An Improved Identity-Based Multi-Proxy Multi-Signature Scheme

Yan Xu, Hong Zhong^{*} and Jie Cui

School of Computer Science and Technology Anhui University **Corresponding author* 111 Jiulong Road, Hefei 230601, China {xuyan,zhongh,cuijie}@ahu.edu.cn

Received April, 2015; revised November, 2015

ABSTRACT. In a multi-proxy multi-signature scheme, a group of original signers can delegate the signing rights to a group of proxy signers. All proxy signers cooperatively sign messages on behalf of the original group. Recently, Sahu and Padhye proposed an identity-based multi-proxy multi-signature (IBMPMS) scheme which was claimed to be secure against existential forgery on adaptive chosen-message and adaptive chosen-identity attacks in the random oracle model. However, in this paper, we indicate that Sahu-Padhye's scheme is insecure by giving concrete attacks. In the end, we propose a new IBMPMS scheme and prove that it is secure in the random oracle model. Keywords: Identity-based, Multi-proxy, Multi-signature, Random oracle model.

1. Introduction. In the traditional public key cryptography, certificate authority (CA) generates and signs digital certificates that bind a user's identity with its public key. It brings a heavy management burden for CA to operate and store the public key certificate. In order to resolve this problem, Shamir [1] introduced the concept of identity-based cryptography (IBC), where the public key is generated from user's unique identity such as phone number, email address and so on. A trusted third party named private key generator (PKG) generates private key using user's *ID* and PKG's master key.

Mambo et al. [2] introduced the concept of proxy signature in 1996. In a proxy signature scheme, an original signer can delegate its signing capability to a proxy signer to sign messages on its behalf. Proxy signature schemes have many practical applications such as mobile agent applications [3, 4], grid computing [5] and so on. Hwang and Chen [6] proposed a multi-proxy multi-signature scheme, where a group of original signers can delegate their signing rights to a group of proxy signers, and all proxy signers cooperatively sign messages on behalf of the original group. A number of multi-proxy multi-signature schemes with additional properties have been studied [7, 8, 9, 10] until now. Li and Chen [11] presented an IBMPMS scheme from bilinear pairings in 2005. Sahu and Padhye subsequently proposed several IBMPMS schemes [12, 13] without any formal security model. Recently, Sahu and Padhye [14] presented an IBMPMS scheme along with security model, and proved that this scheme is secure according to the security model. Unfortunately, we shall show that Sahu-Padhye's scheme is insecure in this paper. An adversary can forge a signature for any messages, or forge a delegation on any warrant w^* on behalf of any original signers. At the end, we propose a new IBMPMS scheme which is proven to be secure in the random oracle model under the computational Diffie-Hellman problem.

The rest of this paper is arranged as follows. In section 2, we give the fundamental knowledge of bilinear pairing, the definition and security model of Sahu-Radhye's IBMPMS scheme. We analysis the security of Sahu-Radhye's IBMPMS scheme in section 3. In section 4, we propose a new IBMPMS scheme and prove this scheme's security. Finally, section 5 gives a brief conclusion.

2. **Preliminaries.** In this paper, [n] denotes $\{1, \ldots, n\}$, where n is a positive integer. We assume that there are n original signers A_i with identity ID_{A_i} respectively for $i \in [n]$, l proxy signers B_j with identity ID_{B_i} respectively for $j \in [l]$, where $n, l \in Z^+$.

2.1. **Bilinear Paring.** Let G_1 be a cyclic additive group and G_2 be a cyclic multiplicative group. G_1 and G_2 have the same prime order q. A bilinear map $e: G_1 \times G_1 \to G_2$ satisfies the following three properties:

- (1) Bilinearity: $\forall a, b \in Z_q^*$ and $P, Q \in G_1$, we have $e(aP, bQ) = e(P, Q)^{ab}$.
- (2) Non-degeneracy: There exist $P, Q \in G_1$, such that $e(P, Q) \neq 1$.
- (3) Computability: $\forall P, Q \in G_1$, there exists an efficient algorithm to compute $e(P, Q) \in G_2$.

2.2. **Definition and Security Model for IBMPMS Scheme.** At present, the formal definition and security model of IBMPMS scheme [14] are recalled.

2.2.1. *Definition of IBMPMS scheme*. An IBMPMS scheme consists of the following algorithms:

Setup: On input a security parameter k, the PKG generates public parameters *params* and a master key MSK. Then, the PKG publishes *params* and keeps MSK confidential. **Extraction:** On input the MSK the public parameters *params* and a user's identity ID.

