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Abstract. In a multi-proxy multi-signature scheme, a group of original signers can
delegate the signing rights to a group of proxy signers. All proxy signers cooperatively
sign messages on behalf of the original group. Recently, Sahu and Padhye proposed
an identity-based multi-proxy multi-signature (IBMPMS) scheme which was claimed to
be secure against existential forgery on adaptive chosen-message and adaptive chosen-
identity attacks in the random oracle model. However, in this paper, we indicate that
Sahu-Padhye’s scheme is insecure by giving concrete attacks. In the end, we propose a
new IBMPMS scheme and prove that it is secure in the random oracle model.
Keywords: Identity-based, Multi-proxy, Multi-signature, Random oracle model.

1. Introduction. In the traditional public key cryptography, certificate authority (CA)
generates and signs digital certificates that bind a user’s identity with its public key. It
brings a heavy management burden for CA to operate and store the public key certificate.
In order to resolve this problem, Shamir [1] introduced the concept of identity-based
cryptography (IBC), where the public key is generated from user’s unique identity such
as phone number, email address and so on. A trusted third party named private key
generator (PKG) generates private key using user’s ID and PKG’s master key.

Mambo et al. [2] introduced the concept of proxy signature in 1996. In a proxy signa-
ture scheme, an original signer can delegate its signing capability to a proxy signer to sign
messages on its behalf. Proxy signature schemes have many practical applications such
as mobile agent applications [3, 4], grid computing [5] and so on. Hwang and Chen [6]
proposed a multi-proxy multi-signature scheme, where a group of original signers can del-
egate their signing rights to a group of proxy signers, and all proxy signers cooperatively
sign messages on behalf of the original group. A number of multi-proxy multi-signature
schemes with additional properties have been studied [7, 8, 9, 10] until now. Li and Chen
[11] presented an IBMPMS scheme from bilinear pairings in 2005. Sahu and Padhye sub-
sequently proposed several IBMPMS schemes [12, 13] without any formal security model.
Recently, Sahu and Padhye [14] presented an IBMPMS scheme along with security model,
and proved that this scheme is secure according to the security model. Unfortunately, we
shall show that Sahu-Padhye’s scheme is insecure in this paper. An adversary can forge
a signature for any messages, or forge a delegation on any warrant w∗ on behalf of any
original signers. At the end, we propose a new IBMPMS scheme which is proven to be
secure in the random oracle model under the computational Diffie-Hellman problem.
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The rest of this paper is arranged as follows. In section 2, we give the fundamen-
tal knowledge of bilinear pairing, the definition and security model of Sahu-Radhye’s
IBMPMS scheme. We analysis the security of Sahu-Radhye’s IBMPMS scheme in section
3. In section 4, we propose a new IBMPMS scheme and prove this scheme’s security.
Finally, section 5 gives a brief conclusion.

2. Preliminaries. In this paper, [n] denotes {1, . . . , n}, where n is a positive integer.
We assume that there are n original signers Ai with identity IDAi

respectively for i ∈ [n],
l proxy signers Bj with identity IDBj

respectively for j ∈ [l], where n, l ∈ Z+.

2.1. Bilinear Paring. Let G1 be a cyclic additive group and G2 be a cyclic multiplicative
group. G1 and G2 have the same prime order q. A bilinear map e : G1×G1 → G2 satisfies
the following three properties:

(1) Bilinearity: ∀a, b ∈ Z∗q and P,Q ∈ G1, we have e(aP, bQ) = e(P,Q)ab.
(2) Non-degeneracy: There exist P,Q ∈ G1, such that e(P,Q) 6= 1.
(3) Computability: ∀P,Q ∈ G1, there exists an efficient algorithm to compute e(P,Q) ∈

G2.

2.2. Definition and Security Model for IBMPMS Scheme. At present, the formal
definition and security model of IBMPMS scheme [14] are recalled.

