
Journal of Information Hiding and Multimedia Signal Processing c©2015 ISSN 2073-4212

Ubiquitous International Volume 6, Number 6, November 2015

Shareability and Locality Aware Scheduling
Algorithm in Hadoop for Mobile Cloud Computing

Hsin-Wen Wei1, Tin-Yu Wu2, Wei-Tsong Lee1, Che-Wei Hsu3

1Department of Electrical Engineering
3Department of Information Management

Tamkang University
No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City, 251, Taiwan
{hwwei, wtlee}@mail.tku.edu.tw; kuma0928002898@gmail.com

2Department of Computer Science and Information Engineering
National ILan University

No. 1, Sec. 1, Shen-Lung Road, I-Lan, 26047, Taiwan
tyw@niu.edu.tw

Received March, 2015; revised July, 2015

Abstract. Using different scheduling algorithms can affect the performance of mobile
cloud computing using Hadoop MapReduce framework. In Hadoop MapReduce frame-
work, the default scheduling algorithm is First-In-First-Out (FIFO). However, the FIFO
scheduler simply schedules task according to its arrival time and does not consider any
other factors that may have great impact on system performance. As a result, FIFO can-
not achieve good performance in Hadoop for mobile cloud computing. In this paper, we
propose a novel scheduling algorithm, called FSLA (FIFO with Shareability and Locality
Aware). FSLA is a FIFO-based scheduling policy that considers locality of required data
and data sharing probability between tasks. The tasks requesting the same data can be
gathered, easily batch processed, and thus reduce the overhead of transferring data be-
tween data nodes and computations nodes. The simulation results show that compared
to FIFO, FSLA can reach 65% improvement in system performance.
Keywords: Hadoop MapReduce, Shareability, Locality aware scheduling algorithm,
Mobile cloud computing.

1. Introduction. With the popularization of mobile devices and the increasing demand
from end-users, mobile application development evolves quickly. However, mobile devices
have limited computing capabilities, battery life and storage space. Therefore, the issues
of how to integrate the resources of mobile devices with mobile cloud computing to provide
better service have received much attention. At present, mobile cloud computing appli-
cations can be generally divided into mobile commerce, mobile learning, mobile health,
mobile gaming and other applications [7]. In these applications, mobile cloud plays a very
important role especially when mobile users perform web searches by keywords, sounds
or tags. A previous research even proposed a mobile monitor system architecture that
combines free view point images with a real-time video system to display the status of
the residences in a house [16]. To support mobile cloud computing, MapReduce [4] model
is often used in these applications for computing. Nevertheless, the default scheduling
algorithm in Hadoop MapReduce framework is First-In-First-Out (FIFO), which sched-
ules the tasks according to their arrival time [10]. Under certain circumstances, FIFO is
not the best choice [14]. A FIFO scheduler may spend long period of time on one single

1215



1216 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

task so that another task that can be done quickly may have to wait until the previous
one is finished. As a result, the waiting time of some tasks might be too long in the
FIFO schedule. Such a scheduling algorithm is not suitable for mobile cloud computing.
In addition, using the MapReduce framework, the system usually needs to read external
files before performing a task. In the era of big data, the system may spend much more
time on I/O than on computing. Therefore, Agrawal et al. studied how best to schedule
scans of large data files, in the presence of many simultaneous requests to a common set
of files. By sharing scans of the same file as aggressively as possible, the authors tried to
maximize the overall rate of processing these files without imposing undue wait time on
individual tasks. The simulation results show that their proposed scheduling method can
reach shorter execution time [1]. Moreover, the network bandwidth is also an important
resource for the MapReduce environment and mobile cloud computing [4]. When a task
needs to read a file over a network path, it takes more time than reading the file locally.
Consequently, the performance is degraded and the burden on the network is increased.
To conserve network bandwidth and improve the system performance, Dean J. et al. pro-
posed to store the input data on the local disks of the machines and schedule a map task
on a machine that contains a replica of the corresponding input data [4]. To sum up,
in a system coupled with a MapReduce implementation, multiple tasks that require the
same file can be executed together for performance enhancements. To schedule a task on
a machine that has a copy of the corresponding data can improve system performance
as well. However, as far as we know, there is no research that simultaneously considers
data shareability among tasks and data locality for performance improvements of a sys-
tem coupled with a MapReduce implementation. Therefore, to base itself on the FIFO
scheduling algorithm and to consider shareability and locality of data, this paper pro-
poses a novel scheduling algorithm, FSLA (FIFO with Shareability and Locality Aware).
The simulation results show that our proposed FSLA algorithm not only reduces the
time a task spends on reading a file and the network load, but also enhances the system
performance. The remainder of this paper is organized as follows. Section 2 introduces
the background and related work of this paper. Section 3 describes the proposed FSLA
scheduling algorithm. The simulation results are given in Section 4 and the conclusion is
given in Section 5.

