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ABSTRACT. Feature location has been recognized as one of the most frequent and impor-
tant activities undertaken by software developers. Aiming at the issue that most existing
feature location approaches based on information retrieval are strongly affected by the
quality of the documentation of software artifacts, this paper presents an improved IR-
based feature location approach by syntactic analysis. In particular, the proposed approach
firstly analyzes how terms have been used in the text through syntactic analysis. Then
on this basis, the weight of these terms can be adjusted, and the key terms, which are
able to describe the behavioral and semantic characteristics of software repositories, can
be further extracted. The results of an experimental study conducted on two open source
projects show that characterizing the context of software artifacts considering only key
terms can effectively eliminate the text noise in software artifacts, and improve the ac-
curacy of IR-based feature location methods.

Keywords: Software maintenance; Feature location; syntactic analysis; Natural lan-
guage processing; Term weighting.

1. Introduction. During software maintenance and evolution, developers often need
to investigate the systems code base to locate and understand program elements (e.g.,
classes, methods) that are pertinent to a specific feature during software maintenance
and evolution tasks. Such program comprehension activity is known as feature location
(or concept location) in the context of software engineering [1, 2]. Feature location is
one of the most common and important activities undertaken by software developers [3].
However, since various cross-cutting concerns of features often distributed in the source
code and the complexity of software systems, the process of feature location is error-prone
and time-consuming [4, 5].

Due to the essence of feature location is complex, in recent years, researchers have
presented various techniques to provide automated assistance to help software develop-
ers accomplish feature location tasks. In terms of the applied technology, the proposed
approaches can be categorized as following: Information Retrieval (IR) [6, 7], static anal-
ysis [8, 9], dynamic analysis [10], and the hybrid of several different techniques [11]. Since
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IR is a low-cost and easy-to-use technique among these presented technologies, IR-based
feature location techniques have been widely applied in practice and research.

The idea of IR-based feature location technique is that identifiers and comments en-
code domain knowledge, and a feature may be implemented using a similar set of terms
(words), making it possible to find a features relevant code textually [3]. Unfortunately, no
matter what IR technique being used, the quality of IR-based feature location techniques
is heavily affected by the quality of the source code, i.e. conventions and/or the fea-
ture description [3]. In addition, for improving the maintainability and readability, most
software documents (e.g., source code, requirement /feature document) inevitably contain
some terms or phrases which are not related to its characteristics. These terms or phrases
could become the noise that further affects the accuracy of IR-based feature location
techniques. Moreover, apart from external documentation, the location and use of source
code identifiers is the most important source of information in software maintenance [12].
Most exist feature location approaches model source code and features as bag-of-words,
and each document is represented as a multi-set of words. In spite of the bag-of-words
representation is easy to understand and calculate, it disregards all information about
the order or syntactic structure of words. Although there are some differences between
nature language, where nouns and verbs are the most crucial parts of a sentence [13], and
software documents, nouns and verbs also play an important role in depicting the feature
and function of source code [14, 15, 16]. In order to overcome these drawbacks, the main
challenge is to precisely extract verbs and nouns as key terms from the artifact content
to improve the performances of IR-based feature location techniques.

In this paper, we focus on improving IR-based feature location techniques using syn-
tactic analysis. In particular, in order to extract the key terms, our approach first take
source code and features as documents, and splits them into sentences. After that, a
part-of-speech tagging is utilized to recognize the key terms within sentences, and then a
chunk parsing is used to revise the errors that could be introduced in the process of part-
of-speech tagging. Finally, an information retrieval technique, latent semantic indexing
(LSI) is adopted to recover the link between source code and features. We conducted an
experimental study on two open-source system to evaluate the effectiveness of our pro-
posal. The results show with strong statistical significance that the recognized key terms
can help in enhancing both precision and recall of feature location.

The remainder of the paper is organized as follows. Section 2 reviews related work.
Section 3 describes the proposed approach. Section 4 presents the results of our experi-
mental study and discusses some threats to our study. Section 5 concludes the paper with
a summary of our findings.