Extraction: On input the MSK, the public parameters params and a user's identity ID, the PKG outputs private key S_{ID} for the user.

Signature: On input a message m, the public parameters *params*, the signer's identity ID and private key S_{ID} , it outputs the message m's signature σ .

Verification: On input a signature σ , a message m, the public parameters *params*, the signer's ID, it returns 1 if σ is a valid signature on m for signer, otherwise returns 0.

Proxy key generation: On input a warrant w, all signers' identities ID_{A_i} , ID_{B_j} , private keys $S_{ID_{A_i}}$, $S_{ID_{B_j}}$ for $i \in [n], j \in [l]$, it outputs a partial proxy secret key S_{P_j} for each proxy signer B_j . w denotes the delegation warrant which includes the delegation police and the identities of all signers.

Multi-proxy multi-sign: On input the warrant w, a message m satisfying w, the partial proxy secret key S_{P_j} , for $j \in [l]$ of each proxy signer, it outputs an IBMPMS saying U_P on behalf of the original group.

Multi-proxy multi-sign verification: On input the public parameters params, the identities ID_{A_i} , ID_{B_j} , warrant w, message m and the IBMPMS U_P , it returns 1 if U_P is a valid multi-proxy multi-signature, otherwise returns 0.

2.2.2. Security model. Sahu and Radhye proposed the first formal security model for IBMPMS schemes in [14]. Here we recall Sahu-Radhye's security model according to the following game between a polynomial time adversary \mathcal{A} and a challenger \mathcal{B} . f is a single honest user \mathcal{A} tries to forge the IBMPMS scheme working against.

Setup: \mathcal{B} runs the *Setup* algorithm to generate a master key MSK and public parameters params. \mathcal{B} keeps MSK confidential and sends params to \mathcal{A} .

Extraction queries: \mathcal{A} submits a user's identity ID (except for the user f). \mathcal{B} runs the *Extraction* algorithm and returns the private key S_{ID} associated with ID to \mathcal{A} .

Signature queries: \mathcal{A} chooses a message m and queries the standard signature for m. \mathcal{B} responds a signature σ on behalf of the user f and adds the message m to list $L_{\rm S}$.

Proxy key generation queries: There are two types of queries.

- (i) \mathcal{A} interacts with user B_f one of proxy signers. \mathcal{A} submits a warrant w, and sends the delegation of all original signers on w to \mathcal{B} that then runs the proxy key generation algorithm. Eventually, \mathcal{B} returns a corresponding partial proxy signing key S_{P_f} , and adds the tuple $\langle w, S_{P_f} \rangle$ to list L_{pk_f} . We stress that \mathcal{A} has no right to access the element of L_{pk_p} .
- (ii) \mathcal{A} interacts with user A_f one of original signers. \mathcal{A} submits a warrant w to \mathcal{B} . \mathcal{B} responds proxy signing keys on w by running the proxy key generation algorithm, and adds the warrant w to list L_{pk_o} .

Multi-proxy multi-sign queries: \mathcal{A} requests an IBMPMS on (m, w), where m satisfies w. If S_{P_f} exists such that $\langle w, S_{P_f} \rangle \in L_{pk_f}$, \mathcal{B} runs the multi-proxy multi-sign algorithm on (m, w) on behalf of f, outputs the partial proxy signature U_{P_f} , and forwards it to the proxy group's clerk, who combines all partial proxy signatures. Finally, \mathcal{B} adds $\langle m, w \rangle$ to list L_{mpms} .

Forgery: If any one event described as follows occurs, \mathcal{A} wins the game.

- E_1 : \mathcal{A} forges a standard signature by user f for a message m that was not submitted to the **signature queries**.
- E_2 : \mathcal{A} forges an IBMPMS for a message m by proxy signers on behalf of original signers. Such that either the group of original signers never designated user B_f , or m was not submitted in the **multi-proxy multi-sign queries**.
- E_3 : \mathcal{A} forges an IBMPMS for a message m by proxy signers on behalf of original signers. Such that proxy signers were never designated by user A_f .