2. Related Work. Hadoop is an open-source platform using the MapReduce framework
for distributed computing [10]. A Hadoop system includes a MapReduce engine and a
Hadoop File System (HDFS). For tasks to find the file locations quickly, HDFS stores all
the data in Hadoop. HDFS comprises a single NameNode and a cluster of DataNodes.
The NameNode, i.e., the HDFS manager, has to record where the files are stored while
the DataNodes stores data blocks in HDFS. HDFS clients can ask the NameNode for a
list of DataNodes that own copies of the blocks of a file and access one of the DataNodes
directly for the desired blocks. Thanks to the design of HDFS, a Hadoop system can find
out the corresponding files quickly while receiving a task request.

To improve MapReduce performance, previous studies have been presented from dif-
ferent perspectives. For distributed computing, a large amount of machines are often
utilized. Therefore, some studies aimed at improving energy efficiency and reducing total
energy consumption. In [13], the authors propose a framework for systematically con-
sidering working node power down strategies with respect to energy consumption and
workload response time. Some studies tried to adjust the architecture of MapReduce to
handle massive requests since the performance may be degraded as the required data set
is blocked between mappers and reducers. In [3], the authors propose a modified architec-
ture to allow required data to be pipelined between operators. Some of them concluded



Shareability and Locality Aware Scheduling Algorithm 1217

that I/O operations have great impact on system performance [11, 15, 17]. Thus, some
researches proposed structured data format and storage [6, 8], and some attempted to
enhance the capability of MapReduce-based systems to read the structured input data
for improving the I/O performance [5, 15]. In [6], Hadoop++ utilizes indexing technique
to improve parallel data access without changing Hadoop framework.

Our study focuses on improving the system efficiency and therefore we will further in-
vestigate the scheduling algorithms. Different scheduling systems use different scheduling
strategies and a task thus can be assigned a very different priority. Because of different
priority arrangements, some tasks with long execution may be resource-wasting and pre-
venting other tasks from being executed. Therefore, using different scheduling algorithms
can affect the performance of mobile cloud computing on Hadoop MapReduce framework.
To improve the efficiency of system, many scheduling algorithms have been proposed for-
merly. Some of them try to classify jobs into different categories based on jobs’ features
and probabilities to make the scheduler be workload-aware and some of them consider the
scheduling issue in heterogeneous environment [9, 18, 19]. However, it is hard to classify
jobs into appropriate categories. Therefore, features of jobs are not considered in our
algorithm and below we give two types of scheduling algorithms that are correlated with
our proposed FSLA algorithm.

1) Shared-Scan
Shared-Scan is a scheduling algorithm presented by Agrawal et al. There are many

scheduling algorithms in the MapReduce framework. Hadoop allows its users to define
the scheduling algorithms themselves for performance improvements. When tasks need
to read files and the file size gets bigger and bigger, a system often has to spend much
time on reading instead of computing a file. In other situations, multiple pending tasks
may require the same file. The core idea of Shared-Scan is to execute multiple tasks that
require the same file simultaneously to reduce the waiting time of tasks for performance
enhancements [1]. In [1], the authors try to maximizing overall system efficiency while
minimizing the maximum waiting time of individual job in the system. They, utilize
queuing theory to formulate the waiting time of jobs and provide a hybrid scheduling
policy that may balance the overall system efficiency and waiting time of individual job.

