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Abstract. Using the approximate invariance of the image histogram shape to geomet-
ric distortions especially the DIBR process, we propose a hashing scheme for DIBR 3D
images by selecting several pixel groups to construct the image histogram shape, and com-
puting the ratios of pixel numbers in different groups to generate the final hash sequence.
Meanwhile, we use an N-times searching method to improve the robustness of proposed
hashing scheme. Experimental results show that the proposed method can achieve better
identification performances under geometric attacks such as rotation attacks, and pro-
vide comparable performances under classical distortions such as additive noise, blurring,
and compression. Furthermore, this method can ensure that the generated virtual images
could be identified with the same content as the corresponding center image when we
adjust the baseline distance.
Keywords: Depth-image-based rendering (DIBR), 3D image hashing, Histogram, Im-
age identification

1. Introduction. Virtual viewpoint rendering is a key technology of 3D video. There are
three types of traditional virtual viewpoint rendering methods, Model-based Rendering
(MBR), Image-based Rendering (IBR) and Depth-image-based rendering (DIBR). MBR
is only suitable for to single object 3D modeling [1]. The performance of IBR is determined
by the interpolation algorithm. We need a large number of viewpoints for sampling to get
3D images with high quality. Moreover, the existing video acquisition device and digital
communication network are unable to meet the need of IBR [2, 3]. In the DIBR system,
we can generate the virtual left and right images with the corresponding depth image [4,
23]. As a result, it is very easy to transmit and store the DIBR 3D images (including
the center image and depth image), and we can easily achieve the 3D video effects with
little additional information. The natural advantages of DIBR in representation of 3D
video will greatly promote the development of 3D industry, and make the 3D products
spreading rapidly. The rapid development of DIBR will lead to a variety of problems
about content-based identification for 3D products.

Robust images hashing has been extensively studied for content-based identification
of 2D images. Generally, image hashing consists of two main aspects, one is feature
extraction, and the other is feature compression. Since feature extraction can directly
affect the robustness and discrimination performance of image hashing, more and more
approaches have been designed to find robust feature in order to make the image hashing
resist standard degradation processing and malicious attacks, just like the methods using
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transform domain features [5-7]. In addition, some matrix analysis approaches have also
been employed to extract the perceptual features for hash computation, such as singular
value decomposition (SVD) [8] and non-negative matrix factorization (NMF) [9]. Most of
the hashing algorithms in the aforementioned categories can perform well in alignment-
preserving manipulations, while geometric distortions such as rotation are still of great
challenges. As a result, some geometric-invariant features have been exploited to devise
robust hashing, among which salient points are the most commonly used features. In pa-
per [10], Lv and Wang developed a new image hashing algorithm using local feature points
to overcome the concerns presented above. They used the popular scale invariant feature
transform (SIFT) to detect robust feature points and incorporated the Harris criterion to
select the most stable points which are less vulnerable to image processing attacks. Then
based on these robust feature points, in order to characterize local information, they intro-
duced the shape contexts [11] into hash generation to represent the geometric distribution
of the detected feature points. Unfortunately, for DIBR 3D images, the method they pro-
posed generates different hashes for center image and virtual images, which should have
the same or similar hashes. Moreover, the performance degraded when the key points
detected from the test image do not coincide with that of the original. In paper [12],
they designed an efficient image hashing with a ring partition and a nonnegative matrix
factorization (NMF), which has both the rotation robustness and good discriminative
capability. The key contribution is a novel construction of rotation-invariant secondary
image, which is used for the first time in image hashing and helps to make image hash
resistant to rotation. In addition, NMF coefficients are approximately linearly changed
by content-preserving manipulations, so as to measure hash similarity with correlation
coefficient. In [13], Roy et al. proposed a scale-invariant feature transform (SIFT) points
based robust hashing, and the relationships between the positions of SIFT points and
hyper planes are binarized as hash value.

