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Abstract. The detection of copy-move forgery is an important module in the image
authentication. It aims to detect whether an image contains copy-move tampering and
where the tampered regions are. To improve the detection accuracy, in this paper we pro-
pose to apply local feature matching, followed by T-Linkage and multi-scale analysis by
employing the T-Linkage algorithm for robust clustering in the space of geometric trans-
formation. We further capture coarse-to-fine information by constructing a multi-scale
image representation and locating duplicated regions for each scale. We make a final
decision by considering all the localization maps with a voting strategy. Experimental
results show that the proposed method achieves desirable detection and localization per-
formance on different copy-move attacks.
Keywords: Copy-move forgery detection, SIFT, T-Linkage, Multi-scale analysis.

1. Introduction. With the advent of digital pictures and relative ease of digital image
processing, it becomes difficult to determine whether an image is authentic. Sometimes it
can be a severe problem when images are used as evidence in a court of law. Therefore it
is important to detect whether an image has been tampered with. Copy-move tampering
is a common type of image forgery. So far, the research on copy-move forgery detection
has become a hot topic and lots of work has been done to address this issue.

Osamah et al. [1] and Christlein et al. [2] made comprehensive descriptions of the cur-
rent state-of-the-art passive copy-move forgery detection methods. Generally speaking,
these techniques are classified into two main categories: block-based and keypoint-based
methods. Different block-based methods [3-11] have been previously proposed such as
discrete cosine transform (DCT) [3],discrete wavelet transform (DWT) [4] principle com-
ponent analysis (PCA) [5], singular value decomposition (SVD) [6], blur invariants [7] ,
zernike [8]etc. However, copy-move tampering always involves geometric transformations
(e.g. rotation, scaling, etc.) to get a better visual effect, which makes it more difficult
for the detection. It has been demonstrated that block-based methods usually result
in low robustness to geometric transformations as well as significant false positives and
computational complexity.

On the other hand, keypoint features such as scale invariant feature transform (SIFT)
[12] and speeded up robust features(SURF)[13], have been utilized to deal with the above
problems due to their low computational complexity of non-blocks and invariance to
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scale, rotation and illumination. Keypoint-based methods [14-16] have been proven to
work effectively for copy-move forgery detection. Particular differences of these methods
lie in the postprocessing of the matched features. Amerini et al. [14] applied a robust
feature matching procedure and hierarchical agglomerative clustering (HAC) algorithm
to separate different cloned areas after SIFT feature extraction. This technique is able
to precisely individuate the altered area with high reliability but is unsatisfactory in
the cases where the copied patch contains pixels that are very distant among them or
the pasted area is near to the original source. In [15], Amerini et al. presented an
effective clustering procedure with J-Linkage algorithm [17], which adopts a conceptual
representation of points with binary preference analysis and groups points in the space of
geometric transformation. The method is demonstrated to have superior detection and
localization performance to previous spatial clustering, while representing points with
hard thresholding may not be feasible in practical applications. Furthermore, much finer
information should be considered to achieve more accurate detection.

In this paper, we propose to use SIFT features to address copy-move detection. The
main contribution lies in two folds: first, following keypoint extraction and matching, a
clustering algorithm called T-Linkage [18] is applied. T-Linkage, which adopts a general
conceptual representation of keypoints with soft thresholding, is proven to perform better
than J-Linkage in terms of clustering accuracy and robustness to outliers. Second, to
accurately detect the tampered regions in pixel level, an adapted multi-scale analysis
[19] is introduced. In other words, we construct a multi-scale image representation and
examine the acquired clusters with circle block features [9] to yield a localization (pixel-
level detection) map for each scale. The final localization map will be obtained via a
voting process. Experiments have been performed to demonstrate the effectiveness of
the proposed method in terms of authenticity detection performance and of localization
accuracy in the tampered patches.

The rest of this paper is organized as follows. Section 2 presents the proposed method.
Section 3 gives some experimental results. Conclusion is drawn in section 4.