2) Location-aware
Location-aware algorithm concerns where the files are stored. When a task is submitted

to the system, a location-aware scheduler may assign the task to the machine that holds
the replica of the corresponding data to reduce the transmission time and network load.
Such a scheduling algorithm can avoid the network congestion due to data transmission
and reduce the time a task spends on reading a file [2, 12]. In Hadoop system, data may
be replicated and distributed among the nodes, if there is more than one node that can
provide required data, how to assign the task to a working node is an interesting issue. To
solve the issue, in [2], the system assign weight to data which is required for computing
task and calculate the weight of node for data interference according to summarize the
weight of data in this node. Then, it will pick up the node with smallest weight and
assign the task to the node to reduce data transmission time and to achieve better system
performance.

However, the above-mentioned two scheduling algorithms do not consider the order
of task arrivals, which may lead to indefinite task waiting times. Moreover, in mobile
cloud computing environment, we need to consider the view point of users. Users always
expect to be treated fairly and first-come-first-serve policy is usually identified to be a
fair algorithm from users’ perspective. For these reasons, we integrate FIFO with the



1218 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

benefits of the above two scheduling algorithms and propose FSLA. FSLA is a method
that not only considers data shareability and locality aware, but also allocates computing
resources according to task arrivals, without imposing lengthy waiting time on tasks.

3. FIFO WITH SHAREABILITY AND LOCALITY AWARE ALGORITHM.
The goal of proposed FSLA is to consider data shareability, data locality, and the arrival
time of task simultaneously to reducing the data transferring time and waiting time.
Therefore, to achieve the goal of FSLA, there are two kinds of queues in the system: base
queue and waiting queue, which store tasks according to their arrival times as shown in
Figure 1. The base queue stores the pending tasks in the system. When a machine is
idle, a task in the base queue can be assigned to the machine and executed. The waiting
queue stores the tasks that are waiting for others requesting the same data. To reduce
transmission time and utilize the benefits of caching, these tasks are executed on a single
machine and called a task set.

Figure 1. Illustration of base queue and waiting queue.

When a new task is submitted to the system, our proposed FSLA determines whether
to put the task into base queue or waiting queue. In other words, the task is executed
in FIFO way or the task needs to wait until the arrival of other tasks. Before making
the decision, the system has to obtain the following information of the task first: (1)
estimated task file transmission time, which is the time spending on transmitting file that
is requested by the task and (2) estimated number of tasks in the task set, which is the
number of tasks may request the same file within a time interval. Based on the two
parameters, the system reckons whether the task should wait for other tasks. If yes, the
system defines a waiting time limit for the task and puts the task into waiting queue;
otherwise, the system puts the task into base queue. Further details will be given in the
following subsections.

3.1. Task Information. To determine which queue a newly arrival task should be put
into and compute the waiting time limit for the task that needs to wait for other tasks,
one has to know the task file transmission time first. We list the symbols and their
descriptions that will be used in the following equations in Table 1. In the MapReduce
framework, before the system performs the map function, pending tasks have to inform
the system their desired data for computation resource allocation. In Hadoop, after
receiving the request from a task, the system uses HDFS to find out the locations of the
corresponding files. In this paper, as shown in Table 1, t denotes the transmission time
of a file. t = D/e, where D is the file size and e is the file I/O speed. After obtain the



Shareability and Locality Aware Scheduling Algorithm 1219

estimated file transmission time, the system has to estimate the average arrival rate of
tasks that may request the same file, which is called estimated task arrival rate, denoted
by ∆, and computed in Equation 1.