Although many methods have been exploited for designing 2D image hashing, they can
not been directly used for DIBR 3D image hashing algorithm. For example, in order
to make their methods more robust to rotation manipulation, they divide the image to
several rings with the image center as the center of rings in [10] and [12]. However, virtual
images are generated from the center image with the corresponding depth information, the
virtual images are different from the center image with pixels moved horizontally, and the
image center will change when dividing the virtual images into several rings, which could
make the hashes of virtual images different from the center image. Unfortunately, this
kind of 2D image hash methods proposed recently do not take into account this problem.
On the other hand, the DIBR process can be seen as a partial translation along the
horizontal plane, we could consider this operation as a content-preserving manipulation,
and the virtual images should be identified with the same content as the center image
with same hashes as shown in Fig. 1.

In this paper, a histogram shape based hashing method is proposed for DIBR 3D
images. We set the number of bins in a pixel group by analyzing the difference of mean
value between original and attacked images firstly, then we use a mean value based method
to select the index pixel group, and select several suitable pixel groups involving the index
group to generate the final hash value. As the experimental results shown, our method is
much more robust to common attacks such as JPEG compression, noise added, median
filtering, scaling, rotation and cropping after rotation. In addition, the proposed method
is robust to baseline distance adjusting. This paper is organized as follows. Section 2
briefly reviews the DIBR operations. In Section 3, the proposed hashing scheme based
on histogram shape is illustrated. In Section 4, we analyze the robustness of proposed
method to geometric distortion attacks including DIBR process. Experimental results of
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Figure 1. The character of image hashing for DIBR images

the proposed method are demonstrated in Section 5. Conclusions of this work are given
in Section 6.

2. Review of Depth-Image-Based Rendering Process. The principle of binocular
vision is to obtain the parallax which is related to the depth information of objects. The
other way round, we can also generate the virtual views from center views by 3D warping
with the depth information of objects. DIBR operations are consisted of pre-processing
of the depth image, 3D image warping and hole-filling.

Figure 2. The relationship of pixel in left view, center view and right view

Zhang and Tam [14] proposed a method in their paper, by which we can use the two-
dimensional image to compute the disparity and generate the virtual left and right views.
As shown in Fig. 2, we can find a point P in space, where Z represents the depth value of
the point in center view, f is the focal length of the camera, Cl and Cr represent the left
camera and the right camera respectively. tx represents the value of the baseline distance
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which is the distance between the left and right cameras. By the geometric relationships
as shown in Fig. 2, we can conclude the following formula

xl = xc + tx
2
f
Z
,

xr = xc − tx
2
f
Z
,

d = xl − xr = tx
f
Z

(1)

Z(v) = Zfar + v × Znear−Zfar
255

v ∈ [0, 255] (2)

Where (xl, y) , (xc, y) and (xr, y) represent the projected points in the image plane. d
represents the value of disparity between the left and right virtual views, the value of f
is set to 1 without loss of generality.

In order to compute the depth value of pixel in center view, the gray values are nor-
malized to two main depth clipping planes, the near clipping plane Znear with gray level
255 and the far clipping plane Zfar with gray level 0. According to formula (2), we can
compute the depth value Z(v) of P , where v represents the gray level value.

3. Proposed Method. Robustness design of the proposed hashing algorithm is based
on the use of the Gaussian low-pass filtering and the histogram shape invariance. As
shown in Fig. 3, process of the proposed method consists of four steps: center image
filtering, histogram extracting, pixel group selection, and hash generation.

Figure 3. Block diagram of the image hashing

3.1. Center image filtering. In order to get the low frequency component Ilow suiting
for hash generation, the center image is filtered with a Gaussian kernel low-pass filter
G for removing the high-frequency information Ihigh. As shown in [15], [16], low-pass
filtering is an effective operation for enhancing robustness to common image processing,
such as compression and filtering. The low-frequency component Ilow of image I can be
obtained as:

Ilow(x, y) = G(x, y, σ) ∗ I(x, y) (3)

Where ∗ represents the convolution operation, and the low-pass filter Gaussian function
can be represented as:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (4)

Where σ is the standard difference of the distribution, and usually chosen as σ = 1 [15].
In practice, the size of the Gaussian maskG is often chosen as (2·k·σ+1)×(2·k·σ+1). Since
99.7% energy of the Gaussian distribution is concentrated within 3 standard differences
from the mean, we can set k = 3. Thus the size of the Gaussian mask G used in this
paper is 7× 7.
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3.2. Histogram extracting. Suppose that Ilow is the filtered image with gray levels
ranging from 0 to 255, the histogram H indicates the number of pixels belong to every
gray level. In order to increase the security of hashing algorithm, only M gray levels are
used for hash generation. Here, we can generate a key-based sequence P (M) = {pi|i =
1...M, 0 ≤ pi ≤ 255}. With the key-based sequence P (M), we extract M gray levels
g1, g2, ..., gM , where gi = pi. The shape of extracted histogram can be represented as:

HM = {hM(gi)|i = 1, ....,M} (5)

Where hM(gi) represents the number of pixels with gray level gi.