2. Methodology. Inspired by some literature approaches that aim at dealing with hard
copy-move manipulations, such as rotation, scaling and composite operations, we have
come up with an approach that involves T-Linkage clustering and multi-scale analysis.
Our method is composed of six steps: (i) keypoint extraction, (ii) keypoint matching, (iii)
T-Linkage clustering, (iv) pyramidal decomposition, (v) multi-scale analysis, and finally
(vi) voting. The pipeline of our approach is depicted in Fig. 1.

2.1. Keypoint extraction. To achieve invariance to rotation and scaling, we extract
keypoints by using the scale invariant feature transform (SIFT) algorithm [12]. The
SIFT algorithm can be roughly summarized as the following four steps: (i) scale-space
construction, (ii) keypoint extraction, (iii) canonical orientations assignment, and (iv)
keypoint descriptors generation. In result, each keypoint is described as a 128-dimensional
vector. Let S := {s1, s2, ..., sn} be the list of n keypoints taken from the image.

2.2. Keypoint matching. SIFT keypoints from the copied and the original regions have
similar descriptor vectors. Thus, keypoint matching is essential to detect if an image has
been tampered with. To this end, we use the g2NN test proposed by Amerini et al.[14].

The g2NN test is a generalization of 2NN test which considers the ratio between the
nearest neighbor and the second nearest one. For a given keypoint, D := {d1, d2, ..., dn−1}
is defined as the sorted Euclidean distances with respect to other keypoints. The keypoint
corresponding to d1 is considered a match of the given keypoint only if the ratio d1/d2 is
lower than a fixed threshold α (in our experiments we set this value to 0.5). A very high
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Figure 1. Outline of the proposed method.

ratio (e.g. greater than α) means two random features. The g2NN test iterates the 2NN
test between di/di+1 until this ratio is greater than α, which is able to match multiple
copies. That is to say, if k is where the procedure stops, each keypoint in correspondence to
a distance in {d1, ..., dk−1} is regarded as a match for the inspected keypoint. After using
the g2NN test on all the keypoints S , we obtain a set of matched pairs P := {p1, ...,pq}.

2.3. T-Linkage clustering. In order to group keypoints, T-Linkage algorithm [18] is
applied with a continuous conceptual representation of points. This method starts with
randomly selecting matched pairs to generate m affine transformation hypotheses. There-
after, for each matched pair, a preference function(PF) is defined indicating which trans-
formation the pair prefers and how much it prefers. The PF φ is described as follows:

φ(h) =

{
e−d(x,h)/τ if d(x,h) < 5τ

0 if d(x,h) ≥ 5τ
(1)

where ξ = 5τ is an inlier threshold indicating whether a point votes for the m hypotheses
H = {hj}j=1,...,m; φ is set to zero when the residual is no smaller than ξ and takes
values from (0,1] otherwise. Consequently, the PF of each point can be figured as an
m-dimensional vector.

Prior to hierarchical agglomerative clustering (HAC), a conceptual representation of
clusters and an appropriate similarity measure are defined. The preference function of
a subset of data points S is a vector p ∈ [0, 1]m with its i -th component defined in
(2), where qx denotes the preference function of x. And the similarity measure between
clusters is provided by the Tanimoto distance [20] in (3).

(p)i = min
x∈S

(qx)i (2)

dT (p,q) = 1− < p,q >

||p||2 + ||q||2− < p,q >
(3)

The clusters that contain less than N matched pairs are discarded in order to remove
possible outliers; this aspect has been further investigated in the experimental section in
which different detection results are given changing this N value. Finally, if there is at
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least one (more for multiple clones) inliers cluster, the image is considered as forged and
vice versa.

Image and clustered groups  

in a certain  pyramid scale
Source subgroup

Destination subgroup

Descriptors matrix

Lexicograp-

hical sorting

Search for 

similar lines

Join cloning 

regions

Analyze a 

new group

m x 4

Figure 2. Overview of multi-scale analysis.

2.4. Pyramidal decomposition. In this step, we construct a multi-scale space. The
bottom of the pyramid is the original image, the second-last level is an image with size
of 25% of the original size and so further. In order to maintain semantic consistency
with the image, the clustered groups found in section 2.3 also need to be downscaled
proportionally. For instance, from the bottom of the pyramid to the second-last, the
image has its height and width decreased by a factor of 0.5. The factor will be used to
adjust the groups accordingly. Analogously, the resizing factor is 0.25 for the next level,
and so on. This step guarantees equivalent information of the inspected regions (groups)
between two neighboring levels. In the next step, all images and the corresponding groups
are individually analyzed.