∆ = λ× p (1)

λ means the average task arrival rate in the system. p denotes the probability that
tasks request the same file and we call it data sharing probability. λ multiplied by p gives
the estimated task arrival rate.

Table 1. Symbols of Task Information

Symbol Description

n Number of tasks in the task set
Ci Computation time of the task i
λ Task arrival rate
p Data sharing probability
∆ Estimated task arrival rate
D File Size
e File I/O Speed
t File transmission time
ω Maximum Waiting Time
ωp Predefined Waiting Time
ωs Suggested Waiting Time
T1 Average completion time of n tasks (without waiting)
T2 Average completion time of n tasks (with waiting)

Next, we can use Equation 2 to obtain the estimated number of tasks in the task set.

n = b1 + ∆× ωsc (2)

To multiply ∆, the estimated task arrival rate, by omegas, the suggested waiting time,
plus 1, and select an integral number smaller than the calculation result, we can get the
estimated number of tasks in the task set. When the suggested waiting time equals 0 or
∆×ωs ≤ 1, at least a default task needs to be executed in the task set. This is the reason
of plus 1 in the equation.

With the file transmission time and the estimated number of tasks in the task set, we
can perform further calculation and decide whether the task should wait for other tasks
or not. Assume that Ci denotes the computation time of a task i, n denotes the number
of tasks that require the same file, and the file transmission time is t. If not waiting, for
each task i, the task completion time equals to t + Ci, i.e., file transmission time plus
computation time. Note, other overheads in handling a task in the system is ignored here.
Supposing there are n tasks in the systems, the average completion time of n tasks, T1,
can be given by Equation 3.

T1 = t+

∑n
i=1Ci

n
(3)

If the task is suggested to wait for omegas, all tasks in the task set share the same file
transmission time t. Therefore, the average completion of n tasks, T2, can be given by
Equation 4.



1220 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

T2 = ωs +
t+

∑n
i=1Ci

n
(4)

For the final task in the task set, it may arrive simultaneously with the first task in
a worst-case scenario. Therefore, the final task has to wait for ωs seconds like the first
task before being executed. Here, we consider the worst situation: all tasks in the task
set arrive at the same time. Next, the scheduler compares the values of T1 and T2. If
T1 ≤ T2, it means that to wait for other tasks results in the longer average completion
time. Then, the task should not wait for other tasks but be executed directly. If T1 ≥ T2,
it means the task should wait. Based on such a condition, our proposed FSLA can decide
whether a task should wait and the equation can be simplified as Formula 5. In other
words, if the file transmission time of a task is longer than the suggested waiting time for
other tasks requiring the same file, the task should be put into the waiting queue.

T1 ≥ T2 ⇒ t ≥ ωs +
t

n
⇒ t ≥ 1

∆
(5)

In our algorithm, we can use T1−T2 to know the time difference between waiting and no
waiting situations. The larger the time difference is, the better the efficiency improvement
will be. To compute the maximum value of T1 − T2, we can get the optimum of ωs. Let
f(ωs) = T1 − T2. Solve the differential equation f ′(ωs) = 0, the optimum of ωs can be
given by Equation 6 and 7.

ωs = t− ωs −
t

1 + λ · p · ωs

(6)

⇒ ωs =

√
λ · p · t− 1

λ · p
(7)

Since the users may want to limit the waiting time of a task, our proposed algorithm
allows users to set the predefined waiting time ωp for service quality guarantee. The
predefined waiting time ωp is a fixed constant. We select a minimum value between ωs

and ωp as the maximum waiting time limit. Therefore, the maximum waiting time ω can
be computed by Equation 8.

ω = min(ωs, ωp) (8)

With the above information, the proposed FSLA can schedule tasks properly. Normally,
to schedule tasks, scheduling decision needs to be made in the following two situations:
when a new task is submitted into the system and when there is an idle machine in the
system. Next, we will discuss the two different situations, respectively.

