
Journal of Information Hiding and Multimedia Signal Processing c⃝2016 ISSN 2073-4212

Ubiquitous International Volume 7, Number 1, January 2016

Secondary Index to Big Data NoSQL Database -
Incorporating Solr to HBase Approach

Bao-Rong Chang

Department of Computer Science and Information Engineering
National University of Kaohsiung

700, Kaohsiung University Rd., Nanzih District, Kaohsiung 811, Taiwan
brchang@nuk.edu.tw

Hsiu-Fen Tsai

Department of Marketing Management
Shu-Te University, Taiwan

59, Hun Shang Rd., Yen Chao, Kaohsiung County 824, Taiwan
soenfen@mail.stu.edu.tw

Hung-Ta Hsu

Department of Computer Science and Information Engineering
National University of Kaohsiung

700, Kaohsiung University Rd., Nanzih District, Kaohsiung 811, Taiwan
hushunghung@gmail.com

Received October, 2014; revised September, 2015

Abstract. This paper introduces the combination of Big Data NoSQL database HBase
and enterprise search platform Solr so as to tackle the problem of the secondary indexing
function with fast query. In order to verify the effectiveness and efficiency of the proposed
approach, the assessment using C-P ratio has been done for several competitive bench-
mark databases and the proposed one. As a result, our proposed approach outperforms
the other databases and fulfills secondary indexing function with fast query in NoSQL
database.
Keywords: Big Data NoSQL Database, Secondary Index, HBase, Solr, Cost-Performance
Ratio.

1. Introduction. Regarding big data storage[1, 2], the way of fast and easy data query
is a concerned issue in NoSQL database. In general, NoSQL scheme[3, 4] is capability of
supporting various data format to process the storage, yet it sacrifices the index searching
function. HBase is of a NoSQL database as part of Hadoop ecosystem. It is known as the
scheme of key-value and usually stores the results coming out of MapReduce execution.
HBase features high scalability and high flexibility, delivering a high IO performance of big
data. Solr is of a blazing fast open source enterprise search engine that can quickly create
index and proceed with powerful full-text search. In this paper, we are able to combine
HBase and Solr to enhance the secondary indexing function for HBase. After the success
of this combination, we go for a series of stress test using several testing items and then
make the performance comparison between the proposed one and the other benchmark
databases. Finally, a cost effectiveness evaluation called C-P ratio has been done for a
variety of databases. As a result, the assessment about C-P ratio will be analyzed and

80

Secondary Index to Big Data NoSQL Database - Incorporating Solr to HBase Approach 81

discussed for all of databases mentioned in this paper.

2. Combination of NoSQL database and enterprise search platform. This paper
studies how the combination of HBase and Solr runs in big data environment based on
cloud computing platform. All of application programs were installed in a Linux-based op-
erating system. Hbase is placed over Hadoop HDFS system. Thus HBase can be attached
to Hadoop after the core parts of Hadoop have been installed in a physical machine such
as MapReduce and HDFS. Solr can operate independently without any support from any
other applications. With the corporation with Solr, Hbase can easily create index. On
the other hand, Solr is able to provide GUI interface for users operation. The procedure
to establish the combination of two applications can be listed as follows.

(1) Install Linux O/S on every host, connect them together via SSH and deploy JVM
to every host to achieve a Linux cluster environment.

(2) Establish master and slave nodes, and start them up. Master node shall deploy
Hadoop to slave nodes. This have Hadoop done in every host in a cluster environment
[5, 6, 7].

(3) After deploying Hadoop and ZooKeeper to cluster, we need to confirm the start-up
of Hadoop and ZooKeeper services. We are able to give jps instruction at terminal
to check whether or not the services are running normally. After that, we establish
HBase service [8, 9, 10, 11] within Hadoop.

(4) When the procedure #3 has done, web browser is used to view the start-up of Hadoop
and HBase services. Key in http://localhost:50030, 50040, 50070, and 60010 to check
each node if operating normally.

