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Abstract. The artificial agents in Evolved Bat Algorithm(EBA) are lacked of echoic
guidance feature, so the artificial agents sometimes would cause the slow convergence
to the global or near best optimum. To overcome the drawbacks, an improved bio-
inspired swarm intelligence algorithm, entitled Echolocation Guided Evolved Bat Algo-
rithm (EGEBA), based on the frame of EBA is proposed in this paper. In EGEBA, our
design guides the artificial agents to the near best solution via the directional information
calculated by echolocation. 8 well-known fitness functions are employed to validate the
performance of EGEBA, and the experimental results reveal that the solutions obtained
by our proposed EGEBA are superior to the conventional EBA in terms of the solution
quality, the robustness, and the convergence.
Keywords: Evolved Bat Algorithm, Echolocation guided, Swarm Intelligence, Artificial
Agent, Optimization.

1. Introduction. Optimization problems are very common to be find in many different
applications of engineering and the industrial designs[1,2], such as UCAV path plan-
ning[3], welded beam[4], WSN deployment[5], etc. Since most real-world and complex
optimizations are often nonlinear, they always employ metaheuristic algorithms to tackle.
In recent years, many bio-inspired algorithms are proposed one after another to solve
these optimization problems, e.g., Ant Colony Optimization(ACO)[6], Particle Swarm
Optimization(PSO)[7,8,9], Artificial Bee Colony(ABC)[10,11], Biogeography-based Opti-
mization(BBO)[12,13], Differential Evolution(DE)[14,15,16] and Bat Algorithm(BA)[17].
Such algorithms attempt to mimic natural phenomena and utilize intensification and
diversification to generate better solutions[17]. The computational efficiency of these al-
gorithms is increased by using iterations and stochasticity, such as BA, the performance
and effectiveness of it is superior than FA, GSA, HS and PSO[18 ,19].

In 2010, Yang proposed a bio-inspired algorithm developed by the echolocation charac-
teristics of bat’s behaviors entitled Bat Algorithm [20]. BA is efficient to implement for
the three key features: frequency tuning, automatic zooming and parameter control[20].
BA is simple and flexible on lower-dimensional optimizations, but it may become prob-
lematic for higher-dimensional optimizations[21]. Hence, Tsai et al. proposed EBA [22] to
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improve the performance and accuracy of the conventional BA. The conventional move-
ment process in EBA is updated by the distance that sounds travel forward and backward
in the air during the time interval, and the orientation of movement is stochastic. Obvi-
ously, it is markedly different from the real-world movement of bats because it lacks of the
most essential echoic guidance feature of bats. Therefore, we introduce the echoic guid-
ance into EBA to avoid the blind search. As the result, an Echolocation Guided Evolved
Bat Algorithm (EGEBA) is proposed. The EGEBA has been tested on a standard set
of benchmark functions gathered from the literatures. The experimental results indicate
that the performance, the accuracy and the convergence of EGEBA is significantly supe-
rior to the conventional EBA.

The remainder of the paper is organized as follows: the conventional EBA and our
proposed EGEBA are described in section 2 and section 3, respectively. The detail of the
simulations of both algorithms are presented in section 4. Finally, the conclusions are
given in section 5 with suggestions for the future works.

2. Literatures Review. Bats emit a high sound frequency and listen for the echo that
bounces back from the surrounding objects. Echolocation is one kind of sonar, which is
utilized to pinpoint prey and avoid obstacles[17]. Yang developed bat algorithm inspired
by the echolocation feature of bats. Tsai et al. proposed EBA based on the structure of
BA[24]. The new solution is generated by Eq.(1).

xti = xt−1i +D (1)

where D is the displacement during the time interval and it can be expressed as follow:

D =
V ·∆T

2
= 0.17 ·∆T (km/s) (2)

where V is the sound speed and ∆T ∈ [−1, 1] is the time difference. The random walk
process is designed after the normal movement. The process is executed stochastic, which
is defined by Eq.(3)

xtRi = β · (xbest − xti) (3)

where xtRi is the new location, β is a random number in the range of [0, 1], and xbest is
the near best solution.

Bats use echoes to sense the distance and orientation of the target. But the distance cal-
culated by echo is directly updated instead of guiding in the standard movement of EBA
given by Eq.(1)-(2), and the model of EBA doesn’t have the parameter of orientation.
Just uses a random number in the range of [-1,1] to denote ∆T [24]. The most important
echolocation characteristic of bats is ignored in EBA. Though the EBA is more accurate
than BA, this undirected search has caused the slow convergence of the algorithm to the
optimum or near optimum.

3. Our approach: EGEBA. It is generally known, echolocation is a highlighted part
of bats behavior, so the echo guidance is introduced to our approach, and movement
processes of EGEBA can be constituted by 3 steps: echo guide, standard movement and
random walk process.