Definition 1. An IBMPMS adversary \mathcal{A} with $(t, q_H, q_E, q_S, q_{pk}, q_{mpms}, n + l, \epsilon)$ breaks the n + l users IBMPMS scheme by the adaptive chosen-message and adaptive chosen-ID attacks, if \mathcal{A} runs in at most t time; makes at most q_H hash queries; at most q_E extraction queries; at most q_S signature queries; at most q_{pk} proxy key generation queries; at most q_{mpms} multi-proxy multi-sign queries, and the success probability of \mathcal{A} is at least ϵ .

Definition 2. An IBMPMS scheme is $(t, q_H, q_E, q_S, q_{pk}, q_{mpms}, n + l, \epsilon)$ -secure against existential forgery on adaptive chosen-message and adaptive chosen-ID attacks, if no adversary $(t, q_H, q_E, q_S, q_{pk}, q_{mpms}, n + l, \epsilon)$ breaks it.

3. Security analysis of Sahu-Radhye's IBMPMS scheme.

3.1. **Review of Sahu-Radhye's scheme.** Sahu-Radhye's IBMPMS scheme[14] is recalled as follows.

Setup: For a security parameter k, the PKG chooses two cyclic group G_1 and G_2 with prime order q as well as a bilinear paring $e: G_1 \times G_1 \to G_2$, where G_1 is a cyclic additive group with generator P and G_2 is a cyclic multiplicative group. It also chooses a random value $s \in Z_q^*$, and three cryptographic hash functions $H_1: \{0,1\}^* \to G_1$, $H_2: \{0,1\}^* \times G_1 \to Z_q^*$, $H_3: \{0,1\}^* \times G_2 \to Z_q^*$. Finally, the PKG sets $P_{pub} = sP$ and publishes the public parameters $params = \{q, G_1, G_2, e, P, P_{pub}, H_1, H_2, H_3\}$ while keeps the master key s secretly.

Extraction: The PKG generates public and private keys for all original and proxy signers. The public key of each original signer A_i is $Q_{ID_{A_i}} = H_1(ID_{A_i})$, and the private key is $S_{ID_{A_i}} = sQ_{ID_{A_i}}$, respectively for $i \in [n]$. In the same way, the public and private keys of each proxy signer B_j ars $Q_{ID_{B_j}} = H_1(ID_{B_j})$ and $S_{ID_{B_j}} = sQ_{ID_{B_j}}$, respectively for $j \in [l]$.

Signature: On input a message $m \in \{0, 1\}^*$, the signer ID with private key S_{ID} randomly selects $v \in Z_q^*$, and computes R = vP, $h = H_2(m, R)$, $\sigma = hS_{ID}$. The signature on message m is (σ, R) .

Verification: On input the signature (σ, R) on m, user ID's public key Q_{ID} , the verifier computes $h^* = H_2(m, R)$, and checks whether $e(P, \sigma) = e(P_{pub}, h^*Q_{ID})$. If the verification passes, (σ, R) is accepted as the signature.

Proxy key generation: Each proxy signer B_j , for $j \in [l]$ will get its proxy signing key S_{P_i} at the end of this phase.

(1) Delegation: To delegate its signing right, each original signer A_i , for $i \in [n]$ respectively signs on the warrant w which includes the delegation police, such as the identities of all signers, period of delegation and so on. Then, A_i performs the following jobs:

- Randomly chooses $v_i \in Z_q^*$, sets $V_i = v_i P$ and sends V_i to other original signers.
- Computes $V = \sum_{i=1}^{n} V_i$ and $S_{w_i} = H_2(w, V) S_{ID_{A_i}}$.
- Sends (S_{w_i}, w, V) to the group of proxy signers.

(2) Verification of delegation: Proxy signer B_j accepts (S_{w_i}, w, V) , if $e(P, S_{w_i}) = e(P_{pub}, H_2(w, V)Q_{ID_{A_i}})$.

(3) Proxy key generation: After accepting the delegation, B_j computes the proxy signing key $S_{P_j} = S_w + H_2(w, V) S_{ID_{B_j}}$ where $S_w = \sum_{i=1}^n S_{w_i}$.

Multi-proxy multi-sign: In order to sign a message m satisfying the warrant w on behalf of the original group, each proxy signer B_j , for $j \in [l]$ operates as follows:

- Randomly chooses $x_j \in Z_q^*$, sets $r_{P_j} = e(P, P)^{x_j}$ and sends r_{P_j} to other proxy signers.
- Computes $r_P = \prod_{i=1}^{l} r_{P_i}, C_P = H_3(m, r_P)$ and $U_{P_i} = C_P S_{P_i} + x_j P$.
- Sends its partial proxy signature (C_P, U_{P_j}) to the clerk of the proxy group.