Figure 4. Selection of pixel groups with index value

3.3. Selection of pixel groups. After constructing the histogram HM , we take each LB
neighboring gray levels in HM to form a group. In total, one can form MG = bM/LG c
groups, where b•c is a floor function. It is easy to find that the number of pixels in the ith
group is hG(i) = hM(g(i−1)�LG+1) + hM(g(i−1)�LG+2) + · · ·+ hM(gi�LG), where i = 1, ...,MG.
Next, we select the pixel groups that are suitable for hash generation. In this paper,
we use the ratio between hG(i) and hG(j) and the number of pixels in each groups to
represent the histogram shape in such a way that the effect of various attacks on the
histogram shape can be objectively analyzed by observing the alteration of the ratios.
Obviously, the number of pixels in a group has a crucial effect on the shape of histogram.
In some groups, the number of pixels is less (zero or a few). The shape of these groups is
usually unstable even if a few number of pixels in these groups change. Taking account
into this problem, we only select several pixel groups suitable to construct the histogram
shape. In order to find the suitable groups, we should find an index value firstly, then the
pixel group involving the index value can be selected as the index pixel group, and some
pixel groups nearby the index pixel group can be selected for hash generation. Here, we
use the mean pixel gray value of the filtered host image as the index value, which can
benefit from its outstanding robustness to content-preserving attacks [15].

As shown in Fig. 4, given a mean pixel value P , we can find which pixels group it
belongs to as:

g(i−1)�LG+1 ≤ P ≤ g(i+1)�LG (6)

Then the selected pixel groups for hash generation can be modeled as:

G(P ) = [hG(i− l) · · ·hG(i) · · ·hG(i+ l)] (7)
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3.4. The final hash generation. The insensitivity of the histogram shape plays an
important role in our proposed method since it is prerequisite for withstanding geometric
attacks. To enhance the robustness of the hash, the first step is to filter an image. Once
the low-pass filtering process is finished, the histogram is extracted from the resulting
image by referring to the mean gray value and index pixel group. Then, the hash bits
are computed by comparing the population among each two different pixel groups. Let
us describe the hash extraction process as follows. Denote the number of pixels in the ith
group as hG(i). Then we can generate one bit hash value with the two different groups
{hG(i), hG(j)} satisfying the condition 1 ≤ i < j ≤ 2l + 1. In this case, the number of

groups is totally C2
2l−1 = 2(2l−1)(l−1)

2
. For {hG(i), hG(j)}, we can get a binary value by

computing the ratio between hG(i) and hG(j), formulated as:

bit =

1 if hG(i)/hG(j) ≥ 1

0 if hG(i)/hG(j) < 1
(8)

4. Analysis of robustness to geometric attacks. The performance of proposed method
depends on two factors, one is the computation of the index mean value and selection of
index pixel group, and the other is the ratios of numbers of pixels in two groups in selected
pixel groups. For a original image I, ID is a distorted and content-preserving versions of
I, suppose that the index value P of the original image I belongs to the ith grouphG(i), if
the index value P

′
of ID can be estimated and the pixels group can be selected as former,

and the ratios are slightly modified the both images can generate the nearly same hash
values.

Figure 5. Differences between the mean value of attacked images and
original images

4.1. Robustness of the mean value and index group. As described in section 3,
we compute the mean pixel gray value and decide which index pixel group the mean
value belongs to. Finally, we can select the 2l + 1 pixel groups to generate the hash
value. Obviously, the computation of mean value and selection of index pixel group
may affect the robustness of hashing method. Note that after geometric attacks, an
interpolation process is generally needed for images [15]. The interpolation process will
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introduce interpolation errors such as aliasing, blocking and blurring. However, in order
to maintain the perceptual quality of the attacked image to an acceptable level, the errors
introduced by interpolations are often small and thus will be ignored in the following
analysis.