2.5. Multi-scale analysis. In order to achieve better detection in pixel level, multi-scale
analysis is applied to capture coarse-to-fine information. For each scale in the pyramid,
our analysis procedure is a little different from the reference approach [19]. We convert
the image to grayscale to get a lower dimensional descriptor of each pixel block. The
whole procedure is illustrated as follows:

• We slide a circular window through the corresponding groups one by one. The mean
of the four concentric circles inside the window is adopted to make a four dimensional
descriptor analogous to what is proposed by Wang et al. [9]. It is to be noted that the
matched regions (source and destination subgroups) will be analyzed individually.
• The descriptors of each subgroup will be stored in a matrix and are lexicographically

sorted.
• Search for similar descriptors in the sorted matrix. Two blocks are regarded as

duplicated only if they belong to distinct subgroups (source and destination).
• By using a minimum bounding rectangle (MDR) algorithm to join the cloning candi-

date regions from a subgroup, a localization map at a given pyramid scale is acquired.

A detailed overview of multi-scale analysis is depicted in Fig. 2. All the localization
maps are generated after processing all the images in the pyramid.
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2.6. Voting. Voting is a good tradeoff to balance the correct and incorrect detections
with regard to the threshold α mentioned in section 2.2. If we increase the threshold in
order to effectively detect cloned regions, false positives may also increase. Therefore, a
voting process is proposed by combining all the localization maps. It is worth mentioning
that the small maps have to be resized to match the size of the larger one. It considers
as duplicated blocks only those classified as such in the majority of the maps. Finally, all
the blocks constitute the final localization map.

Figure 3. Example images of MICC-F600 dataset.

3. Experiments. In this section, We evaluate the performance of the proposed method
not only from the view of detecting whether the image is forged (authenticity detection)
but also for exploring the real intention of the forger and for further recovery (patch
localization).

3.1. Dataset. MICC-F600 [21] is a novel dataset, which is composed of 600 high resolu-
tion images (ranging from 800*533 to 3888*2592 pixels) containing realistic and challeng-
ing copy-move attacks as shown in Fig. 3. Among these 600 images, 440 are original and
160 are tampered. Every tampered image has its own reference map (groundtruth shown
in the second row of Fig. 3) indicating the original and cloned regions in white color.

3.2. Evaluation metrics. Authenticity detection performance is measured in terms of
true positive rate (TPR) and false positive rate (FPR). TPR indicates the fraction of
tampered images correctly identified as such and FPR indicates the fraction of original
images that are not correctly classified. For patch localization performance, we choose
the following three metrics:

• True positive rate (TPR): indicates the percentage of cloned patches (source and
destination) that are correctly located.
• False positive rate (FPR): indicates the percentage of normal (non-cloned) patches

that are incorrectly detected.
• Accuracy (ACC): represents the comprehensive quality of TPR and TNR (true neg-

ative rate, TNR=1-FPR), which indicates the percentage of correctly classified non-
cloned patches.

3.3. Parameter selection.
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3.3.1. T-Linkage clustering. As is mentioned in section 2.3, we need to determine an
appropriate setting for the cutoff threshold in the preference function. To address this
issue, the following experiment has been established applying a four-fold cross-validation
process: from the database of 600 images (MICC-F600), 450 (120 tampered and 330
original), which is 3/4 of the image set, have been randomly chosen to perform a training to
find the best threshold for T-Linkage; the remaining 150 images (1/4 of the whole set) have
been used in a successive testing phase to evaluate the authenticity detection performance
of the proposed technique. The experiment is repeated four times, by cyclically exchanging
the four image subsets belonging to the training (3 subsets) and to the testing set (1
subset), and the results have been averaged. It should be noted that we set N (the least
number of matched pairs to form an inliers cluster) to 9 in this experiment.