After receiving (C_P, U_{P_i}) , the clerk validates the following equation:

$$r_{P_j} = e(U_{P_j}, P)e(\sum_{i=1}^n Q_{ID_{A_i}} + Q_{ID_{B_j}}, H_2(w, V)P_{pub})^{-C_F}$$

If all equations hold, the clerk combines all proxy signatures (C_P, U_{P_j}) and generates the final IBMPMS (m, w, C_P, U_P, V) for the message m. Where $U_P = \sum_{j=1}^{l} U_{P_j}$. **Multi-proxy multi-sign verification:** To verify the IBMPMS (m, w, C_P, U_P, V) on

- Computes $r_P = e(U_P, P)e(l\sum_{i=1}^n Q_{ID_{A_i}} + \sum_{j=1}^l Q_{ID_{B_j}}, H_2(w, V)P_{pub})^{-C_P}.$
- If $C_P = H_3(m, r_P)$, the verifier accepts the IBMPMS.

the message m under the warrant w, the verifier performs as follows:

3.2. Analysis of Sahu-Radhye IBMPMS scheme. It is claimed that Sahu and Radhye's scheme [14] is secure in their security model. In this section, we will show that there is a polynomial time adversary \mathcal{A} can always win the game between \mathcal{A} and the challenger \mathcal{B} .

- (1) In the **Setup** phase, the adversary \mathcal{A} gets system's public parameters *params* from the challenger \mathcal{B} .
- (2) In the **Extraction query** phase, \mathcal{A} makes private key queries for any user ID (except for the user f which \mathcal{A} wants to forge). \mathcal{B} returns the private key S_{ID} to \mathcal{A} .
- (3) In the **Signature query** phase, \mathcal{B} returns the signature (σ, R) on a message m with respect to the user ID to \mathcal{A} , such that $e(P, \sigma) = e(P_{pub}, hQ_{ID})$.

3.2.1. Forging signature for any message. After receiving the signature (σ, R) on the message m, \mathcal{A} calculates:

$$h = H_2(m, R)$$
 and $S_{ID} = \sigma/h$

 \mathcal{A} gets the private key S_{ID} of ID, and then can forge a signature on behalf of ID for any message m^* that was not submitted to the signature query. Furthermore, in the **Extraction query** and **Signature query** phase, \mathcal{A} can get all signers' private keys, so it can forge IBMPMSs on any messages under any warrants.

3.2.2. Forging warrant for any delegation. \mathcal{A} also can forge a valid delegation on any warrants w^* on behalf of an original signer A_f .

(1) After interacting with original signer A_f , \mathcal{A} gets proxy signing key (S_w, w) of the original group on w from \mathcal{B} . \mathcal{A} computes $h = H_2(w, V)$ and obtains the sum of all original

signers' private keys $\sum_{i=1}^{n} S_{ID_{A_i}} = S_w/h.$ (2) \mathcal{A} randomly selects $V^* \in G_1$ and forges a delegation on warrant w^* : $S_w^* = H_2(w^*, V^*) \sum_{i=1}^{n} S_{ID_{A_i}}.$ \mathcal{A} sends (S_w^*, w^*) to each proxy signer B_j . Then B_j generates its proxy signing key $S_{P_j}^* = S_w^* + H_2(w^*, V^*) S_{ID_{B_j}}, j \in [l].$

(3) To sign a message m^* under the warrant w^* on behalf of the original group, B_j performs the following steps:

- Randomly chooses $x_j^* \in Z_q^*$, sets $r_{P_i}^* = e(P, P)^{x_j^*}$ and sends $r_{P_i}^*$ to other proxy signers.
- Computes r_P^{*} = ∏^l_{j=1} r_{P_j}^{*}, C_P^{*} = H₃(m^{*}, r_P^{*}) and U_{P_j}^{*} = C_P^{*}S_{P_j}^{*} + x_j^{*}P.
 Sends its partial proxy signature (C_P^{*}, U_{P_j}^{*}) to the clerk of the proxy group.