2.2.1. Definition of IBMPMS scheme. An IBMPMS scheme consists of the following al-
gorithms:
Setup: On input a security parameter k, the PKG generates public parameters params
and a master key MSK. Then, the PKG publishes params and keeps MSK confidential.
Extraction: On input the MSK, the public parameters params and a user’s identity ID,
the PKG outputs private key SID for the user.
Signature: On input a message m, the public parameters params, the signer’s identity
ID and private key SID, it outputs the message m’s signature σ.
Verification: On input a signature σ, a message m, the public parameters params, the
signer’s ID, it returns 1 if σ is a valid signature on m for signer, otherwise returns 0.
Proxy key generation: On input a warrant w, all signers’ identities IDAi

, IDBj
, private

keys SIDAi
, SIDBj

for i ∈ [n], j ∈ [l], it outputs a partial proxy secret key SPj
for each

proxy signer Bj. w denotes the delegation warrant which includes the delegation police
and the identities of all signers.
Multi-proxy multi-sign: On input the warrant w, a message m satisfying w, the partial
proxy secret key SPj

, for j ∈ [l] of each proxy signer, it outputs an IBMPMS saying UP

on behalf of the original group.
Multi-proxy multi-sign verification: On input the public parameters params, the
identities IDAi

, IDBj
, warrant w, message m and the IBMPMS UP , it returns 1 if UP is

a valid multi-proxy multi-signature, otherwise returns 0.

2.2.2. Security model. Sahu and Radhye proposed the first formal security model for
IBMPMS schemes in [14]. Here we recall Sahu-Radhye’s security model according to the
following game between a polynomial time adversary A and a challenger B. f is a single
honest user A tries to forge the IBMPMS scheme working against.
Setup: B runs the Setup algorithm to generate a master key MSK and public parameters
params. B keeps MSK confidential and sends params to A.
Extraction queries: A submits a user’s identity ID (except for the user f). B runs
the Extraction algorithm and returns the private key SID associated with ID to A.
Signature queries: A chooses a message m and queries the standard signature for m.
B responds a signature σ on behalf of the user f and adds the message m to list LS.
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Proxy key generation queries: There are two types of queries.

(i) A interacts with user Bf one of proxy signers. A submits a warrant w, and sends the
delegation of all original signers on w to B that then runs the proxy key generation
algorithm. Eventually, B returns a corresponding partial proxy signing key SPf

, and
adds the tuple < w, SPf

> to list Lpkf . We stress that A has no right to access the
element of Lpkp .

(ii) A interacts with user Af one of original signers. A submits a warrant w to B. B
responds proxy signing keys on w by running the proxy key generation algorithm,
and adds the warrant w to list Lpko .

Multi-proxy multi-sign queries: A requests an IBMPMS on (m,w), where m satisfies
w. If SPf

exists such that < w, SPf
>∈ Lpkf , B runs the multi-proxy multi-sign algorithm

on (m,w) on behalf of f , outputs the partial proxy signature UPf
, and forwards it to the

proxy group’s clerk, who combines all partial proxy signatures. Finally, B adds < m,w >
to list Lmpms.
Forgery: If any one event described as follows occurs, A wins the game.

- E1: A forges a standard signature by user f for a message m that was not submitted
to the signature queries.

- E2: A forges an IBMPMS for a message m by proxy signers on behalf of original
signers. Such that either the group of original signers never designated user Bf , or
m was not submitted in the multi-proxy multi-sign queries.

- E3: A forges an IBMPMS for a message m by proxy signers on behalf of original
signers. Such that proxy signers were never designated by user Af .

Definition 1. An IBMPMS adversary A with (t, qH , qE, qS, qpk, qmpms, n + l, ε) breaks
the n+ l users IBMPMS scheme by the adaptive chosen-message and adaptive chosen-ID
attacks, if A runs in at most t time; makes at most qH hash queries; at most qE extraction
queries; at most qS signature queries; at most qpk proxy key generation queries; at most
qmpms multi-proxy multi-sign queries, and the success probability of A is at least ε.
Definition 2. An IBMPMS scheme is (t, qH , qE, qS, qpk, qmpms, n + l, ε)−secure against
existential forgery on adaptive chosen-message and adaptive chosen-ID attacks, if no ad-
versary (t, qH , qE, qS, qpk, qmpms, n+ l, ε) breaks it.

