scatter.

In addition, Table 3 gives the statistics of AUCs about all the images classified by the
cameras in this image dataset. These are the indicators that the proposed method can
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Table 3. Performance quantitative evaluation

Cameras Numbers
Mahdian et al. [15] Pan et al. [17] Proposed Method

E(AUC) E(AUC) E(AUC)

canong3canonxt 30 0.6363 0.7094 0.8219
canong3kodakdcs330 30 0.6481 0.5849 0.6642
canong3nikond70 30 0.6440 0.6366 0.7050
canonxtkodakdcs330 30 0.6439 0.7204 0.8088
nikond70canonxt 30 0.6293 0.6005 0.6839
nikond70kodakdcs330 30 0.6468 0.6207 0.6318

Total 180 0.6414 0.6454 0.7193

apply to detect splicing images with regions from other images and achieve much higher
detection accuracy than the method in [15, 17], subject to data and statistics.

5. Conclusions. In this paper, a novel effective image splicing forgery detection method
is proposed based on the concentricity of local minimum eigenvalues calculated by using
PCA. This method is suitable for any input splicing forgery images with inconsistent
irrelevant components. It can localize the tampered region on the pixel level. What’s
more, the minimum eigenvalue exists as a property that only relates to image itself. It
can be available by direct calculation without the estimation procedure, which eliminates
the estimation errors affected by estimation methods and further increases the detection
precision.

The paper validates the concentricity of the minimum eigenvalues through Gini coeffi-
cient with existing picture galleries. Then apply our method to detect splicing images in
image database and manipulated by Photoshop. All experimental results show that the
proposed method can not only achieve high detection accuracy, but also yield complete
detection regions with continual edges as well.
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