3.2. Scheduling Mechanism.

3.2.1. When a new task arrives. When a new task arrives in the system, the scheduler
first checks whether the base queue and the waiting queue are empty. If there is a task in
a queue, the new task is put into the base queue or put into the corresponding existing
waiting queue based on the waiting time calculated via Formula 5 and Equation 7, and if
there is no corresponding waiting queue; the scheduler creates a new waiting queue for the
task. Otherwise, both queues are empty, then the scheduler checks if there is an available
machine to execute the task. If there is an idle machine that has the corresponding file
the task needs, the scheduler assign the machine to executes the task directly. If there
is an idle machine but does not have the corresponding file on it, the scheduler starts to



Shareability and Locality Aware Scheduling Algorithm 1221

compute whether the task should wait for other tasks. If not, the scheduler assign the
machine to executes the task directly; otherwise, create a new waiting queue for the task.
Figure 2 displays the detailed flowchart and Algorithm 1 describes how the scheduler
handles a new arrival task. Table 2 shows the symbols used in Algorithm 1.

Table 2. Symbols used in algorithms

Symbol Description

τi Task i
Fi The file requested by task τi
Di The size of Fi

Si The task set, in which all tasks request the same file
with τi

B Base queue
W Waiting queue

Algorithm 1 A new task τi arrives in the system

1: Begin
2: if B and W are empty then
3: if there is an idle machine then
4: if Fi is located in the idle machine then
5: assign τi to the idle machine
6: else /∗ Fi is not located in the idle machine ∗/
7: if Di

e > 1
∆ then

8: compute waiting time for τi;
9: create new Si;

10: put τi into Si;
11: add Si into W ;
12: else
13: assign τi to the idle machine;
14: end if
15: end if
16: return;
17: end if
18: end if

/∗ base queue or waiting queue is not empty; or no idle machine ∗/
19: if Di

e > 1
∆ then

20: compute waiting time for τi
21: if Si exists in W then
22: put τi into Si
23: else
24: create new Si;
25: put τi into Si;
26: add Si into W ;
27: end if
28: else /∗ τi should not wait for other tasks ∗/
29: push τi into B;
30: end if
31: End



1222 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

Figure 2. Illustration of the scheduler in handling a new arrival task

The task in the waiting queue has to wait for other tasks requiring the same file to be
put into the same task set and executed altogether. When the scheduler decides whether a
task should wait, special considerations must be given to file transmission time, estimated
number of tasks in the task set, waiting time and whether waiting is worthwhile.

3.2.2. When there is an idle machine in the system. When there is an idle machine in
the system, the scheduler first finds the task with earliest arrival time in the base queue
and the waiting queues. If the task belongs to the base queue, the scheduler assigns the
task to the machine and the machine executes the task directly. If the task belongs to
the waiting queues, the scheduler checks if this idle machine has the file the task needs or
the selected task reaches the waiting time limit. If yes, similarly assigns the task to the
machine and execute it. Otherwise, the scheduler finds the next task to execute from the
base queue and the waiting queues. Figure 3 and Algorithm 2 show the detailed flowchart
and algorithm that handle this situation. Next, we will explain how the scheduler in our
proposed FSLA scheduling algorithm decides whether a task should wait for other tasks.
Assume that the speed e of reading a file in a machine is 1GB per second and the file size
D of file F is 9GB. For a task τi that needs the file F , the file transmission time t will
be 9 second. Assume the task arrival rate λ in the system is 2, which means there are 2
tasks entering the system per second, and the probability that the tasks require the same
file F is 50%, the estimated task arrival rate ∆ will be 1.

When a task τi arrives in the system, the scheduler reckons whether task τi should wait
for other tasks. As mentioned previously, the system uses Formula 5 to decide whether a
task should wait. In this example, the condition can take place and the scheduler puts the
task τi into the waiting queue. At this time, the scheduler has to compute the maximum
waiting time. Using Equation 7, we can obtain that the optimal waiting time ωs for task
τi is 2.