2. Related Work.

2.1. IR Methods used for Feature Location. Antoniol et al. [17] applied both a
probabilistic model and a vector space model to trace C++ source code onto manual
pages and Java code to functional requirements. The probabilistic model ranks feature
(e.g., manual pages and functional requirements) according to the probability of being
relevant to a source code unit. The vector space model treats documents and feature as
vectors, and ranks documents against features by computing a distance function between
the corresponding vectors. The results indicate that both probabilistic model and vector
space model can provide a practicable solution to the problem of tracing links between
source code and feature.
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In order to extract the implicit semantics of the documentation and source code, An-
drian and Jonathan [18] present a method to recover traceability links between docu-
mentation and source code using latent semantic indexing (LSI). In their study on using
different IR method for recovering traceability between document and source code, they
found that the method using LSI performs at least as well as other IR methods (e.g., prob-
abilistic and VSM) with full parsing of the source code and morphological analysis of the
documentation. They also observed that the method using LSI requires less processing
of the source code and documentation, and less computation.

Lauren et al. [19] proposed a study of Latent Dirichlet Allocation (LDA) based feature
location technique in with in which they measure the performance effects of using different
configurations to retrieve 618 features from 6 open source Java systems. The results show
that exclusion of comments and literals from the corpus lowers accuracy. Besides, they
offered some specific recommendations for configuring the LDA based feature location
technique.

Denys et al. [20] presented an empirical study to statistically analyze the equivalence of
different IR-based traceability recovery methods. The comparison is based on Principal
Component Analysis and on the analysis of the overlap of the set of the set of candidate
links provides by each of the IR methods, e.g., Jensen-Shannon method, VSM, LSI, and
LDA. The results show that while Jensen-Shannon, VSM, and LSI are almost equivalent
and the accuracy of LDA is lower than previously used methods, LDA is able to capture
some information missed by the other IR methods. It indicates that there is unlikely
to be a clear winner among different IR-based traceability recovery or feature location
methods. Therefore, developers can and should choose the appropriate IR method based
on the specific context. However, most existing IR-based feature location methods focus
on the retrieval process or the search result display, few studies have been concerned with
text noise reduction and keywords extraction [15].

In general, an IR-based feature location process indexes all source code and features
by extracting information about that occurrences of terms within them. However, terms
might play different roles in capturing the semantics of the artifact content. Therefore,
key terms should be identified and be weighted more heavily than others, as they can
be regarded as more meaningful in identifying links between feature and source code.
In this paper we assume that the most crucial terms in software artifact are nouns and
verbs, since they are able to depict the feature and function of source code. Therefore,
we propose to act on the artifact indexing process taking into account only the nouns and
verbs contained in the contents.

2.2. Syntactic Analysis. Syntactic analysis is the key and difficult issue in the Nat-
ural Language Processing (NLP). In order to reduce the complexity of the full parsing,
syntactic analysis is divided into several more manageable subtasks based on the idea of
divided and conquer. Separating the Part-Of-Speech (POS) tagging and chunking from
syntactic analysis is a successful strategy. Highly accurate and efficient POS taggers and
chunk taggers are freely available [21], and thus the foundation of full syntactic parsing
is built.

In any language, verbs and nouns are considered as the most important and basis
parts of a sentence [13]. Verbs often play a connection role and describe the sentences
action [21], and nouns characterize the semantics [15]. To fully express a specific meaning
requires both verbs and nouns working together. Therefore, it is important to consider
both verbs and nouns when analyzing sentences.

Hill et al. [21] found that using natural language information embedded in software
artifacts can significantly improve the effectiveness of various software maintenance tools.
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To leverage this information about programs, they proposed a set of rules for extracting
verb-direct object (verb-DO) pairs from program method signatures. In a programming
language, verbs or verb phrases usually appear in the identifiers of method names, and
the identifier should occur to specify the name by which the method will be known.
Therefore, the extraction of verb-DO information from method signatures is especially
helpful in improving tools for comprehension and maintenance of object-oriented source
code. However, the verb-DO pairs may not apply to other natural language information
(e.g., comments) in source code. Firstly, there are usually more than one verb and noun
in a sentence, making it difficult to identify the most suitable verb-DO pairs. Secondly,
the extracted verb-DO pairs are often missing the subject as the kernel of a sentence.
Therefore, the usefulness of the verb-DO pairs from comments is an open question [21].