The first step is echo guide procedure to calculate the oriented parameter(Λ) of each
dimension for every particle. At the first beginning, the new location to which the sound
speeds spreads in the air after ∆T is operated by Eq.(4).

xtsi = xt−1si + v ·∆T (4)
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where v is the sound speed,∆T ∈ [0, 1] is the time difference. Then, the oriented

parameter(Λ) is determined by the comparison of fitness values corresponding to xtsiandx
(t−1)
si ,

respectively. If the fitness value of xtsi is better than the value of x
(t−1)
si , the parameter(Λ)

is set to 1, otherwise Λ is set to -1. If the fitness value of xtsi is equal to the value of x
(t−1)
si ,

Λ is set to 0. The second step is standard movement generating the new solutions by
performing the following equation:

xtid = xt−1id + Λ · α · (Pid − xt−1i ) + Λ · β · (Ped − xt−1i ) (5)

where Λ is the oriented parameter(-1,1,0), α and β are the random numbers generated
from a uniform distribution in the region of [0,1], Pid is the best historical position of
particle i, the Ped is the best historical position of entire swarm. The last step is a
random walk process, which is generally known as the optional process. It provides an
opportunity for particle i to further move one more step to cope with the problem of local
optimum[25]. The new solution is given by Eq.(6).

xtRid = ζ · (Ped − xti) (6)

where ζ is a random number of a uniform distribution in [0,1].

4. Numerical Simulations and Experimental Results. The experiments are im-
plemented on Lenovo notebook with Intel(R) Core(TM) i5-3210M @2.50GHz, 10.00 GB
RAM, 64 bits OS and MATLAB 2010a running under windows 7. In the experiments,
the conventional EBA is employed as the baseline to compare with our proposed EGEBA.

4.1. The parameters and Benchmark functions. The parameters of EBA and EGEBA
are equal to each other for the sake of making a clear and consistent comparison. In or-
der to test the influence of dimension for the result, four different sets of dimensions are
attended to, i.e. D=10, D=20, D=30 and D=50. Each experiment is repeated 25 runs
with different random seeds, and the population size is set to 20.

The 8 well-known benchmark functions taken from the literature are utilized. The ex-
pression of each function, along with initial range, dimensions and number of iteration
are presented in Table 1.

4.2. The results. The results summarized in Table 2. are measured according to the
best, worst and mean in these runs.

Table 2 represents the results of EGEBA and EBA executing the testing suite of eight
functions with dimensions D=10, 20,30 and 50, respectively. The results show that
EGEBA significantly exalted the effectiveness, accuracy and convergence of EBA, ac-
cording to almost all simulations except one case function 3(f3) with dimension D=50.
The result of EGEBA and EBA by function 7 is same, but the iteration number of EGEBA
is smaller than EBA just as Fig.7.

In order to precise observe how the performances of EGEBA and EBA, modified with
the dimensions of functions, the mean value of function 1(f1) to function 8(f8) with di-
mensions D=10, 20, 30 and 50 are drawn in Figs.1-8.
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Table 1. Benchmark functions used in the experiments

No.
Formulation Range

Dimen-
sions

Itera-
tion fmin

f1
f(x) = a0 +

∑d
i=1(

∑kmax
k=0 (ak cos(2πbk(xi +

0.5))))−D
∑kmax

k=0 (ak cos(2πbk∗(0.5)) (a = 0.5,
b = 3, kmax = 20)

-
0.5,0.5

10,20,30,50 20
0.0

f2
f(x) = 1

4000

∑d
i=1 x

2
i −

∏d
i=1 cos xi√

i
+ 1

-
600,600

10,20,30,50 20
0.0

f3
f(x) = sin2(πw1) +

∑D−1
i=1 [1 + 10 sin2(πwi +

1)]+(wD−1)2[1+sin2(2πwD)] (wi = 1+ xi−1
4

)
-10,10 10,20,30,50 20

0.0

f4
f(x) =

∑d
i=1 x

2
i + (

∑d
i=1 0.5ixi)

2 +

(
∑d

i=1 0.5ixi)
4

-5,10 10,20,30,50 20
0.0

f5
f(x) = −

∑d
i=1 sinxi sin

2m(
ix2i
π

) 0,π 10,20,30,50 20
0.0

f6
f(x) = −20exp(−0.2

√
1
d

∑d
i=1 x

2
i ) −

exp( 1
n

∑n
i=1 cos 2(π)xi) + 20 + e

-32,32 10,20,30,50 20
0.0

f7
f(x) = 418.9829∗d−

∑d
i=1(−xi sin

√
abs(xi))

-
500,500

10,20,30,50 20
0.0

f8
f(x) =

∑d
i=1(bxi + 0.52c) -

100,100
10,20,30,50 20

0.0

Figure 1. Experimental results of f1(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions
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Table 2. The outcomes of the EGEBA and EBA on the testing functions