Shareability and Locality Aware Scheduling Algorithm 1223

Figure 3. When there is an idle machine in the system

Algorithm 2 A machine is idle

1: Begin
2: let B′ = B, W ′ = W ;
3: if B′ or W ′ is not empty then
4: Find the earliest arrived task among all tasks in B′ and W ′, and denote the task as τe;
5: end if
6: while B′ or W ′ is not empty and there is a machine m in idle do
7: if τe ∈ B′ then /∗ τe is in the base queue ∗/
8: assign τe to m;
9: B′ = B′ − {τe}; /∗ remove the task τe from base queue ∗/

10: else /∗ τe is in the waiting queue ∗/
11: if Fi is located in m then
12: assign all tasks in Si to m;
13: W ′ = W ′ − {Si}; /∗ remove all tasks in Si from waiting queue ∗/
14: else /∗ Fi is not located in m ∗/
15: if the time of tasks queued in Si reach their maximum waiting time then
16: assign all tasks in Si to m;
17: W ′ = W ′ − {Si};
18: else

/∗ select next task but does not remove the previous task from waiting queue ∗/
19: let W ′′ = W ′ − {τe};
20: let τe be the next earliest arrived task in B′ and W ′′;
21: end if
22: end if
23: end if
24: end while
25: End



1224 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

Supposing the predefined waiting time ωp set by user is 3, then, the waiting time limit
ω can be easily obtained by Equation 8 as follows:

ω = min(2, 3) = 2

With the waiting time limit, the estimated number of tasks in the task set can be
computed by Equation 2. In this example, the estimated number of tasks in the task set
is 3. Therefore, when the system needs to execute 3 tasks, the average completion time
of all tasks without waiting is 9 + ε (i.e., T1) and the average completion time of all tasks
while waiting is 5 + ε (i.e., T2). Please notice that ε is the average task computation time.
In such a scenario, our proposed FSLA will put task τi into the waiting queue and wait
for other tasks requiring the same file since the calculations above reveal that to wait for
other tasks requiring the same file is more beneficial than to execute the task directly.

4. Simulation Results. In this section, the scheduling algorithms, including FIFO,
Shared-Scan and our proposed FSLA, will be compared in the same environment us-
ing the same data set to compute the average absolute perceived waiting time (AAPWT)
for performance comparison. The average absolute perceived waiting time (AAPWT) of a
task means the time that a task queued in the system, i.e., the time spending on waiting
for execution. Agrawal et al. uses the average absolute perceived waiting time as the
performance metric in their study [1]. For consistency, this paper also uses the AAPWT
as the performance metric.

4.1. Simulation Environment. In this paper, the scheduling simulation system is de-
veloped with JAVA programming language and consists of three main parts: 1) computing
center module, 2) task generator module and 3) the scheduler module as shown in Fig-
ure 4. Computing center module is responsible for generating datasets and setting the
computing resources for handling the requested tasks. To generate different datasets and
configure computing resources settings, three variables are used: number of racks, data
amount, and average data size. The number of racks determines how many machines and
storages are in our simulated computing center. The data amount and the average data
size determines the numbers of files and the file size. Assume that there are 8 compute
units in each rack, each compute unit has a storage capacity of 3TB and each rack has
additional storage capacity of 288TB shared among 8 compute units. Therefore, each
rack has a storage capacity of 312TB in total. In our simulation environment, there are
180 racks, i.e. 1440 compute units and a capacity of 800PB. The read/write speed of each
compute unit is set to 1024Mb/sec. and the network read speed is set to 500Mb/sec. In
our simulation, if the file the task needs is in the storage space of the compute unit or
in the rack where the compute unit belongs to, the scheduler executes the task on this
machine using the read/write speed of the compute unit. If not, the task is regarded to
be executed on the remote machine using the network read speed. Task generator module
is responsible for generating task sets for the scheduler to test. To generate different task
sets, the scheduler allows users to define four variables: 1) task amount, based on which
the module generates enough test tasks; 2) arrival rate, which controls the arrival time of
tasks based on Poisson distribution; 3) average data size, which defines the averaged size
of data required by jobs; 4) average data sharing probability, based on which the module
generates the corresponding task sets. Note, the data sharing probability of each task
is uniformly distributed. The scheduler module is responsible for running the scheduling
simulation using the datasets generated by the above mentioned computing center mod-
ule and task generator module. Also, the scheduler records the simulation results for the