Capobianco et al. [15] believed that the words that provide more indication on the
semantics of a document are the nouns. According to that, they proposed to act on the
software artifact indexing process taking into account only the nouns contained in the
contents. Unfortunately, their proposed approach neglects the function of verbs to the
sentences. For example, here is a feature description about auto-save in JEdit, if the user
writes to disk, they want the changes. In this sentence, the set of noun is user, disk, they,
changes, and the set of verb and noun is user, writes, disk, they, want, changes. By the
contrast of these two sets, it is easy to find that the latter can preserve a more complete
expression of the feature.

Shepherd et al. [22] defined an Action-Oriented Identifier Graph (AOIG) to reconnect
the scattered actions in an OOP system. To extract an AOIG from source code, they
performed various Natural Language Processing (NLP) techniques (i.e. POS tagging,
chunking) to process the natural language clues left by programmers in source code and
comments. However, they only anticipated the useful future for the AOIG rather than
analyzed quantitatively the roles NLP techniques play in assisting perform feature location
tasks.

3. Approach. In this section, we first give an overview of our proposal in Section 3.1,
and then the details of the implementation are given in Section 3.2.

3.1. Overview. To implement syntactic analysis based feature location, our approach
employs a POS tagger and chunking recognition to identify the nouns and verbs within
software artifacts. Figure 1 presents an overview of our approach, showing the main steps
and input/output of the approach.
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F1GURE 1. Overview of our approach
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As shown in Figure 1, the artifacts are first split into sentences by a sentence detector
which can detect whether a punctuation character marks the end of a sentence or not.
After that, a POS tagging is performed to marks terms (words) with their corresponding
type (e.g., verb, adjective) based on the term itself and the context of it. However, since
a term might have multiple POS tags, a chunking is further carried out to reduce the
errors which might be introduced during POS tagging. Aided by analyzing result of
POS tagging and chunking, verbs and nouns could be identified and then marked as key
terms to describe the behavioral and semantic characteristics of artifacts. As there may
be some useless terms in various types of artifacts content, e.g., reserved word, which
are not related to the characters of the contents might impact the performance of our
approach, we applied a noise reduction to eliminate them and reduce such influence to
a minimum. Based on these refined terms, all the artifacts in the repository can be
indexed by extracting information about the occurrences of terms with in them. Finally,
our approach ranks the textual similarity of all possible pairs of feature and source code.
Pairs having a similarity above a certain threshold or being in the topmost positions of
ranked list are regarded as candidate links.

In our work, the OpenNLP toolkit is utilized to accomplish the POS tagging and
chunking, and the LSI over VSM is selected to compute the similarity. Specifically, the
reason we choose LSI are as follows: (1) LSI can solve the problems of polysemy and
synonymy well, which is important with respect to feature location problem because
different developers may have their own favorite choices of words in the use of language;
(2) Recent work has revealed that LSI outperforms VSM and Bayes classifiers [23].

3.2. Overview. There are six major steps when implementing syntactic analysis based
feature location process, i.e. sentence detection, POS tagging, chunking recognition, noise
reduction, term indexing, and similarity computation.

3.2.1. Sentence Detection. Since sentences are necessary input for syntactic analysis, the
text in software artifacts need be segmented into its sentences ahead of time. However,
there is no sentence in source code in a strict sense except for comments, and different
feature location tasks may require different levels of program element granularity (e.g.,
classes, methods). Therefore, source code should be segmented according to the required
levels of program element granularity.

First of all, if developers are concerned about the mapping relation of methods and
artifacts, the source code should be segmented into a set of methods, and then we can
take method comment as independent sentences, and append them onto the end of corre-
sponding method. After that, all fields and comments which do not belong to any method
will be discarded. Second, if developers are more interested in the mapping relation of
classes and artifacts, the source code should be segmented into a set of classes, and then
we can take class comment as independent sentences, and append them onto the end of
corresponding class. Nevertheless, if the method body contains anonymous class in some
programming languages such as Java, the anonymous class will be regarded as part of the
method body. For instance, as can be seen from Figure 2, propertyChange is a method
and it appears in an anonymous class, which locates in body of method FocusWindowAc-
tion, the method propertyChange is taken as part of the method FocusWindowAction,
and will not be treated as an independent and complete analytic target.