The clerk generates the final IBMPMS $(m^*, w^*, C_P^*, U_P^*, V^*)$ for the message m^* under the warrant w^* , where $U_P^* = \sum_{j=1}^l U_{P_j}^*$. It can be computed:

$$\begin{aligned} r_P^* &= \\ &= e(U_P^*, P) \\ &= e(l\sum_{i=1}^n Q_{ID_{A_i}} + \sum_{j=1}^l Q_{ID_{B_j}}, H_2(w^*, V^*)P_{pub})^{-C_P^*} \end{aligned}$$

and $C_P^* = H_3(m^*, r_P^*)$. Therefore, $(m^*, w^*, C_P^*, U_P^*, V^*)$ is a valid IBMPMS on the message m^* under the warrant w^* . It means that (S^*_w, w^*) is a valid delegation on w^* generated by the original group.

The section 3.2.1 and 3.2.2 imply that the events E_1, E_2, E_3 occur. That is, the probability that polynomial time adversary \mathcal{A} wins the game is non-negligible. The attacks are successful for the reason that the basic signature presented by Sahu and Padhye is insecure and the generation of the proxy signing key is just a variant of the basic signature that signs on a warrant. Afterwards, we propose an improved scheme of Sahu-Padhye's IBMPMS scheme.

4. The proposed IBMPMS scheme. In Sahu-Padhye's IBMPMS scheme, the signature σ is a product of private key S_{ID} and a hash function H_1 . It means the private key S_{ID} could be computed by σ/H_1 . We will improve the scheme by introducing a secret value vP_{pub} in the signature σ .

4.1. Scheme description. Setup, Extraction are same as described in section 3. Signature: On input a message $m \in \{0, 1\}^*$, the signer *ID* with private key S_{ID} randomly selects $v \in Z_q^*$, and computes R = vP, $h = H_2(m, R)$, $\sigma = hS_{ID} + vP_{pub}$. The signature on message m is (σ, R) .

Verification: On input the signature (σ, R) on m, and ID's public key Q_{ID} , the verifier computes $h^* = H_2(m, R)$, and checks whether $e(P, \sigma) = e(P_{pub}, h^*Q_{ID} + R)$. If the verification passes, (σ, R) is accepted as the signature.

Proxy key generation: Each proxy signer $B_j, j \in [l]$ will get its proxy signing key S_{P_j} at the end of this phase.

(1) Delegation: To delegate the signing right, each original signer A_i , respectively for $i \in [n]$, signs on the warrant w. It performs the following jobs:

- Randomly chooses $v_i \in Z_q^*$, sets $V_i = v_i P$ and sends V_i to other original signers.
- Computes $V = \sum_{i=1}^{n} V_i$ and $S_{w_i} = H_2(w, V) S_{ID_{A_i}} + v_i P_{pub}$.
- Sends (S_{w_i}, w, V_i, V) to the proxy group.

(2) Verification of delegation: Proxy signer B_j accepts (S_{w_i}, w, V_i, V) , if $e(P, S_{w_i}) = e(P_{pub}, H_2(w, V)Q_{ID_{A_i}} + V_i)$

(3) Proxy key generation: After accepting the delegation, B_j computes its proxy signing key $S_{P_j} = S_w + H_2(w, V)S_{ID_{B_j}}$, where $S_w = \sum_{i=1}^n S_{w_i}$.

Multi-proxy multi-sign: In order to sign a message m satisfying the warrant w on behalf of the original group, each proxy signer $B_j, j \in [l]$ operates as follows:

- Randomly chooses $x_j \in Z_q^*$, sets $r_{P_j} = e(P, P)^{x_j}$ and sends r_{P_j} to other proxy signers.
- Computes $r_P = \prod_{j=1}^{l} r_{P_j}, C_P = H_3(m, r_P)$ and $U_{P_j} = C_P S_{P_j} + x_j P$.
- Sends its partial proxy signature (C_P, U_{P_i}) to the clerk of the proxy group.

After receiving (C_P, U_{P_i}) , the clerk validates the following equation:

$$r_{P_j} = e(U_{P_j}, P)e(P_{pub}, V)^{-C_P} = e(\sum_{i=1}^n Q_{ID_{A_i}} + Q_{ID_{B_j}}, H_2(w, V)P_{pub})^{-C_P}$$

If all equations hold, the clerk generates the final IBMPMS (m, w, C_P, U_P, V) for the message m. Where $U_P = \sum_{j=1}^{l} U_{P_j}$.

Multi-proxy multi-sign verification: To verify the IBMPMS (m, w, C_P, U_P, V) on a message m under the warrant w, the verifier performs as follows:

- Computes $r_P = e(U_P, P)e(H_2(w, V)\{l\sum_{i=1}^n Q_{ID_{A_i}} + \sum_{j=1}^l Q_{ID_{B_j}}\} + lV, P_{pub})^{-C_P}$.
- If $C_P = H_3(m, r_P)$, the verifier accepts the IBMPMS.