Shareability and Locality Aware Scheduling Algorithm 1225

subsequent analysis. Detailed descriptions and analysis of the simulation results are given
below.

Figure 4. GUI of three modules of the simulation system

4.2. Simulation Results. In this paper, we adopt four control variables as the criterion
to generate test datasets: task amount, average arrival rate, average data size and aver-
age data sharing probability. We conduct the scheduling simulation using different test
datasets and analyze the performance improvement of FSLA as follows.

1) Task amount
Figure 5 shows the scheduling simulation on task amount and reveals that the increase

of task amount obviously has an impact on FIFO, but not on Shared-Scan and our pro-
posed FSLA because Shared-Scan and FSLA both have batch process design and thus
are unaffected when the task amount gets larger. Our proposed FSLA reaches 27%-
87% improvement compared with FIFO and 1.73%− 2.27% improvement compared with
Shared-Scan.

Figure 5. Simulation result of different task amounts

2) Arrival Rate



1226 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

Figure 6 shows the scheduling simulation on task arrival rate and reveals that our pro-
posed FSLA has a lower AAPWT than FIFO and Shared-Scan. FSLA reaches 3% −
86% improvement compared with FIFO and 0.75% to 5.7% improvement compared with
Shared-Scan. We found that when the arrival rate is low, the performance improvement
of FSLA is quite limited. But, when the arrival rate gets higher, the performance im-
provement becomes better.

Figure 6. Simulation result under various arrival rates

3) Average data size
Figure 7 shows the scheduling simulation on the average data size. The average data

size starts from 4GB and doubles until it reaches 1TB. The figure reveals that when the
average data size becomes bigger, the AAPWT of FIFO increases very quickly but that of
FSLA increases slowly. Our proposed FSLA reaches 10%− 79% improvement compared
with FIFO and 1.37%− 6.92% improvement compared with Shared-Scan.

Figure 7. Simulation result under various data sizes

4) Average data sharing probability
Figure 8 shows the scheduling simulation on the average data sharing probability. Com-

pared with FIFO, FSLA reaches 67%− 79% improvement. Compared with Shared-Scan,



Shareability and Locality Aware Scheduling Algorithm 1227

FSLA reaches 0.83% − 2.78% improvement. When the average data sharing probability
> 0.1%, FSLA obviously outperforms FIFO.

Figure 8. Simulation result of different data sharing probabilities

Previous simulation results show that our proposed FSLA has a lower AAPWT than
FIFO and Shared-Scan. Moreover, using no matter the average data sharing probability
or the exact data sharing probability to compute the optimum of waiting time has little
influence on the performance.

5) Locality-ratio
The locality ratio represents the percentage of tasks among all tasks that are executed in

a machine that contains their needed files and without transferring files from network. The
locality ratio of algorithm is important because higher locality ratio implies lower network
overhead and can benefit from caching mechanism. Here, we compare the locality-ratio of
FSLA, FIFO and Shared-Scan in different situations. Figure 9 shows the locality ratio in
different task amount and reveals that FSLA has a higher locality ratio than FIFO and
Shared-Scan. The change of task amount has little influence on the locality ratio.