Assume that the original image I has N = RC pixels, where R and C denote the
number of rows and columns of the image, respectively. The mean pixel gray value P can
be computed as:

P =
1

RC

255∑
i=0

hM(gi) · gi (9)

Where I(i, j) represents the gray level value of a pixel in the original image.
We first consider scaling attack with scaling factor α and β in vertical and horizontal

directions, respectively. After scaling, R
′
= αRandC

′
= βC, which lead to:

N
′
= R

′
C

′
= αβN = αβRC (10)

h
′

M(gi) = αβhM(gi) (11)

P
′
=

1

R′C ′

255∑
i=0

h
′

M(gi) · gi (12)

P
′
= 1

R′C′

255∑
i=0

h
′
M(gi) · gi

= 1
αβRC

255∑
i=0

αβhM(gi)

= 1
RC

255∑
i=0

hM(gi) · gi
= P

(13)

Then we consider rotation and affine attacks. It is obvious that rotation only makes the
pixels change their positions. Similarly, affine transform also only causes pixel position
displacements as it can be regarded as a combination of scaling, rotation, translation and
shearing attacks. So the mean pixel gray value is robust to rotation and affine attacks.

Strictly speaking, the robustness of mean pixel gray value under cropping attacks de-
pends on the image, the cropped area and the function for selecting the gray levels. So the
invariance property of the mean value of an image to cropping attacks is an approximate
invariance. Similarly, in a DIBR process, the virtual images is generated from the center
image with a small parts removed and the holes filled, so the mean value of virtual images
is most close to the value of host center image.

We compute the mean pixel gray value of 16 test images under several kinds of attacks
including DIBR process, then the difference of the mean between attacked images and
original images can be computed. As shown in Fig. 5, the maximum and the minimum
differences are 6 and 0, respectively. Although the mean is robust to content-preserving
processing to some extent, the mean value with nonzero difference may led to wrong index
pixel group selection ,and the robustness of hashing method will be affected.
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4.2. Robustness of the histogram shape. Assume that the original image I has
N = RC pixels, where R and C denote the number of rows and columns of the im-
age, respectively. For one bit hash value, it can be generated by computing the ratio of
numbers of pixels in two pixel groups (Group1 with hG(i) pixels and Group2 with hG(j)
pixels). For scaling attacks with factors α andβ, the ratio r can be compute as:

r =
αβhG(i)

αβhG(j)
=
hG(i)

hG(j)
(14)

Obviously, the histogram shape is robust to scaling attacks. For rotation and affine
attacks, it is obvious that rotation and affine attacks only make the pixels change their
positions. So the shape of histogram is robust to rotation and affine attacks.

The resistance of the histogram shape to cropping is described as follows. Suppose that
the size of an image is R × C, and the number of pixels in the cropped regions is N .
Referring to (5), we denote the histogram of the original and cropped images as HM and
H

′
M , respectively. In the event the data distribution of the cropped regions is different from

the original image, the shape of H
′
M will be different from that of HM . Strictly speaking,

the robustness of histogram shape under cropping attacks depends on the image, the
cropped area and the function for selecting the gray levels. So the invariance property
of the histogram shape of an image to cropping attacks is an approximate invariance.
Similarly, in a DIBR process, the virtual images is generated from the center image with
a small parts removed and the holes filled, so the histogram shape of virtual images also
is an approximate invariance.

5. Experimental Results. In this section, we plan to evaluate the robustness of pro-
posed image hashing algorithm from two aspects. The first one is their perceptual ro-
bustness against content-preserving manipulations, which is important for content-based
image identification and retrieval. It is desired that perceptually identical images under
distortions would have similar hashes. The other is the perceptual robustness against
DIBR process. This is desired that the virtual images generated from center image at any
baseline distance would have similar hashes with the corresponding center image.