EGEBA EBA
No. D Best Worst Mean Best Worst Mean

f1

10 -3.7946e+1 -4.5218e+1 -4.0332e+1 -3.7741e+1 -4.8985e+1 -4.4991e+1

20 -1.1511e+2 -1.2660e+2 -1.2076e+2 -1.2646e+2 -1.6312e+2 -1.4707e+2
30 -2.1768e+2 -2.6795e+2 -2.3488e+2 -2.5055e+2 -3.3020e+2 -2.9075e+2
50 -4.6549e+2 -5.7045e+2 -5.2080e+2 -5.8537e+2 -7.5645e+2 -6.8606e+2

f2

10 7.7700e-2 3.9778 1.0014 9.8610e-1 2.3006e+1 8.7115

20 1.3500e-2 1.0031 1.3200e-1 5.1000e-3 1.5852e+1 1.3442
30 2.8700e-2 1.4050e-1 7.2600e-2 9.9000e-3 1.5444e+1 3.6476
50 5.7700e-2 2.3130e-1 9.3600e-2 9.7819 4.3424e+1 2.7736e+1

f3

10 1.100e-02 2.2056 3.5220e-01 1.8240e-1 5.6612 1.7644

20 1.0295 9.5985 4.1856 2.2294 1.5087e+1 5.6842
30 3.8406 1.7057e+1 8.2454 4.1430 1.8674e+1 1.0148e+1
50 1.3748e+1 4.1157e+1 2.7689e+1 9.9349 3.3382e+1 1.7133e+1

f4

10 -4.2763e+1 -4.2796e+1 -4.2779e+1 -4.2804e+1 -4.2812e+1 -4.2807e+1

20 -2.4508e+2 -2.5421e+2 -2.5415e+2 -2.4531e+2 -2.4536e+2 -2.4534e+2
30 -7.5897e+2 -7.5923e+2 -7.5912e+2 -7.5956e+2 -7.5963e+2 -7.5959e+2
50 -3.1497e+3 -3.1502e+3 -3.1499e+3 -3.1512e+3 -3.1513e+3 -3.1513e+3

f5

10 -6.3839 -8.0722 -6.9634 -6.3971 -8.5146 -7.4986

20 -6.4304 -9.2051 -7.9486 -8.0631 -1.2457e+1 -1.0154e+1
30 -7.5604 -9.7062 -8.6395 -1.0221e+1 -1.5629e+1 -1.2384e+1
50 -8.2918 -1.0924e+1 -9.7053 -1.3319e+1 -1.8111e+1 -1.5570e+1

f6

10 1.8120e-1 5.2200e-1 4.2100e-1 5.1270 1.3873e+1 9.6522

20 5.8590e-1 1.0889 9.3410e-1 9.2185 1.4745e+1 1.2409e+1
30 1.0058 1.4128 1.3053 8.9853 1.5013e+1 1.2923e+1
50 1.6850 1.6302e+1 2.9416 1.2300e+1 1.5930e+1 1.4189e+1

f7

10 4.1798e+3 4.1798e+3 4.1798e+3 4.1798e+3 4.1798e+3 4.1798e+3

20 8.3597e+3 8.3597e+3 8.3597e+3 8.3597e+3 8.3597e+3 8.3597e+3
30 1.2539e+4 1.2539e+4 1.2539e+4 1.2539e+4 1.2539e+4 1.2539e+4
50 2.0899e+4 2.0899e+4 2.0899e+4 2.0899e+4 2.0899e+4 2.0899e+4

f8

10 2.1000e-2 5.1900e-2 3.8300e-2 0 1.0000e+2 7.32

20 1.2930e-1 3.1270e-1 2.3760e-1 0 3.7000e+1 6.16
30 5.0990e-1 7.1870e-1 5.9680e-1 0 1.1410e+3 3.9816e+2
50 1.4407 1.8021 1.68 2.3910e+3 8.3640e+3 5.1251e+3
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Figure 2. Experimental results of f2(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions

Figure 3. Experimental results of f3(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions
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Figure 4. Experimental results of f4(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions

Figure 5. Experimental results of f5(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions
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Figure 6. Experimental results of f6(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions

Figure 7. Experimental results of f7(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions
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Figure 8. Experimental results of f8(x): a is 10 dimensions, b is 20 di-
mensions, c is 30 dimensions, and d is 50 dimensions

5. Conclusions. In this paper, a new bio-inspired algorithm ”Echolocation Guided Evolved
Bat Algorithm” is proposed. The bat’s echolocation characteristic is introduced to EBA
in this algorithm to avoid the blind search of a standard movement in EBA. The perfor-
mance of the proposed algorithm is evaluated on well-known eight benchmark functions.
The results state that, EGEBA provides better solutions with the same random processes.
The echoic guide of standard movement is used to cope with the slow convergence, and
the accuracy is improved too.

There are many issues worthy of further study, and many details might be considered
in the future work of EGEBA. Our further work will focus on the two issues: on the one
hand, the efficient EGEBA model should be developed depending on the analysis of real-
world problems, and this model would be applied to solve specific engineering problems.
On the other hand, how to overcome the local convergence is the next step of it workplan.
We will do more diverse testing using more different fitness function sets, together with a
detailed study of parameters.
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