Table 1. Training phase: TPR and FPR with respect to ξ

ξ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
TPR(%) 84.29 84.64 85.46 85.73 85.76 85.89 86.02 86.15 86.29 86.58
FPR(%) 2.93 3.04 3.54 3.86 4.15 4.49 5.50 5.98 6.30 7.80

Table 2. Testing phase: authenticity detection results

ξ TPR(%) FPR(%)
0.04 86.45 4.50

In Table 1, the TPR and FPR acquired during the training phase are reported with
respect to the threshold ξ, which varies in the interval [0.01, 0.10] with steps of 0.01. The
goal is to minimize the FPR while maintaining a very high TPR. It can be seen that
TPR is completely very high, while FPR is relatively variable. The optimal threshold ξ
has been chosen as 0.04 for the minimum Euclidean distance from the ideal performance
(TPR = 100% and FPR = 0%). Finally, the testing phase has been launched for the best
metrics using ξ = 0.04. The final detection result is presented in Table 2, which reveals
that the proposed method performs satisfactorily, providing a low FPR while keeping a
competitive TPR. Therefore, ξ = 0.04 will be used in the following experiments.

3.3.2. Multi-scale analysis. In order to select appropriate parameters for multi-scale anal-
ysis, we have created a small set of images originating from the benchmark database
constructed by Christlein et al. [2]. We use the base images and copied snippets to cre-
ate some images that include rotation, resizing and combination of these operations. By
a visual analysis of the final localization maps, the following settings of parameters are
determined. Both spatial and similarity distance are calculated as Euclidean norm.

• sliding window size: 9*9 pixels (radius equal to 4 pixels);
• number of decomposition steps: 2 steps (in this case the pyramid has 3 levels with

the original image at the bottom);
• number of neighboring lines to be compared in the sorted matrix of descriptors: 5

lines (a given descriptor only compares to 5 subsequent lines);
• minimum spatial distance between pixel blocks to be compared: 30 pixels (if lower,

the inspected group is discarded);
• minimum similarity distance between descriptors: 0.05 (if lower, the inspected group

is discarded);
• minimum number of pixel block matches in a group: 3 matches (if less, the group is

discarded).
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Figure 4. ROC curve of TPR vs FPR varying N. (a) 3D view; (b) 2D
view from the angle of N ; (c) 2D view from the angle of TPR; (c) 2D view
from the angle of FPR.

3.4. Quantitative experiments on authenticity detection performance. To assess
the performance of authenticity detection, experiments on MICC-F600 dataset are carried
out in comparison with the reference technique described by Amerini et al. [15]. The main
difference lies in the clustering approach: J-Linkage is applied in [15], while the proposed
method adopts T-Linkage. T-Linkage is a continuous generalization of J-Linkage since J-
Linkage depicts the point preferences only in {0, 1}, while T-linkage expresses them more
accurately in the whole closed interval [0, 1], which integrates more specific information
on residuals between point pairs and transformation hypotheses. Therefore T-Linkage
achieves less misclassification error and more robustness to outliers than J-Linkage for
multi-model fitting, which has been demonstrated by Magri et al. [18]. The following
experimental results verify that the proposed method outperforms the method in [15].

Fig. 4 shows the averaged detection results obtained by varying the parameter N
within the interval [4,...,16] compared with the method described in [15]. The ROC curve
reveals that the detection performance has been greatly improved. It is to be noted that
when N = 4, it achieves a good TPR (93.75%) but it presents a high FPR (39.32%).
However, this effect is reduced as N increases which means more points give consensus
to the transformations. For example, when N = 7 we achieve good performance with
a still high TPR (89.69%) and a low FPR (9.89%). The ideal result is the most upper
left point: TPR = 100% and FPR = 0%. Considering the minimum Euclidean distance
from the ideal point, N = 8 yields the best result. Table 3 reports the detailed results of
our method and the procedure described in [15]. Results are reported for three values of
the parameter N (7, 8 and 9). As for N = 8, the proposed technique achieves superior
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Table 3. Comparative results between Amerini et al. [15] and our method
on authenticity detection