3. Security analysis of Sahu-Radhye’s IBMPMS scheme.

3.1. Review of Sahu-Radhye’s scheme. Sahu-Radhye’s IBMPMS scheme[14] is re-
called as follows.
Setup: For a security parameter k, the PKG chooses two cyclic group G1 and G2 with
prime order q as well as a bilinear paring e : G1 × G1 → G2, where G1 is a cyclic
additive group with generator P and G2 is a cyclic multiplicative group. It also chooses
a random value s ∈ Z∗q , and three cryptographic hash functions H1 : {0, 1}∗ → G1,
H2 : {0, 1}∗ × G1 → Z∗q , H3 : {0, 1}∗ × G2 → Z∗q . Finally, the PKG sets Ppub = sP and
publishes the public parameters params = {q,G1, G2, e, P, Ppub, H1, H2, H3} while keeps
the master key s secretly.
Extraction: The PKG generates public and private keys for all original and proxy
signers. The public key of each original signer Ai is QIDAi

= H1(IDAi
), and the private

key is SIDAi
= sQIDAi

, respectively for i ∈ [n]. In the same way, the public and private

keys of each proxy signer Bj ars QIDBj
= H1(IDBj

) and SIDBj
= sQIDBj

, respectively for

j ∈ [l].



346 Y. Xu, H. Zhong and J. Cui

Signature: On input a message m ∈ {0, 1}∗, the signer ID with private key SID randomly
selects v ∈ Z∗q , and computes R = vP , h = H2(m,R), σ = hSID. The signature on
message m is (σ,R).
Verification: On input the signature (σ,R) on m, user ID’s public key QID, the verifier
computes h∗ = H2(m,R), and checks whether e(P, σ) = e(Ppub, h

∗QID). If the verification
passes, (σ,R) is accepted as the signature.
Proxy key generation: Each proxy signer Bj, for j ∈ [l] will get its proxy signing key
SPj

at the end of this phase.
(1) Delegation: To delegate its signing right, each original signer Ai, for i ∈ [n] respec-

tively signs on the warrant w which includes the delegation police, such as the identities
of all signers, period of delegation and so on. Then, Ai performs the following jobs:

• Randomly chooses vi ∈ Z∗q , sets Vi = viP and sends Vi to other original signers.
• Computes V =

∑n
i=1 Vi and Swi

= H2(w, V )SIDAi
.

• Sends (Swi
, w, V ) to the group of proxy signers.

(2) Verification of delegation: Proxy signer Bj accepts (Swi
, w, V ), if e(P, Swi

) =
e(Ppub, H2(w, V )QIDAi

).

(3) Proxy key generation: After accepting the delegation, Bj computes the proxy signing
key SPj

= Sw +H2(w, V )SIDBj
where Sw =

∑n
i=1 Swi

.

Multi-proxy multi-sign: In order to sign a message m satisfying the warrant w on
behalf of the original group, each proxy signer Bj, for j ∈ [l] operates as follows:

• Randomly chooses xj ∈ Z∗q , sets rPj
= e(P, P )xj and sends rPj

to other proxy
signers.
• Computes rP =

∏l
j=1 rPj

, CP = H3(m, rP ) and UPj
= CPSPj

+ xjP .

• Sends its partial proxy signature (CP , UPj
) to the clerk of the proxy group.

After receiving (CP , UPj
), the clerk validates the following equation:

rPj
= e(UPj

, P )e(
∑n

i=1QIDAi
+QIDBj

, H2(w, V )Ppub)
−CP

If all equations hold, the clerk combines all proxy signatures (CP , UPj
) and generates

the final IBMPMS (m,w,CP , UP , V ) for the message m. Where UP =
∑l

j=1 UPj
.

Multi-proxy multi-sign verification: To verify the IBMPMS (m,w,CP , UP , V ) on
the message m under the warrant w, the verifier performs as follows:

• Computes rP = e(UP , P )e(l
∑n

i=1QIDAi
+
∑l

j=1QIDBj
, H2(w, V )Ppub)

−CP .

• If CP = H3(m, rP ), the verifier accepts the IBMPMS.

3.2. Analysis of Sahu-Radhye IBMPMS scheme. It is claimed that Sahu and Rad-
hye’s scheme [14] is secure in their security model. In this section, we will show that there
is a polynomial time adversary A can always win the game between A and the challenger
B.

(1) In the Setup phase, the adversary A gets system’s public parameters params from
the challenger B.

(2) In the Extraction query phase, A makes private key queries for any user ID
(except for the user f which A wants to forge). B returns the private key SID to A.

(3) In the Signature query phase, B returns the signature (σ,R) on a message m with
respect to the user ID to A, such that e(P, σ) = e(Ppub, hQID).
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3.2.1. Forging signature for any message. After receiving the signature (σ,R) on the mes-
sage m, A calculates:

h = H2(m,R) and SID = σ/h

A gets the private key SID of ID, and then can forge a signature on behalf of ID for
any message m∗ that was not submitted to the signature query. Furthermore, in the
Extraction query and Signature query phase, A can get all signers’ private keys, so
it can forge IBMPMSs on any messages under any warrants.