We can verify the correctness of the IBMPMS scheme as follows:

$$e(U_{P}, P)e(H_{2}(w, V)\{l\sum_{i=1}^{n}Q_{ID_{A_{i}}} + \sum_{j=1}^{l}Q_{ID_{B_{j}}}\} + lV, P_{pub})^{-C_{P}}$$

$$= e(\sum_{j=1}^{l}U_{P_{j}}, P)e(H_{2}(w, V)\{l\sum_{i=1}^{n}Q_{ID_{A_{i}}} + \sum_{j=1}^{l}Q_{ID_{B_{j}}}\} + lV, P_{pub})^{-C_{P}}$$

$$= e(\sum_{j=1}^{l}(C_{P}S_{P_{j}} + x_{j}P), P)e(H_{2}(w, V)\{l\sum_{i=1}^{n}Q_{ID_{A_{i}}} + \sum_{j=1}^{l}Q_{ID_{B_{j}}}\} + lV, P_{pub})^{-C_{P}}$$

$$= e(\sum_{j=1}^{l}x_{j}P, P) = r_{P}$$

4.2. Security analysis. Based on the hardness assumption of the CDH problem, we can prove that our IBMPMS scheme is secure against existential forgery on adaptive chosen-message and adaptive chosen-ID attacks.

Theorem 1. In the random oracle model, if there exists an adversary

 \mathcal{A} with $(t, q_H, q_E, q_S, q_{pk}, q_{mpms}, n+l, \epsilon)$ that can break our IBMPMS scheme, there exists an algorithm \mathcal{B} that can solve the CDH problem with the probability ϵ' in time at most $t' \approx t + C_{G_1}(q_{H_1} + q_E + q_S + q_{pk} + q_{mpms} + 2).$

Proof. Supposed that there exists an adversary \mathcal{A} that can break the IBMPMS scheme with non-negligible probability, then we can construct a polynomial-time algorithm \mathcal{B} to solve the CDH problem by using the adversary \mathcal{A} as a subroutine.

Initialization. The algorithm \mathcal{B} simulates the challenger and interacts with the adversary \mathcal{A} . \mathcal{B} is given an instance $(P, sP, bP) \in G_1^3$ of CDH problem, and attemps to compute sbP.

Firstly, \mathcal{B} sets $P_{pub} = sP$, and chooses three secure hash functions H_1, H_2, H_3 . The system parameters is $params = \{G_1, G_2, e, P, P_{pub}, H_1, H_2, H_3\}$.

Queries. \mathcal{A} can issue the following types of queries, \mathcal{B} responses these queries and maintains lists $L_{H_1}, L_{H_2}, L_{H_3}$ that are initially empty for each hash query.

- H_1 queries: \mathcal{A} issues a H_1 query for ID.
 - 1. If \mathcal{B} finds a tuple (ID, h, a, c) in L_{H_1} , then it answers h as a response.
 - 2. Otherwise, \mathcal{B} generates a random coin $c \in \{0, 1\}$ with probability $Pr[c = 0] = \mu$. \mathcal{B} picks $a \in \mathbb{Z}_q^*$ randomly, if c = 0, \mathcal{B} sets h = a(bP); else, h = aP, and adds (ID, h, a, c) in L_{H_1} .
- H_2 queries: \mathcal{A} issues a H_2 query for (w, V).
 - 1. If \mathcal{B} finds a tuple (w, V, t) in L_{H_2} , then it answers t as a response.
 - 2. Otherwise, \mathcal{B} picks $t \in \mathbb{Z}_q^*$ randomly, then it outputs t and adds (w, V, t) in L_{H_2} .
- H_3 queries: \mathcal{A} issues a H_3 query for (m, r_p) .
 - 1. If \mathcal{B} finds a tuple (m, r_p, k_p) in L_{H_3} , then it answers k_p as a response.
 - 2. Otherwise, \mathcal{B} picks $k_p \in Z_q^*$ randomly, then it outputs k_p and adds (m, r_p, k_p) in L_{H_3} .
- Extraction queries: \mathcal{A} requests the private key corresponding to any signer ID, except for one original signer or one proxy signer. \mathcal{B} runs H_1 queries, if c = 1, \mathcal{B} outputs $S_{ID} = aP_{pub}$; else \mathcal{B} aborts.
- Signature queries: \mathcal{A} requests a standard signature on message $m \in \{0, 1\}$ of ID_f . 1 \mathcal{B} runs H_1 queries to obtain $Q_{ID} = a_{ID} P$
 - B runs H₁ queries to obtain Q_{ID_f} = a_{ID_f}P.
 B picks v ∈ Z^{*}_q randomly and sets V = vP. Then, B runs H₂ queries to obtain H₂(m, V) = t. Finally, B computes σ = ta_{ID_f}P_{pub} + vP_{pub} and outputs (σ, R) as a valid signature on message m.