5.1. Test images database and attack manipulations. We construct a dataset with
about 5757 images. In this database, there are 19 pairs of center and depth images
from Middlebury Stereo Datasets [17-19] and Microsoft Research 3D Video Datasets [20],
having various resolutions from 450×375 to 1390×1110. The depth images are gray
scale images of 8-bit level. For each gray center or generated virtual image which is
converted from the original color one, we generate 101 distorted versions by manipulating
the original image according to 10 classes of content-preserving distortions, which include
additive noise, blurring, JPEG compression, and geometric attacks. The motivation to
construct such a database is to simulate possible quality distortions of digital images due to
the noise in transmission channel, lossy quantization, and geometric manipulations. The
details are given in Table 1. For the additive noise and blurring attacks, the distortions
are introduced based on an acceptable quality range. The noise addition and blurring
operations are implemented with Matlab, the geometric distortion and JPEG compression
are implemented with Stirmark benchmark tool [21].

5.2. Identification accuracy. Suppose I = {Ii, 1 ≤ i ≤ N} be the set of original images
without distorted in the database, and we generate corresponding hash vector hash(Ii)
for each original image. We apply the Hamming distance as the performance metric to
measure the discriminating capability between two hash vectors hash(I1) andhash(I2).
Given a query image IQ, we first generate its hash vector and calculate its distance to
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Table 1. Content-preserving manipulations and parameters setting

Manipulation Parameters Setting Copies

Additive Noise
Gaussian Noise variance ∈ (0.0005̃ 0.005) 10
Salt&Paper Noise variance ∈ (0.001̃ 0.01) 10
Speckle Noise variance ∈ (0.001̃ 0.01) 10

Blurring
Gaussian Blurring filter size:3 σ ∈ (0.5̃ 5) 10
Circular Blurring radius ∈ (0.2̃ 2) 10
Motion Blurring len=1,2,3 θ = 0◦, 45◦, 90◦ 9

Geometric Attacks
Rotation θ ∈ (−10◦˜ + 10◦) 12
Cropping&Rotation θ ∈ (−10◦˜ + 10◦) 12
Scaling factor ∈ (0.5̃ 2.0) 6

JPEG Compression QF ∈ (15̃ 100) 12

hash(Ii) of each original image in database. Intuitively, the query image is identified as
the ith original image as following:

i = argmin
i
{dis(hash(IQ), hash(Ii))} (15)

According to section 4.1, the selection of index pixels group for attacked image can
affect the performance of identification accuracy. In fact, there are certain relationships
among the mean value P of original image, mean value P

′
of corresponding attacked image

and width LG of pixels group hG. Suppose G(P ) represents the pixel groups of original
image and G

′
(P

′
) represents the pixel groups for attacked image, the relationships can be

represented as:
G(P ) = G

′
(P

′
) if P = P

′
or g(i−1)�LG+1 ≤ P 6= P

′ ≤ g(i+1)�LG

G(P ) = G
′
(P

′ − nLG) if P ≤ g(i+1)�LG < P
′

G(P ) = G
′
(P

′
+mLG) if P

′
< g(i−1)�LG+1 ≤ P

(16)

Obviously, we can find the right pixel groups of attacked image for hash generation
within m+n+1 times, and the relationship between the maximum mean value differences
D and LB will decide the searching times.

Based on the analysis and extensive testing above, we propose a method to find
the right index pixel groups with three times searching. According to Fig.8, we can
see if we set LG = D, the searching times m + n + 1 = 3. Suppose hash(IQ) =
{hash1(IQ), hash2(IQ), hash3(IQ)} are the three final hashes by three times searching
of a query image IQ, and hash(Ii) is the hash of a original image, we can compute the
distance between IQ and Ii following the blow steps as shown in Fig. 6.

1) Step 1: Compute the mean value P1 of the query image IQ, and select the pixel
groups G(P1) to generate the hash value hash1(IQ).

2) Step 2: Compute the estimated mean value P2 = P1 − LG of the query image IQ,
and select the pixel groups G(P2) to generate the hash value hash2(IQ).

3) Step 3: Compute the estimated mean value P3 = P1 + LG of the query image IQ,
and select the pixel groups G(P3) to generate the hash value hash3(IQ).