3.2.2. POS Tagging. After segmenting the content of artifacts and source code into sen-
tences, the types of terms (words) in those sentences should be marked by a POS tag-
ger. However, since a term might have multiple POS tags, and existing POS tagging
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[J] FocusWindowActionjava &2

/** Creates a new instance. */
public FocusWindowAction{(@lullable View view) {
this.view = view;
ResourceBundlelUtil labels = ResourceBundleUtil.
getBundle("org.jhotdraw.app.Labels”);
labels.configureAction(this, ID);
setEnabled(view != null);
ppc = new PropertyChangelistener() {
@0verride
publiec woid propertyChange(PropertyChangeEvent evt) {
String name = evt.getPropertyName();
if (name.equals(View.TITLE_PROPERTY)) {
putValue(Action.NAME, evt.getNewValue());

3
1
1
if (view != null) {
view.addPropertyChangelistener(ppc);
i

3

FiGURE 2. Code Snippet Extracted from the JHotDraw Repository

methods cannot guarantee that all marked terms be absolutely correct. Take the sen-
tence ”Given a sorted linked list, delete all duplicates such that each element appear
only once” as an example. After POS tagging, it will be marked as “Givenc,py> acdr>
sorted<j;~ linkedcypys list<pns, deletecypns allcgs duplicates s> suchej;s that g,
each.g~ element.,,> appearc,ys only ;- once..;s.” It can be inferred that although
the term “sorted” is correctly marked as an adjective, the term “linked” is incorrectly
marked as a verb in simple past.

Even the grammatical features of source code are different from natural language doc-
uments, the part of speech of terms in source code are still identifiable. Take the source
code shown in Figure 2 as example. The statement “setEnabled(view != null)” will be
marked as “setEnabled_p,~ (View oy~ !=null”. It can be inferred that the method call
“setEnabled” is marked as a verb, and the variable “view” is marked as a noun.

3.2.3. Chunking Recognition. Chunking recognition, also known as shallow parsing or
partial parsing, is used to identify the constituents of a sentence and generate partial
(shallow) analysis of sentences rather than a full parse. Although the result of chunking
is not an entire syntactic tree, each chunker is a subgraph of the entire syntactic tree.
With the complement of the attachment relationship between chunks, they can reduce
the errors which might be introduced during POS tagging.

Let’s take the sentence “Given a sorted linked list, delete all duplicates such that each
element appear only once” as an example to show how chunking recognition collabo-
rate with POS tagging. It will be divided into several chunks and then be marked as
“Givenc,,~ [a sorted linked list].,,>, deletec,,~ [all duplicates|<,,> suchc,,~ that .-
[each element|.,,~ appear,,- [only once].qa,y>" after chunking. It can be inferred that
“la sorted linked list]” is grouped together into a noun phrase. According to the rules
of English grammar, the word “linked” is correctly marked as an adjective. However,
there are usually many proper nouns and terminology in source code and potentially
affect of the accuracy of chunking recognition and POS tagging. More seriously, sen-
tences within source code and other software artifacts do not always square with the
grammatical rules. Let’s take the feature numbered 1608948 within JEdit contains the
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following sentence: “The function protected void processFocusEvent(FocusEvent e) in His-
toryComboBoxEditor is where the problem is” as example. Although the sentence is not
complex and easy to understand, it is difficult to assign part-of-speech tags to terms
within this sentence. In allusion to the problems mentioned above, only the terms that
are recognized as nouns or verbs by both POS tagging and chunking recognition will
be preserved and considered as key terms and be used to describe the behavioral and
semantic characteristics of artifacts.

In the sentence “Given a sorted linked list, delete all duplicates such that each element
appear only once”, the words “Given”, “delete” and “appear” will be recognized as verbs,
and the words “list”, “duplicates” and “element” will be recognized as nouns, while
others will be regarded as non-critical words and discarded. For example, the word linked
is recognized as a verb by POS tagging, and then it is recognized as an adjective by
chunking recognition. Because the tag results of the word are different, the word linked
will be discarded and not involved in subsequent processing. Based on the tag results,
the set of key terms, i.e. Given, list, delete, duplicates, element, appear will be identified
from the sentence. By contrast analyses between the set of key terms and the sentence,
it can be seen that the set of key terms can effectively filter out less important words, as
well as preserve critical information of the original sentence.