(5) Before we get Solr started, we need to modify the execution parameters in solrcon-
fig.xml, which is a configuration file within./solr-version/examples/solr/collection1/
conf/. We have to determine the solr whether or not setting input word string
act as an index, content storage, and data format. Apache Solr needed http web-
container to get it started, for example either Apache Tomcat or Apache Jetty. Here,
we chose Jetty because of the default setting. After setting up, we key in “java -
jar start,jar” to start up Solr in terminal. Finally, we got Solr’s address, which is
http://localhost:8983/

(6) Since HBase can’t support automatically generated row-key, several big data files
shall be modified in advance. We need to design a unique and complex rowkey
which corresponds to a large number of rows (up to ten million rows.) In this study,
we chose the American Yellow Page as data source. Our data combination is denoted
“rowkey”, “category”, “shop-name”, “telephone”, “province”, and “address” with a
total of 6 columns. These data files have to translate into CSV format, and “,”
symbols are used to separate each column.

(7) The CSV file is uploaded to Hadoop file system, and these files are imported to
HBase as full-text input via the special tool - “bulk load tool” [12]. We need to
check the data integrity in HBase after data importing.

(8) Then, we use HBase output API and Apache HTTP API to transfer the document
to Solr from HBase [13, 14, 15]. After the transmission, the indexes are created and
the content is saved in disk in Solr. We can use web browser to check the amount of
documents in Solr. Data in arow represent a document. We can use query function
to search our keyword (Secondaryindex, or more) and reversely to search the primary
index in Solr. We may able to applyfilter function to improve the precision of search
results.

82 B.R. Chang, H.F. Tsai, H.T. Hsu

(9) After finishing the setup of the proposed system, we chose some other benchmarks to
compare with the proposed one in the experiment. After the experiment, we are able
to give a kind of assessment on those, for instance a cost effectiveness evaluation.

3. System assessment. In terms of the performance evaluation, we have initially tested
the time for data read/write to a variety of databases, such as Apache HBase, Cassandra,
Huawei HBase, Solandra, and Lily Project. Next, the time for data transfer to Solr from
the databases mentioned above has to be recorded. Finally, the response time for the
query function performed in Solr needed to be measured as well. In order to develop the
assessment of the proposed approach, the necessitated equations are derived from first
measuring a single datum access time for a certain database on Eq. 1, next calculating
average access time based on a variety of data size on Eq. 2, then inducing a normalized
performance index among the databases on Eq. 3, and finally resulting in a performance
index according to different tests on Eq. 4. After that, evaluating the total cost of
ownership is done for a certain period on Eq. 5 and then it turns out the cost-performance
ratio on Eq. 6. In these equations we denote the subscript i the index of data size, j the
index of database, and k the index of test category as well as the subscript s indicates a
single datum. According to four tests on data write, data read, document transfer, and
query/response to any of databases as mentioned above, first of all we have to measure
a single datum access time taking a number of different data size as shown in Eq. 1,
where tsijk represents a single datum access time, for a single run tijk stands for measured
total time for a specific data size at a certain database, and Nik means a specific data
size. In Eq 2, t̄sijk represents average time of a single datum access and wi stands for the
respective weight factor for tsijk . A normalized performance index for a specific database

at a certain test can be obtained as shown in Eq. 3, where P̄ Ijk represents a normalized
performance index. After that, we have evaluated the weighted average of normalized
performance index and it turned out to be the performance index [16] for each database
as shown in Eq. 4, where PTj represents performance index, SF1 stands for scale factor
#1, Wk is the respective weight and P̄ Ijk means a normalized performance index. In order
to assess the cost effectiveness evaluation, we need to calculate total cost of ownership
[17] in Eq. 5, showing the expenditure of money in the implementation of secondary
indexing function for NoSQL database, where HCa presents hardware cost, Sb stands for
software cost, RCAWc means repairing cost after the warranty, DTCd is down-time cost,
and EUCe explains extra upgrade cost. The monetary value of total cost of ownership
may vary with location, market, and tax. Thus, a higher cost, for example, might be
obtained in U.S., and a lower cost in Taiwan. In the system assessment, a typical cost
effectiveness evaluation called C-P ratio has been introduced here to do the assessment in
Eq. 6, where CPjg is C-P ratio, SF2 stands for scale factor #2, and TCOjg means total
cost of ownership.

tsijk =
tijk
Nik

, where i = 1, 2, ..., l, j = 1, 2, ...,m, k = 1, 2, ..., n (1)

t̄sijk =
l∑

i=1

wi · tsijk , where j = 1, 2, ...,m, k = 1, 2, ..., n,
l∑

i=1

wi = 1 (2)