3.2.2. Forging warrant for any delegation. A also can forge a valid delegation on any
warrants w∗ on behalf of an original signer Af .

(1) After interacting with original signer Af , A gets proxy signing key (Sw, w) of the
original group on w from B. A computes h = H2(w, V ) and obtains the sum of all original
signers’ private keys

∑n
i=1 SIDAi

= Sw/h.

(2) A randomly selects V ∗ ∈ G1 and forges a delegation on warrant w∗: S∗w =
H2(w

∗, V ∗)
∑n

i=1 SIDAi
. A sends (S∗w, w

∗) to each proxy signer Bj. Then Bj generates

its proxy signing key S∗Pj
= S∗w +H2(w

∗, V ∗)SIDBj
, j ∈ [l].

(3) To sign a message m∗ under the warrant w∗ on behalf of the original group, Bj

performs the following steps:

• Randomly chooses x∗j ∈ Z∗q , sets r∗Pj
= e(P, P )x

∗
j and sends r∗Pj

to other proxy
signers.
• Computes r∗P =

∏l
j=1 r

∗
Pj

, C∗P = H3(m
∗, r∗P ) and U∗Pj

= C∗PS
∗
Pj

+ x∗jP .

• Sends its partial proxy signature (C∗P , U
∗
Pj

) to the clerk of the proxy group.

The clerk generates the final IBMPMS (m∗, w∗, C∗P , U
∗
P , V

∗) for the message m∗ under

the warrant w∗, where U∗P =
∑l

j=1 U
∗
Pj

. It can be computed:

r∗P =

= e(U∗P , P )

= e(l
n∑

i=1

QIDAi
+

l∑
j=1

QIDBj
, H2(w

∗, V ∗)Ppub)
−C∗

P

and C∗P = H3(m
∗, r∗P ). Therefore, (m∗, w∗, C∗P , U

∗
P , V

∗) is a valid IBMPMS on the message
m∗ under the warrant w∗. It means that (S∗w, w

∗) is a valid delegation on w∗ generated
by the original group.

The section 3.2.1 and 3.2.2 imply that the events E1, E2, E3 occur. That is, the prob-
ability that polynomial time adversary A wins the game is non-negligible. The attacks
are successful for the reason that the basic signature presented by Sahu and Padhye is
insecure and the generation of the proxy signing key is just a variant of the basic signature
that signs on a warrant. Afterwards, we propose an improved scheme of Sahu-Padhye’s
IBMPMS scheme.

4. The proposed IBMPMS scheme. In Sahu-Padhye’s IBMPMS scheme, the signa-
ture σ is a product of private key SID and a hash function H1. It means the private key
SID could be computed by σ/H1. We will improve the scheme by introducing a secret
value vPpub in the signature σ.
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4.1. Scheme description. Setup, Extraction are same as described in section 3.
Signature: On input a message m ∈ {0, 1}∗, the signer ID with private key SID ran-
domly selects v ∈ Z∗q , and computes R = vP , h = H2(m,R), σ = hSID + vPpub. The
signature on message m is (σ,R).
Verification: On input the signature (σ,R) on m, and ID’s public key QID, the verifier
computes h∗ = H2(m,R), and checks whether e(P, σ) = e(Ppub, h

∗QID + R). If the
verification passes, (σ,R) is accepted as the signature.
Proxy key generation: Each proxy signer Bj, j ∈ [l] will get its proxy signing key SPj

at the end of this phase.
(1) Delegation: To delegate the signing right, each original signer Ai, respectively for

i ∈ [n], signs on the warrant w. It performs the following jobs:

• Randomly chooses vi ∈ Z∗q , sets Vi = viP and sends Vi to other original signers.
• Computes V =

∑n
i=1 Vi and Swi

= H2(w, V )SIDAi
+ viPpub.

• Sends (Swi
, w, Vi, V ) to the proxy group.

(2) Verification of delegation: Proxy signer Bj accepts (Swi
, w, Vi, V ), if e(P, Swi

) =
e(Ppub, H2(w, V )QIDAi

+ Vi)

(3) Proxy key generation: After accepting the delegation, Bj computes its proxy signing
key SPj

= Sw +H2(w, V )SIDBj
, where Sw =

∑n
i=1 Swi

.