The correctness of (σ, V) can be verified that:

 $e(\sigma, P) = e(ta_{ID_f}P_{pub} + vP_{pub}, P) = e(ta_{ID_f}P + V, P_{pub}) = e(tQ_{ID_f} + V, P_{pub}).$

- Proxy key generation queries: \mathcal{A} requests such query on a warrant w for any proxy signer.
 - 1. \mathcal{B} runs **Extraction queries** to obtain the private keys of proxy and original signers except for ID_f .
 - 2. \mathcal{B} picks $v \in \mathbb{Z}_q^*$ randomly and sets V = vP. Then, \mathcal{B} runs H_2 queries to obtain $H_2(w, V) = t$.

- 3. \mathcal{B} computes $S_w = \sum_{i=1}^n t a_{A_i} P_{pub} + v P_{pub}$ and generates the proxy key $S_{P_j} = S_w + t a_{B_j} P_{pub}$.
- Multi-proxy multi-sign queries: \mathcal{A} requests such query on a message m, a warrant w.
 - 1. \mathcal{B} runs Extraction queries, Proxy key generation queries to obtain private keys and proxy keys except for ID_f .
 - 2. \mathcal{B} randomly picks $x \in Z_q^*$, sets X = xP, $r_p = e(P, P)^x$, and then runs H_3 queries to obtain $H_3(m, r_p) = k_p$.
 - 3. \mathcal{B} computes $U_p = X + k_p t \{ l(\sum_{i=1}^n a_{A_i} P_{pub}) + \sum_{j=1}^l a_{B_j} P_{pub} \}.$

We can check the validity of provided IBMPMS scheme as follows: $e(U_P, P)e(H_2(w, V) \{ l \sum_{i=1}^n Q_{ID_{A_i}} + \sum_{j=1}^l Q_{ID_{B_j}} \} + lV, P_{pub})^{-C_P} = r_p$

Forgery. The adversary \mathcal{A} outputs a valid IBMPMS $(m^*, w^*, C_p^*, U_p^*, V^*)$ for the message m^* , the warrant w^* . We will show that algorithm \mathcal{B} can solve an instance of the CDH problem according two cases.

Case 1. f is a original signer. In this case, \mathcal{A} did not request the private key of ID_{A_f} , the proxy key generated by ID_{A_f} for w^* , the IBMPMS of (ID_{A_f}, m^*, w^*) . Without loss of generality, we assume that $ID_{A_f} = ID_{A_1}$. Firstly, \mathcal{B} runs H_1 queries for ID_{A_1} , if $c_1 = 1$, then \mathcal{B} aborts. Otherwise, \mathcal{B} computes $U'_p = U^*_P - [k_p t \{ l \sum_{i=2}^n a_{A_i} + \sum_{j=1}^j a_{B_j} \} P_{pub} + X]$. Then, \mathcal{B} gets $U'_p = (k_p t l a_{A_1}) sbP$, and then obtains $sbP = (k_p t l a_{A_1})^{-1}U'_p$.

We can easily see that \mathcal{B} is a polynomial time algorithm and the probability for \mathcal{B} to solve the CDH problem is $\epsilon' = \epsilon \mu (1-\mu)^{q_E+q_S+nq_{pk}+(n+l-1)(q_{mpms}+1)}$ that is non-negligible.