P̄ Ijk =

1
t̄sjk

max
h=1,2,...,m

(1
t̄shk

)
, where j = 1, 2, ...,m, k = 1, 2, ..., n (3)

Secondary Index to Big Data NoSQL Database - Incorporating Solr to HBase Approach 83

PIj = SFl · (
n∑

k=1

Wk · P̄ Ijk), where j = 1, 2, ...,m, k = 1, 2, ..., n, SFl = 102,
n∑

k=1

Wk = 1

(4)

TCOjg =
∑
a

HCa +
∑
b

Sb +
∑
c

RCAWc +
∑
d

DTCd +
∑
e

EUCe,

where j = 1, 2, ...,m, g = 1, 2, ..., o

(5)

CPjg = SF2 ·
PIj

TCOjg

, where j = 1, 2, ...,m, g = 1, 2, ..., o, SF2 = 104 (6)

In order to examine the stability and reliability of NoSQL database secondary indexing
function, a stress test of data retrieval in Solr has been taken in a big data environment.
Technically speaking, this test generated up to 20 threads (20 windows) to respond 10
to 1000 queries and we had checked the latency (time interval) simultaneously. The key
index in every query was different as shown in Fig. 1. Clearly the result would indicate
the response time for the query in Solr and explain what the correlation between the
amount of windows and the latency was found.

4. Experimental results and discussion. There are several experiments and a dis-
cussion presented in the following sub-sessions.

4.1. Data transfer and data integrity checking. In regard to implementation pro-
cedure as shown in Fig. 2, which indicated data transfer from HDFS to HBase and/or
from HBase to Solr, there are risks of losing data during the transition. We have to verify
the data integrity in HBase inner table and the amount of input documents in Solr. For
examining HBase, we checked inner table using the command “scan table-name” in CLI
as shown in Fig. 3. In Fig. 4, the document transfer from HBase to Solr has been done
using the command in CLI. For examining Solr, we checked our input document amount
in Solr using web interface as shown in Fig. 5. Furthermore, in terms of the performance
evaluation, the time for data writing/reading in every database has been measured. Time
for data transfer to Solr from every database has been recorded. Speaking of data im-
port to HBase, we adopted a bulk-load tool with MapReduce computing to transfer the
original file into HBase because this tool is capable of handling a large amount of data
in the way of fast and smoothly transferring. For Solr, a program with specific port at
Solr and designated HBase API has activated to quickly transfer documents to Solr from
HBase where a java client to access Solr called Solrj have logged into the http server, that
is Solr, to respond swiftly to the connection and on-line the document deliver to http
server. This also demonstrates an efficiency way to realize a fast document transfer based
on a client-server model for a huge amount of data. Alternatively, the other choice is that
HBase coprocessor may launch a process to do the batch update frequently. However
HBase coprocessor is not stable because it is still in the developing phase.

4.2. Querying function and performance index. Once the document transfer from
Hbase to Solr, has done completely, the data are available in Solr and we could check the
amount of document in Solr as shown in Fig. 5. In order to verify the secondary indexing
function in the combination of HBase and Solr, we launched the query test in Solr as
shown in Fig. 6, where we can check the information about the related operations on the

84 B.R. Chang, H.F. Tsai, H.T. Hsu

Figure 1. Latency under stress test for Solr (presenting 6 windows).

Table 1. Average time of a single datum access (unit: sec.)

Operation HBase+Solr Cassandra Huawei HBase Solandra Lily Project

Write 0.000673563 0.011164768 0.0006735 0.011680475 0.00067955
Read 0.0025971 0.002637825 0.0026819 0.0027547 0.002608625

Transfer 0.011005125 0.01146665 0.011289425 0.011620125 0.011306375
Query 0.00000575 0.000136603 0.002028425 0.00007275 0.000041125

web. Solr provides normal search, filtering search, spatial search, and other more search

Secondary Index to Big Data NoSQL Database - Incorporating Solr to HBase Approach 85

Raw

Data

Hadoop

File

System

HBase

Client

Solr

Upload

File

Import

Index

Build

(1) Query

Data

(Other

index)

(2) Index

feedback(3) Query

Row-key

Figure 2. Implementation procedure.

Figure 3. Scanning a table in HBase using CLI.