As the above example shows, both verbs and nouns play have an important role to play
in depicting the semantics of a software artifact. Therefore, they should be extracted and
be identified as key terms to support IR-based feature location. Besides, Rather than
relying solely on POS tagging, chunking recognition should be performed to tag terms
part of speech more correctly.

3.2.4. Noise Reduction. As software artifacts (especially the source code) often contain
noise (e.g., reserved word) which is unimportant and independent of the characters of
themselves. To reduce the impact of noise on key terms, noise reduction is necessary.
Given the identified candidate key terms within software artifacts, our approach first filters
out reserved words in source code and stop words in other types of software artifacts, and
then the candidate terms will be further refined by tokenization and word stemming.

Since the syntactic structure of sentences is probably influenced by noise reduction,
which could affect the accuracy of syntactic analysis, noise reduction must be performed
after POS tagging and chunking recognition. For instance, if noise reduction is performed
firstly, the words sorted and linked within the sentence Given a sorted linked list, delete
all duplicates such that each element appear only once will be respectively reduced as
sort and link, which will be identified as two verbs in the following analysis process. As
a result, these two words will be incorrectly preserved as key terms, which reduce the
accuracy of syntactic analysis.

3.2.5. Term Indexing. To apply IR for feature location, a term-by-document matrix should
be constructed where the row, column and cell refer to software artifacts (i.e., features
and methods), terms, and the frequency of a term in an artifact, respectively. In order to
makes full use of the natural language information embedded in software artifacts, in our
work, a modified term indexing process is proposed. In specific, the term indexer builds
the term-by-document matrix considering only the terms that are identified as refined
key terms. Then, a grammatical-semantic matrix is proposed, which contains only key
terms and removes all other terms that play a minor role. Formally, let D = {dy, ..., d,}
be the set of software artifacts, where n is the number of software artifacts, T = {term, :
tag(term;)iskey_terms,i = 1...m} be the set of key terms extracted from D. Given a fea-
ture location task consisting of a set of software artifacts, the term-by-document matrix
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M can be build as follows: M = {t11, ...t , ..., tmm, | <=1 <=m,1 <= j <=n}, where
t;; is the frequency of the i key term in the j* document.

3.2.6. Stmilarity Computation. Although the term-by-document matrix is easy to ob-
tain and the similarity score between two vectors is also easy to compute, it is usually
high-dimensional and sparse. Therefore, processing of such data requires lots of com-
puting resources. Additionally, as some words could have multiple meanings, the term-
by-document suffers from polysemy and homonym. In view of the above problems, we
introduce Singular Value Decomposition (SVD) [24] which can be used to deriving a set of
uncorrelated indexing variables or factors, and each word and document is represented by
its vector of factor values. By replacing individual words with derived orthogonal factor
values, the SVD representation can assist in solving the problems (e.g., high-dimensional,
polysemy and homonym) of the term-by-document matrix. SVD is applied by LSI which
is primarily utilized to match the concepts to project the origin term-by-document matrix
into reduced k-space (where k is usually smaller than m). On this basis, LSI can further
rank the similarity of all possible pairs of feature and source code, and then pairs being
in the topmost positions of ranked list are regarded as candidate links.

4. Evaluation. In this section, an experimental study was conducted to evaluate whether
our approach can improve developers feature location practice by extracting key terms in
software artifacts. The tasks used in our study are selected from the benchmarks provided
in the literature [3].

4.1. Subject Systems. Our study involves two open source Java systems, i.e. JEdit
and MuCommander. JEdit is a well-known text editor with hundreds of person-years of
development behind it, which contains 86 bug-related, 34 feature-related, and 30 patch-
related features in our study. MuCommander is a lightweight, cross-platform file manager,
which contains 81 defect-related and 11 enhancement-related features in our study.

To acquire all the artifacts relevant to the feature location tasks, we develop a simple
software analyzing tool to extract methods by parsing abstract syntax tree of the specific
version of system, and take all related source code description from different issue tracking
systems as features. According to the type of system, features could be classified into
five types: bug-related, defect-related, enhancement-related, feature-related and patch-
related. Table 1 summarizes the subject systems, the version of system used to extract
methods, and the features.