Multi-proxy multi-sign: In order to sign a message m satisfying the warrant w on
behalf of the original group, each proxy signer Bj, j ∈ [l] operates as follows:

• Randomly chooses xj ∈ Z∗q , sets rPj
= e(P, P )xj and sends rPj

to other proxy
signers.
• Computes rP =

∏l
j=1 rPj

, CP = H3(m, rP ) and UPj
= CPSPj

+ xjP .

• Sends its partial proxy signature (CP , UPj
) to the clerk of the proxy group.

After receiving (CP , UPj
), the clerk validates the following equation:

rPj

= e(UPj
, P )e(Ppub, V )−CP

= e(
n∑

i=1

QIDAi
+QIDBj

, H2(w, V )Ppub)
−CP

If all equations hold, the clerk generates the final IBMPMS (m,w,CP , UP , V ) for the

message m. Where UP =
∑l

j=1 UPj
.

Multi-proxy multi-sign verification: To verify the IBMPMS (m,w,CP , UP , V ) on a
message m under the warrant w, the verifier performs as follows:

• Computes rP = e(UP , P )e(H2(w, V ){l
∑n

i=1QIDAi
+
∑l

j=1QIDBj
}+ lV, Ppub)

−CP .

• If CP = H3(m, rP ), the verifier accepts the IBMPMS.

We can verify the correctness of the IBMPMS scheme as follows:

e(UP , P )e(H2(w, V ){l
∑n

i=1QIDAi
+
∑l

j=1QIDBj
}+ lV, Ppub)

−CP

= e(
∑l

j=1 UPj
, P )e(H2(w, V ){l

∑n
i=1QIDAi

+
∑l

j=1QIDBj
}+ lV, Ppub)

−CP

= e(
∑l

j=1 (CPSPj
+ xjP ), P )e(H2(w, V ){l

∑n
i=1QIDAi

+
∑l

j=1QIDBj
}+ lV, Ppub)

−CP

= e(
∑l

j=1 xjP , P ) = rP
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4.2. Security analysis. Based on the hardness assumption of the CDH problem, we can
prove that our IBMPMS scheme is secure against existential forgery on adaptive chosen-
message and adaptive chosen-ID attacks.

Theorem 1. In the random oracle model, if there exists an adversary
A with (t, qH , qE, qS, qpk, qmpms, n+ l, ε) that can break our IBMPMS scheme, there exists
an algorithm B that can solve the CDH problem with the probability ε′ in time at most
t′ ≈ t+ CG1(qH1 + qE + qS + qpk + qmpms + 2).

Proof. Supposed that there exists an adversary A that can break the IBMPMS scheme
with non-negligible probability, then we can construct a polynomial-time algorithm B to
solve the CDH problem by using the adversary A as a subroutine.

Initialization. The algorithm B simulates the challenger and interacts with the adversary
A. B is given an instance (P, sP, bP ) ∈ G3

1 of CDH problem, and attemps to compute
sbP .
Firstly, B sets Ppub = sP , and chooses three secure hash functions H1, H2, H3. The system
parameters is params = {G1, G2, e, P, Ppub, H1, H2, H3}.
Queries. A can issue the following types of queries, B responses these queries and
maintains lists LH1 , LH2 , LH3 that are initially empty for each hash query.

- H1 queries: A issues a H1 query for ID.
1. If B finds a tuple (ID, h, a, c) in LH1 , then it answers h as a response.
2. Otherwise, B generates a random coin c ∈ {0, 1} with probability Pr[c = 0] = µ.
B picks a ∈ Z∗q randomly, if c = 0, B sets h = a(bP ); else, h = aP , and adds
(ID, h, a, c) in LH1 .

- H2 queries: A issues a H2 query for (w, V ).
1. If B finds a tuple (w, V, t) in LH2 , then it answers t as a response.
2. Otherwise, B picks t ∈ Z∗q randomly, then it outputs t and adds (w, V, t) in LH2 .

- H3 queries:A issues a H3 query for (m, rp).
1. If B finds a tuple (m, rp, kp) in LH3 , then it answers kp as a response.
2. Otherwise, B picks kp ∈ Z∗q randomly, then it outputs kp and adds (m, rp, kp) in
LH3 .