Table 2. Performance index

Database Performance Index

HBase+Solr 99
Cassandra 51
Huawei HBase 73
Solandra 50
Lily Project 77

functions. For example, we did a search using the shop-name field that included “Food”
as its keyword, and 1000 results appeared filtering the province tag with “NY”. We keyed
in “shopname:Food” in “q” field, inputted “province:NY” in “fq” field, and gave 1000 in

86 B.R. Chang, H.F. Tsai, H.T. Hsu

Figure 4. Importing data to Solr from HBase.

Figure 5. Presentation of Imported data in Solr using GUI.

rows field. Fig. 6 has shown the operation of query. The response time for the query
function performed in Solr has also been marked. Besides average time-consuming on
data read/write, document transfer, and query function is eventually obtained as listed
in Table 1. After that, according to Eq. 4, we are able to evaluate the performance index
for each database over a 5-year period of time as shown in Table 2.

Secondary Index to Big Data NoSQL Database - Incorporating Solr to HBase Approach 87

Figure 6. Response to a query in Solr using GUI

Table 3. Total cost of ownership over a 5-year period (Unit: USD)

Database 1stYear 2ndY ear 3rdYear 4thYear 5thYear

HBase+Solr 16393.3 13726.7 13726.7 13804.1 13877.9
Cassandra 16020 13353.3 13353.3 13430.8 13504.6
Huawei 16040 13373.3 13373.3 13450.8 13629.9
Solandra 13040 10373.3 10373.3 10450.8 10524.6

Lily Project 16393.3 13726.7 13726.7 13804.1 13877.9

Table 4. C-P ratio over a 5-year period

Database 1stYear 2ndY ear 3rdYear 4thYear 5thYear

HBase+Solr 61.00 72.85 72.85 72.44 72.06
Cassandra 31.94 38.32 38.32 38.10 37.89
Huawei 45.92 55.07 55.07 54.76 54.04
Solandra 38.85 48.84 48.84 48.48 48.14

Lily Project 47.27 56.46 56.46 56.14 55.84

4.3. Assessment. In the system assessment, we first analyzes total cost of ownership
(TCO) according to several items such as hardware cost, staff cost, software cost, repair
cost after warranty, down time cost, and extra upgrade cost. A summary of TCO has
shown in Table 2. Here we estimated that hardware cost for two computers is $2666.
Then, we assumed that the maintenance bill is $13000 every year for Hadoop together
with HBase, Solr maintenance cost is approximately $300 per year, and for Cassandra

88 B.R. Chang, H.F. Tsai, H.T. Hsu

Table 5. Latency under stress test (unit: sec) (Win. =Window)

Query
Win. Win. Win. Win. Win. Win. Win. Win. Win. Win.
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

10 0.15 0.1 0.2 0.2 0.1 0.15 0.16 0.15 0.2 0.2
100 1 1 0.8 1 1 0.8 1 1 1 1
1000 3 4 3 4 3 4 3 4 5 4

Query
Win. Win. Win. Win. Win. Win. Win. Win. Win. Win.
#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

10 0.15 0.15 0.15 0.15 0.2 0.2 0.16 0.15 0.2 0.2
100 1.2 0.8 1.1 1 1.1 1 1.2 1 1.1 1.2
1000 3 4 3 4 5 4 4 4 5 5

it would be $10300 every year. Accordingly we do the same maintenance estimation as
the above-mentioned applications for Solandra and Lily Project because they are just the
combination for the above applications. All of software cost is totally free due to open
source. For hardware maintenance after warranty, we assumed that all the devices had
the same risk of break-down, thus the chance of device break-down in the 4th year was
about 25%, while in the 5th year it will be 50% chance. For the software upgrade cost,
there is no charge because of open source. Regarding down time cost, we assumed that
one application will cost $20 per year and the total cost would depend on the amount of
software. Table 3 gives a summary of the total cost of ownership for this study. As for
the system assessment, C-P ratio evaluation according to Eq. 6 for all of databases will
yield a summary of those over a 5-year period of time as listed in Table 4.