TABLE 1. Subject systems,version and features

System Version | Period of SVN Commits Analyzed | #Feature Description
Begin End
JEdit 4.3 4.2 4.3 150
MuCommander 0.8.5 0.8.0 0.8.5 92

4.2. Methodology. Our objective is to improving feature location practice by indexing
only the key terms which are able to characterize the context of software artifacts. The
rationale behind the proposal approach is that nouns and verbs play an important role
in depicting the semantics of a software artifact, and the study aims at addressing the
following research question:does the proposed indexing process improve the accuracy of
IR-based feature location methods?

To answer this question we performed feature location tasks between methods and
features of the subject systems using four different artifact indexing processes:
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All: all the terms (e.g. adjectives, nouns) contained in the artifact are equally consid-
ered during the indexing process.

Verb: only verbs contained in the artifact are considered during the indexing process;

Noun: only nouns contained in the artifact are considered during the indexing process;

KeyTerm: only key terms identified by the proposal approach contained in the artifact
are considered during the indexing process;

4.3. Measures. We evaluated the performance in feature location tasks by precision,
recall and F-measure. Precision is the percentage of correctly reported links between
features and methods. Recall is the percentage of actual links between features and
methods that are reported. Given a set of feature location tasks 7' consisting of a set of
features F', we computed the overall precision Pr and recall Ry for T as follows:Pp =
dser Pi/IF|, Br = 3 cp Ry /|F|. F-measure for a feature location task set 7' is then
computed as f, = (1+b%)/(1/Pr+b?/Rr) to reflect a weighted average of the precision and
recall. In our study, following the treatment in [4], we set b to 2, i.e., recall is considered
four times as important as precision, because finding missing links is more difficult than
removing incorrect links.

TABLE 2. The quality(recall%, precision%, and f-measure% ) of each fea-
ture location results achieved with different artifact indexing processes of
different cut-point

JEdit MuCommander
cut- 10 20 50 70 10 20 50 70
point
TP fm TP fm TP fm TP fm TP fm TP fm rp|fmporogp fm

all 30 3 10l 51 2 10! 82 1|7 93 1|5 12 216 o4 2|7 57 2 8 2|7
noun| 38 3 13| 54 2 10| 83 2|7 94 Lys 14 2|7 31 219 64 2 9181217
verb | 17 1|6 2% 1|5 58 115 79 1|5 16 2|7 28 218 53 2 7T |71 1|6
key 3 2 217 1|6 2|17 219 2 8 |8 2|8
term | 37 12| 54 10| 86 96 15 32 64

4.4. Results. Let us first investigate the quality (in terms of precision, recall and F-
measure) of each feature location results achieved with the four artifact indexing processes
(i.e., All, Verb, Noun, and KeyTerm) of different cut-point values in Table 2. Every
artifact indexing process recovers only the top u links in the ranked list regardless of
the values of the similarity measure when the cutpoint is is u. For the purposes of
reproducibility and independent study, we have made all data available via an online
appendix: http://dwz.cn/1xtYwG.

From the results, it can be seen that the precision is rather high, while the recall is very
low (less than 10%). Through analysis of this subject systems and feature location tasks,
there are two possible contributing factors we found. Firstly, the set of candidate links is
composed of all pairs of features and methods, and the large masses of methods lead to
a rapid expansion of candidate links. Take JEdit as example, The JEdit 4.3 used in this
study consists of 7085 methods and 150 features, all of them can be combined to produce
7085 x 150 = 1062750 candidate links. Secondly, the number of correct links is rather
small. For example, there are only 748 methods that is associated with 150 features, and
1466 links between them are correct. In other words, there are only 1466 correct links in
1062750 candidates, the proportion is just about 0.1%.
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TABLE 3. Results of T-Tests of Hypotheses, for the variable precision, re-
call, and F-measure. Measurements are reported in the following columns:
minimum value, maximum value, median, means (u), variance (c2), the De-
grees of freedom (DF'), the Pearson correlation coefficient (PC'), statistical
significance (p), Terit, and the T statistics.