4) Step 4: Compute the distance between IQ and Ii in reference to the following formula:



552 C. Cui, S. Wang, and X.M. Niu

Figure 6. Selection of index pixel group by three times searching

dis(hash(IQ), hash(Ii)) = dis(hash(Ii), arg min
hashj(I2)

(dis(hash(Ii), hashj(IQ)))) (17)

Table 2. Identification accuracy performances for center and virtual im-
ages by proposed method, NMF, RSCH and Ring Partition and NMF hash-
ing algorithms under different attacks Manipulation Proposed

Manipulation Proposed Ring partition [12] NMF [9]

Additive Noise
Gaussian Noise 100% 87.78% 100%
Salt&Paper Noise 100% 88.15% 100%
Speckle Noise 100% 84.81% 100%

Blurring
Gaussian Blurring 100% 88.89% 100%
Motion Blurring 100% 86.83% 100%
Circular Blurring 100% 88.89% 100%

Geometric Attacks
Rotation 96.60% 82.10% 55.56%
Cropping&Rotation 100% 82.41% 63.19%
Scaling 100% 87.04% 92.36%

JPEG Compression 100% 85.19% 100%

For the comfortable viewing experience, the maximum baseline distance tx is recom-
mended to be 5% of the width of the image at a viewing distance of four times of the
image height [4]. In order to show the performance about identification of proposed
hashing method, we compare the proposed method with some traditional hash schemes
designed for 2D image, such as the current state-of-the-art image hashing algorithm NMF-
NMF-SQ [9], SVD hashing [8], RSCH hashing [10] and Ring partition hashing [12]. First,
we illustrate the identification accuracy of different hashing methods in Table 2 and Table
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Table 3. Identification accuracy performances for center and virtual im-
ages by proposed method, NMF, RSCH and Ring Partition and NMF hash-
ing algorithms under different attacks Manipulation Proposed

Manipulation Proposed RSCH [10] SVD [8]

Additive Noise
Gaussian Noise 100% 70.37% 100%
Salt&Paper Noise 100% 77.89% 100%
Speckle Noise 100% 80.74% 100%

Blurring
Gaussian Blurring 100% 70.74% 100%
Motion Blurring 100% 79.21% 100%
Circular Blurring 100% 77.41% 100%

Geometric Attacks
Rotation 96.60% 62.35% 60.19%
Cropping&Rotation 100% 71.60% 59.88%
Scaling 100% 64.20% 66.05%

JPEG Compression 100% 86.73% 90.77%

3. It is desired that the images with content-preserving distortions (including the copies of
virtual images) can still be correctly classified to the corresponding original center image,
no matter what kinds of manipulations are taken.

It is clearly that the proposed hashing, NMF hashing and SVD hashing are superior to
the RSCH and Ring partition hashing algorithm under additive noise, blurring, scaling,
and compression attacks, although these two kinds of hashing algorithms can achieve
comparable identification performances without taking into account DIBR system. For
RSCH hashing, there are two main aspects which affect the identification performance.
The first one is that the local features extracted within the neighborhood of key-points
are not so stable though they introduced the Harris criterion to select the most stable
key-points. In addition, they considered that all perceptually insignificant distortions
and malicious manipulations on a digital image would not lead to viewpoint changes,
and the center of an image is generally preserved (except for attacks like cropping) and
thus relatively stable under geometric attacks such as rotation, shearing in [10] and [12].
In fact, in the DIBR process, virtual images are generated from center image by pixels
shifting. The center of virtual images and center image are different, so the matching SIFT
feature points are divided into different hash bins and generate different hashes. Hence,
these two kinds of method loses the advantages of generating robust hashes based on
rotation-invariant, when applied for DIBR 3D image. Meanwhile, the proposed hashing
method is much more robust to geometric attacks, such as rotation and cropping after
rotation, when compared with NMF and SVD hashing method.