4.4. Stress Test and Discussion. The issue about the stability and reliability of NoSQL
database secondary indexing function has been concerned and hence a stress test of data
retrieval in Solr has been taken in a big data environment. In this test, there are up to
20 threads (20 windows) used to accept the number of queries from 10 to 1000 and in
the meantime the latency (time interval) has been counted. The key index in every query
was different as shown in Fig. 1. Table 5 has listed the summary of latency and we have
examined the results afterward. In the test from the statistics point of view the amount
of opening windows obviously didn’t affect the length of latency occurred in the query
in Solr. The stability and reliability of NoSQL database secondary indexing function has
verified because all of queries had responded in 5 seconds during the stress test.

5. Conclusion. This paper introduces the combination of NoSQL database HBase and
enterprise search platform Solr to realize the secondary indexing function with fast query.
In the assessment, a cost effectiveness evaluation called C-P ratio has been done among
several competitive benchmark databases and the proposed one. As a result, our proposed
approach outperforms the other databases and fulfills secondary indexing function with
fast query in NoSQL database. Besides, a stress test has been taken to verify the stability
and reliability of the proposed approach.

Secondary Index to Big Data NoSQL Database - Incorporating Solr to HBase Approach 89

Acknowledgements. This work is fully supported by the Ministry of Science and Tech-
nology, Taiwan, Republic of China, under grant number MOST 103-2221-E-390-011.

REFERENCES

[1] D. Howe and M. Costanzo and P. Fey and T. Gojobori and L. Hannick and W. Hide and D. P. Hill
and R. Kania and M. Schaeffer and S. S. Pierre and S. Twigger and O. White and S. Y. Rhee, Big
data: The Future of Biocuratio, Nature, vol. 455, pp. 47-50, 2008.

[2] A. Jacobs, The Pathologies of Big Data, Communications of the ACM - A Blind Person’s Interaction
with Technology, vol. 52, no. 8, pp. 36-44, 2009.

[3] R. Cattell, Scalable SQL and NoSQL Dta Sores, ACM SIGMOD Record, vol. 39, mo. 4, pp. 12-27,
2010.

[4] J. Pokorny, NoSQL Databases: A Step to Database Scalability in Web Environment, International
Journal of Web Information Systems, vol 9, no. 1, pp. 69-82, 2013.

[5] P. Zhou and J. Lei and W. Ye, Large-Scale Data Sets Clustering Based on MapReduce and Hadoop,
Journal of Computational Information Systems, vol. 7, no. 16, pp. 5956-5963, 2011.

[6] J. K. Chiang, Authentication, Authorization and File Synchronization for Hybrid Cloud–The De-
velopment Centric to Google Apps, Hadoop and Linux Local Hosts, Journal of Internet Technology,
vol 14, no. 7, pp. 1141-1148,2013.

[7] J. Leverich and C. Kozyrakis, On the Energy (in) Efficiency of Hadoop Clusters, ACM SIGOPS
Operating Systems Review, vol. 44, no. 1, pp. 61-65, 2010.

[8] T. White, Hadoop: the Definitive Guide, O’Reilly Media, Inc., Sebastopol, CA, USA, 2009.
[9] N. Dimiduk, HBase in Action, Manning Publications, Greenwich, UK, 2012.
[10] Y. Jiang, HBase Administration Cookbook, Packt Publishing, Birmingham, UK, 2012.
[11] C. Boja and A. Pocovnicu and L. Batagan, Distributed Parallel Architecture for Big Data, Infor-

matica Economica, vol. 16, no. 2, pp. 116-127, 2012.
[12] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Communi-

cations of the ACM - 50th Anniversary Issue, vol. 51, no. 1, pp. 107-113, 2008.
[13] M. Hausenblas and J. Nadeau, Apache Drill: Interactive Ad-Hoc Analysis at Scale, Big Data, vol.

1, no. 2, pp.100-104, 2013.
[14] R.Kuc, Apache Solr 4 Cookbook, Packt Publishing, Birmingham, UK, 2013.
[15] T. Grainger and T. Potter, Solr In Action, Manning Publications, reenwich, UK, 2014.
[16] B. R. Chang, H.-F. Tsai and C.-M. Chen, Assessment of In-Cloud Enterprise Resource Planning

System Performed in a Virtual Cluster, Mathematical Problems in Engineering,2014.
[17] B. R. Chang, H.-F. Tsai and C.-M. Chen, Evaluation of Virtual Machine Performance and Virtualized

Consolidation Ratio in Cloud Computing System, Journal of Information Hiding and Multimedia
Signal Processing, vol. 4, no. 3, pp. 192-200, 2013.