(%)
N=7 N=8 N=9

Ours [15] Ours [15] Ours [15]
TPR 89.69 82.11 88.13 82.11 87.81 81.6
FPR 9.89 10.91 6.82 9.54 6.36 7.27

Table 4. Comparative results between several state-of-the-art methods
and our method on copy-move patch localization

(%) Avg.ACC Std.ACC Avg.TPR Std.TPR Avg.FPR Std.FPR
Ours 89.64 14.01 80.34 28.12 1.06 1.88

Amerini et al. [15] 87.92 21.98 76.82 31.42 0.98 1.87
Silva et al. [19] 85.35 13.14 71.92 26.69 1.22 1.92
Bashar et al. [4] 65.99 18.05 32.10 33.85 0.12 0.94

Ryu et al. [8] 64.54 23.39 34.31 44.25 5.24 7.72
Fridrich et al. [3] 64.16 16.85 28.35 31.48 0.03 0.12
Wang et al. [9] 61.62 16.55 23.32 32.08 0.08 0.61
Kang et al. [6] 58.35 16.35 16.72 31.67 0.03 0.10

Mahdian et al. [7] 57.27 15.13 14.56 28.21 0.03 0.14
Popescu et al. [5] 57.18 14.93 14.38 27.77 0.03 0.16

performances: 6.02% of improvement for TPR and 2.72% of reduction for FPR. Therefore,
N is set to 8 for the following localization.

(a) (b) (c) (d) (e)

Figure 5. Comparative examples for patch localization. (a) shows three
tampered images, (b) reports the groundtruth maps, (c) presents the result
of [19], (d) displays the result of [15], and (e) indicates our result.

3.5. Quantitative experiments on patch localization performance. To assess the
performance of patch localization, experiments are carried out in comparison with other
relevant methods: one is described by Amerini et al. [15], who applied zero mean normal-
ized cross-correlation (ZNCC) algorithm to locate the duplicated regions based on SIFT
descriptors; one is illustrated by Silva et al. [19], who analogously adopted multi-scale
analysis but with different matching and clustering strategies based on SURF descriptors;
the rest are several state-of-the-art block-based methods [3-9]
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For each localization map, we compared it to the respective reference map at the pixel
level and calculated the TPR, FPR and ACC metrics. Table 4 presents the averaged
results implemented on all the detected forged images after T-Linkage clustering. As
shown in Table 4, our approach has achieved the highest ACC, which indicates that the
proposed method is good to detect and locate copy-move forgeries containing different
operations. The standard deviation in ACC is a little higher than the method proposed
by Silva et al. [19] but much lower than the rest methods, which means our method has
favorable robustness to challenging images. As for the competitive methods proposed
by Silva et al. [19] and Amerini et al. [15], we present some comparative localization
examples in Fig. 5.

(a) (b) (c)

Figure 6. Qualitative results in different copy-move attacks. (a) shows
three tampered images, (b) reports the groundtruth maps, and (c) presents
the binary localization results.

3.6. Qualitative experiments on patch localization performance. In this experi-
ment, we have qualitatively evaluated the proposed method with images containing some
challenging operations: (i) simple cloning, (ii) rotation, (iii) scaling, and (iv) composite
operations. Fig. 6 depicts the qualitative results. We can see that the proposed method
performs well in most cases. But it fails when detecting very small tampered regions,
which may be caused by two parameters, i.e. the minimum number of matched pairs
in an inliers cluster and the minimum number of pixel block matches in a group. The
parameters can be adjusted with regard to different needs or certain circumstances.

4. Conclusions. In this paper, our method introduces and combines some well-established
concepts to address the copy-move forgery problem. Keypoint extraction and matching
are fundamental steps to spot out the cloned fields. In the T-linkage clustering step,
we apply a robust clustering strategy to group keypoints in the geometric transforma-
tion domain with soft thresholding. Here we can decide whether the image is tampered or
not. Then an adapted multi-scale analysis explores coarse-to-fine information within these
clusters to detect cloned regions in pixel level. This idea combines with a voting step to
produce the final localization map. We carried out parameter tuning and comparison to
validate our approach. Experimental results demonstrate that the proposed method has
good performance in terms of both authenticity detection and patch localization tasks.
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