5.3. Receiver operating characteristics analysis. We also study the ROC curve [10,
22] to illustrate the identification performances of the proposed image hashing algorithms
and compare them with the NMF-NMF-SQ, SVD, RSCH hashing and Ring partition
hashing. The ROC curve depicts the relative trade-offs between benefits and cost of the
identification and is an effective way to compare the performances of different hashing
approaches. To obtain ROC curves, we define the probability of true identification PT (ξ)
and the probability of false alarm PF (ξ) as formula (18), where ξ is the identification
threshold. Images I and I

′
are two distinct original images and the images ID and I

′
D are
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(a) Overall ROC curves (b) ROC curves under signal distortion

(c) ROC curves under cropping after rotation (d) ROC curves under rotation

(e) ROC curves under scaling

Figure 7. ROC curves of the proposed image hashing approach compared
with NMF, SVD, Ring partition ,and RSCH hashing approaches

distorted and content-preserving versions of I and I
′
. Ideally, we hope that the hashes

of the original image I and its manipulated version ID should be similar and thus be
identified accurately, while the distinct images I and I

′
D should have different hashes. In

other words, given a certain threshold ξ, a better hashing should provide a higher PT (ξ)
with a lower PF (ξ). Based on all the distances between manipulated images and original
images, we could generate an ROC curve by sweeping the threshold ξ from the minimum
value to the maximum value.

PT (ξ) = Pr(dis(hash(I), hash(ID)) < ξ)
PF (ξ) = Pr(dis(hash(I), hash(I

′
D)) < ξ)

(18)
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Then we present a statistical comparison of different image hashing approaches by
studying the corresponding ROC curves. We divide the content-preserving manipulations
listed in Table 1 into two categories: Signal distortion (additive noise, blurring, and
compression) and geometric distortion (rotation, cropping after rotation and scaling).
First, we show the overall ROC curves under all of these listed manipulations, and ROC
curves under signal distortion attacks and geometric distortion attacks will be presented,
respectively. With the same probability of false alarm PF (ξ), a better hashing approach
could achieve a higher probability of true identification PT (ξ). In other words, the ROC
curve is to measure the similarity of hashes between true query images and original images
under a selected false classification rate. ROC curves provide a trade-off between the
true retrieval and misclassification to select, when a uniform threshold is applied for
identification. As shown in Fig. 7, it is clearly that the proposed hashing approach
achieves the best overall robustness under all manipulations listed in Table 2 and Table
3, which is consistent with the reported identification accuracy.

Table 4. Identification accuracy performances by proposed method with
different baseline distance in DIBR process

Manipulation baseline (5%) baseline (6%) baseline (7%)

Additive Noise
Gaussian Noise 100% 100% 100%
Salt&Paper Noise 100% 100% 100%
Speckle Noise 100% 100% 100%

Blurring
Gaussian Blurring 100% 100% 100%
Motion Blurring 100% 100% 100%
Circular Blurring 100% 100% 100%

Geometric Attacks
Rotation 100% 100% 100%
Cropping&Rotation 96.60% 96.60% 96.30%
Scaling 100% 100% 100%

JPEG Compression 100% 100% 100%

5.4. Robustness against baseline distance adjustment. As illustrated in Section
2, the virtual images can be generated with a proper baseline distance in DIBR process,
where tx represents the baseline distance. Usually the parameter tx is different in order to
be suitable for different people’s visual. Since tx is not fixed in DIBR rendering process,
the performance of identification for virtual images may be affected. In order to show
the robustness of proposed hashing method against baseline distance adjustment, the
baseline distance is ranged from 5% to 7% of the image width. As shown in Table 4, the
identification accuracy is almost unchanged with different baseline distance. From the
ROC curves we can also find that the proposed hashing method is robust to the baseline
distance adjustment in DIBR process as shown in Fig. 8.

6. Conclusions. In this paper, we propose a novel hashing scheme for DIBR 3D im-
ages with consideration of both virtual images and their copies should be classified to the
corresponding original center image, when they are attacked by the content-preserving ma-
nipulations. With the approximate invariance of the image histogram shape to geometric
distortions especially the DIBR process, the robustness of hashing method is achieved.
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Figure 8. ROC curves of the proposed image hashing approach with dif-
ferent baseline in DIBR process

Meanwhile, we use an N-times searching method to improve the robustness of proposed
hashing scheme. Experimental results show that the proposed method can achieve bet-
ter identification performances in terms of geometric attacks such as rotation attacks,
and provide comparable performances under classical distortions such as additive noise,
blurring, and compression. Furthermore, this method can ensure that the generated vir-
tual images could be identified with the same content as the corresponding center image
when we adjust the baseline distance. However, the proposed hashing method is not ro-
bust against gamma correction, brightness adjustment, and contrast adjustment. We will
combine other features to solve these problems in the future.
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