H Var piz_ch Sam- | Min | Max (li\/iI;;l m o2 DF PC T Terit D ]2;2:;—
ples
Verb 1200 1008 1| 0561 | 0.542| 0.067| 199
recall KeyTern] 20 | 0028 1 | 0755 0.676| 0.072| 199 | 0941 20755 L9721 0,001 Reject
HO Verb 1200 1 009 | 0.031| 0.014| 0.014] O | 199
precision KeyTern] 200 0.009 | 0.079| 0.018] 0.019 0 199 | 0.631| -10.218 1.972 < 0.001 Reject
Verb 12001 009 | 0.085| 0.056| 0.059| © | 199
Fmeasurg e reed 200 | 0030] 0.135| 0.070| 0.077| © | 199 | 0399 | -13.856 L9721 0,001 Reject
Noun 200 15 01| 1 | 0737 0.669 | 0.068] 1%
recal KeyTern] 22 | 0.028| ' | 0.755| 0.676| 0.072| 199 | 0998 OATO I < 0,004 Reject
H1 Noun 1200 1 599| 0.079| 0.017| 0.019] © | 19
precision KeyTerni 200 0.009| 0.079! 0.018!| 0.019 0 199 | 0.991 “2.947 1.972 | 0.004 Reject
Noun 200 1 099 | 0.138| 0.077| 0.077| © | 19
Fmeasure KeyTerni 200 0.030| 0.135| 0.079| 0.077 0 199 | 0.993 -3.085 1.972 | 0.003 Reject
All 200 | o035 1| o711 0636 0.077| 19
recall KeyTern] 220 | 0028 1 | 0755 0.676| 0.072| 199 | 0996 | -21.839 L9721 0,001 Reject
H2 All 2001 6.000| 0.062| 0.016| 0.017 O | 19
precision) KeyTernt 200 0.009 | 0.079| 0.018] 0.019 0 199 | 0.969 -9-958 1.972 < 0.001 Reject
All 2001 6.036] 0.111| 0.070| 0.070| O | 199
Fmeasure KeyTernt 200 00301 01351 0.079| 0.077 0 199 | 0.954| -14.131 1.972 < 0.001 Reject

In most case (see Table 2), the proposed approach is better than other traditional
indexing process, especially for increasing recall values (see our online report for more
details). In order to conduct an overall test, their performance of different cutpoint values
over the range of from 0.01 to 1 were recorded and compared. To evaluate the performance
improvement of the proposed approach, we compare the precision, recall and F-measure
of four feature location results. We introduce the following null hypotheses to evaluate
how different the performance of them.

HO: There is no difference between the performance of feature location using artifact
indexing processes KeyTerm and Verb.

H1: There is no difference between the performance of feature location using artifact
indexing processes KeyTerm and Noun.

H2: There is no difference between the performance of feature location using artifact
indexing processes KeyTerm and All.

We use paired sample t-tests to evaluate the null hypotheses HO, H1 and H2 in terms of
precision, recall and F-measure. We evaluate the hypotheses at a 0.05 level of significance.
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The result of these four tests are shown in Table 3. Based on the results we reject the
null hypothesis HO, H1, and H2 for all the measures of precision, recall and F-measure.
Therefore, we accept the alternative their alternative hypothesis, i.e., there is significant
different between the performance of feature location using artifact indexing processes
KeyTerm and others.

5. Conclusions. In this paper, we have presented an improved IR-based feature location
approach using syntactic analysis. Since both nouns and verbs play an important role
in depicting the semantics of a software artifact, in this work, they are extracted from
artifacts content and identified as key terms, and then utilized to calculate the textual
similarity between two artifacts.

In particular, source code and features as documents are first split into sentences. After
that, a part-of-speech tagging is utilized to recognize the key terms within sentences, and
then a chunk parsing is used to revise the errors that could be introduced in the process
of part-of-speech tagging. Finally, an information retrieval technique, i.e. latent semantic
indexing, is adopted to recover the link between source code and features based on the
identified key terms. The results achieved in an experimental study on two open-source
system demonstrated that our proposal is able to significantly improve the accuracy of
an [R-based feature location using LSI.

In the future work, we will focus on integrating other mature natural language pro-
cessing technology. We also plan to further the proposed artifact indexing approach by
combining our multi-faced feature location tool MFIE [25] to provide a comprehensive
support for searching, exploration, and recommendation in an interactive feature location
process.
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