Case 2. f is a proxy signer. In this case, \mathcal{A} did not request the private key of ID_{B_f} , the proxy key of (ID_{B_f}, w^*) , the IBMPMS of (ID_{B_f}, m^*, w^*) . Without loss of generality, we assume that $ID_{B_f} = ID_{B_1}$. Firstly, \mathcal{B} runs H_1 queries for ID_{B_1} , if $c_1 = 1$, then \mathcal{B} aborts. Otherwise, \mathcal{B} computes $U'_p = U^*_P - [k_p t\{l \sum_{i=1}^n a_{A_i} + \sum_{j=2}^j a_{B_j}\}P_{pub} + X]$. Then, \mathcal{B} gets $U'_p = (k_p t a_{B_1})^{-1}U'_p$. In this case, the probability ϵ' for \mathcal{B} to solve the CDH problem is non-negligible too with $\epsilon' = \epsilon \mu (1-\mu)^{q_E+q_S+nq_{pk}+(n+l-1)(q_{mpms}+1)}$.

Therefor, the success probability that \mathcal{B} solves the above instance of CDH problem is non-negligible. This completes the proof.

5. **Conclusions.** Sahu and Padhye proposed an identity-based multi-proxy multi-signature scheme from bilinear pairings. They claimed that this scheme was secure under their secure model. However, we have proved that Sahu-Padhye's IBMPMS scheme is insecure by concrete attacks. We also give an improved scheme to prevent the attacks. The new scheme is secure under the computational Diffie-Hellman problem in random oracle model.

Acknowledgment. This work is partially supported by National Natural Science Foundation of China(61173188, 61572001), the Open Project of Co-Innovation Center for Information Supply & Assurance TechnologyAnhui University (ADXXBZ2014-9), China Postdoctoral Science Foundation(2015M570545), and Anhui Provincial Natural Science Foundation (201508085QF132).

REFERENCES

 A. Shamir, Indentity based cryptosystem and signature scheme, Proc. of Crypto, Berlin Heidelberg, Springer-Verlag, vol.196, pp.47-53, 1984.

- [2] M. Mambo, K. Usuda, E. Okamoto, Proxy signatures: Delegation of the power to sign messages, IEICE transactions on fundamentals, vol. E79-A, no. 9, pp.1338-1354, 1996.
- [3] B. Lee, H. Kim, K. Kim, Strong proxy signature and its applications, Proc. of SCIS, vol.1, pp.603-608, 2001.
- [4] H. Kim, J. Baek, B. Lee, K. Kim, Secret computation with secrets for mobile agent using one-time proxy signature, *Proc. of SCIS*, vol. 1, pp.845-850, 2001.
- [5] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A security architecture for computational grids, Proc. of the 5th ACM Conference on CCS, ACM, NewYork, USA, pp.83-92, 1998.
- [6] S. Hwang, C. Chen, New multi-proxy multi-signature schemes, Applied Mathematics and Computation, vol. 147, no. 1, pp.57-67, 2004.
- [7] S. F. Tzeng, C. Y. Yang, M. S. Hwang, A nonrepudia-ble threshold multi-proxy multi-signature scheme with shared verification, *Future Generation Computer Sys-tems*, vol. 20, no. 5, pp.887-893, 2004.
- [8] T. S. Wu, H. Y. Lin, P. Y. Ting, A publicly verifiable PCAE scheme for confidential applications with proxy dele-gation, *Transactions on Emerging Telecommunications Technologies*, vol. 23, no. 2, pp.172-185, 2012.
- [9] S. Padhye, N. Tiwari, ECDLP-based certificateless proxy signature scheme with message recovery, *Transactions on Emerging Telecommunications Technologies*, vol.26, no.3, pp.346-354, 2015.
- [10] M. R. Asaar, M. Salmasizadeh, W. Susilo, An identity-based multi-proxy multi-signature scheme without bilinear pairings and its variants, *The Computer Journal* vol. 58, no. 4, pp.1021-1039, 2015.
- [11] X. Li, K. Chen, ID-based multi-proxy signature, proxy multi-signature and multi-proxy multisignature schemes from bilinear pairings, *Applied Mathematics and Computation*, vol.169, no.1, pp.437-450, 2005.
- [12] R. A. Sahu, S. Padhye, An ID-based multi-proxy multi-signature scheme, Proc. of IEEE International Conference on Computer and Communication Technology, pp. 60-63, 2010.
- [13] R. A. Sahu, S. Padhye, ID-based multi-proxy multi-signature scheme from bilinear pairing, Proc. of 5th WSEAS International Conference on Computer Engineering and Applications, IEEE, Allahabad, Uttar Pradesh, pp.43-48, 2011.
- [14] R. A. Sahu, S. Padhye, Identity-based multi-proxy multi-signature scheme provably secure in random oracle model, *Transactions on Emerging Telecommunications Technologies*, vol. 26, no. 4, pp.547-558, 2015.