- Extraction queries: A requests the private key corresponding to any signer ID,
except for one original signer or one proxy signer. B runs H1 queries, if c = 1, B
outputs SID = aPpub; else B aborts.

- Signature queries: A requests a standard signature on message m ∈ {0, 1} of IDf .
1. B runs H1 queries to obtain QIDf

= aIDf
P .

2. B picks v ∈ Z∗q randomly and sets V = vP . Then, B runs H2 queries to obtain
H2(m,V ) = t. Finally, B computes σ = taIDf

Ppub + vPpub and outputs (σ,R) as
a valid signature on message m.

The correctness of (σ, V ) can be verified that:
e(σ, P ) = e(taIDf

Ppub + vPpub, P ) = e(taIDf
P + V, Ppub) = e(tQIDf

+ V, Ppub).
- Proxy key generation queries: A requests such query on a warrant w for any proxy

signer.
1. B runs Extraction queries to obtain the private keys of proxy and original

signers except for IDf .
2. B picks v ∈ Z∗q randomly and sets V = vP . Then, B runs H2 queries to obtain
H2(w, V ) = t.
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3. B computes Sw =
∑n

i=1 taAi
Ppub + vPpub and generates the proxy key SPj

=
Sw + taBj

Ppub.
- Multi-proxy multi-sign queries: A requests such query on a message m, a warrant
w.
1. B runs Extraction queries, Proxy key generation queries to obtain private

keys and proxy keys except for IDf .
2. B randomly picks x ∈ Z∗q , sets X = xP, rp = e(P, P )x, and then runs H3 queries

to obtain H3(m, rp) = kp.

3. B computes Up = X + kpt{l(
∑n

i=1 aAi
Ppub) +

∑l
j=1 aBj

Ppub}.

We can check the validity of provided IBMPMS scheme as follows:
e(UP , P )e(H2(w, V ){l

∑n
i=1QIDAi

+
∑l

j=1QIDBj
}+ lV, Ppub)

−CP = rp

Forgery. The adversary A outputs a valid IBMPMS (m∗, w∗, C∗p , U
∗
p , V

∗) for the message
m∗, the warrant w∗. We will show that algorithm B can solve an instance of the CDH
problem according two cases.

Case 1. f is a original signer. In this case, A did not request the private key of IDAf
,

the proxy key generated by IDAf
for w∗, the IBMPMS of (IDAf

,m∗, w∗). Without loss of
generality, we assume that IDAf

= IDA1 . Firstly, B runs H1 queries for IDA1 , if c1 = 1,

then B aborts. Otherwise, B computes U ′p = U∗P − [kpt{l
∑n

i=2 aAi
+
∑j

j=1 aBj
}Ppub +X].

Then, B gets U ′p = (kptlaA1)sbP , and then obtains sbP = (kptlaA1)
−1U ′p.

We can easily see that B is a polynomial time algorithm and the probability for B to
solve the CDH problem is ε′ = εµ(1− µ)qE+qS+nqpk+(n+l−1)(qmpms+1) that is non-negligible.

Case 2. f is a proxy signer. In this case, A did not request the private key of IDBf
, the

proxy key of (IDBf
, w∗), the IBMPMS of (IDBf

,m∗, w∗). Without loss of generality, we
assume that IDBf

= IDB1 . Firstly, B runs H1 queries for IDB1 , if c1 = 1, then B aborts.

Otherwise, B computes U ′p = U∗P−[kpt{l
∑n

i=1 aAi
+
∑j

j=2 aBj
}Ppub+X]. Then, B gets U ′p =

(kptaB1)sbP , and then obtains sbP = (kptaB1)
−1U ′p. In this case, the probability ε′ for B to

solve the CDH problem is non-negligible too with ε′ = εµ(1−µ)qE+qS+nqpk+(n+l−1)(qmpms+1).

Therefor, the success probability that B solves the above instance of CDH problem is
non-negligible. This completes the proof.

5. Conclusions. Sahu and Padhye proposed an identity-based multi-proxy multi-signature
scheme from bilinear pairings. They claimed that this scheme was secure under their se-
cure model. However, we have proved that Sahu-Padhye’s IBMPMS scheme is insecure
by concrete attacks. We also give an improved scheme to prevent the attacks. The new
scheme is secure under the computational Diffie-Hellman problem in random oracle model.
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