Figure 9. Locality ratio vs. task amount

Figure 10 shows the locality ratio in different arrival rate. The figure reveals that the
locality ratio of FSLA gradually decreases when the arrival rate increases because the



1228 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

possibility of idle machines in the system is small. In this way, the probability to execute
a task in the machine that contains a replica of the corresponding data is comparatively
low. Therefore, the locality ratio decreases when the arrival rate increases. Nevertheless,
compared with the other two algorithms, FSLA has an obviously higher locality ratio and
thus can decrease the network load substantially.

Figure 10. Locality ratio vs. arrival rate

Figure 11 shows the locality ratio under various data size. Similarly, locality ratio of
FSLA gradually decreases when the data size increases because the task needs larger data
may occupied a machine longer that force other tasks to be executed in other machines
without locality concern.

Figure 11. Locality ratio vs. average data size

Figure 12 shows the locality ratio in different data sharing probability. The locality
ratio of FSLA declines when data sharing probability is increased. This is because of that
while data sharing probability is increased but still not large enough, the possibility of
FSLA to put a task into waiting queue is also increased but lead to FSLA to select another
task without locality consideration. However, compared with the other two algorithms,
FSLA still has an obviously higher locality ratio.



Shareability and Locality Aware Scheduling Algorithm 1229

Figure 12. Locality ratio vs. data sharing probability

5. Conclusion. In Hadoop framework, different scheduling algorithms have different im-
pact on system performance. Therefore, this paper proposed FSLA, a FIFO-based sched-
uling algorithm that consider data shareability and data locality to improve the system
performance and enhance the benefits of caching mechanism. In FSLA, there are two
queues base queue and waiting queue to classify the tasks into two types: one does not
need to wait for other tasks and another that needs to wait for other tasks. Through
the classification, if the arrival rate of tasks is high and the requested files are large,
FSLA outperforms the commonly used FIFO. Assuming the tasks entering the system
all require small files, FSLA still performs better than FIFO. According to the AAPWT
computed from the algorithms, the simulation results show that AAPWT of the proposed
FSLA compared to that of FIFO and Shared-scan is improved in 26.75% − 82.75% and
1.17% − 4.42%, respectively. Moreover, the locality ratio of FSLA is around 40% better
than that of FIFO and Shared-Scan. In conclusion, FSLA outperform than others because
the proposed FSLA is based on FIFO and further considers data shareability and data
locality aware. Using our proposed FSLA in Hadoop framework not only brings good
computing efficiency but also reduces the network load.

In this paper, the capability of each node is not considered in the scheduling algorithm
and all nodes are assumed to have the same computing power and storage capacity, which
might not be true in real world system. Therefore, our future work is to take node’s
capability into consideration when study job scheduling. Moreover, we will also study
the features of applications for improving the system performance and further expand the
results to QoS consideration.

Acknowledgment. This work is partially supported by the MOST(Ministry of Science
and Technology) research grants MOST-103-2221-E-032-035, MOST-103-2221-E-197-019,
MOST-104-2221-E-032-008. The authors also gratefully acknowledge the helpful com-
ments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] P. Agrawal, D. Kifer, & C. Olston, Scheduling shared scans of large data files, Proc. of the VLDB
Endowment, pp. 958-969, 2008.

[2] T.Y. Chen, H.W. Wei, M.F. Wei, Y.J. Chen, T.s. Hsu, & W.K. Shih, LaSA: A locality-aware
scheduling algorithm for hadoop-MapReduce resource assignment, Proc. of International Conference
on the Collaboration Technologies and Systems (CTS), pp. 342-346, 2013.



1230 H. W. Wei, T. Y. Wu, W. T. Lee, and C. W. Hsu

[3] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, & R. Sears, MapReduce online,
Proc. of the 7th USENIX conference on Networked systems design and implementation, vol. 10, no.4,
2010.

[4] J. Dean, & S. Ghemawat, MapReduce: Simplified data processing on large clusters, Communications
of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[5] J. Dean, & S. Ghemawat, MapReduce: A flexible data processing tool, Communications of the ACM,
vol. 53, no. 1, 72-77, 2010.

[6] J. Dittrich, J. Quiané-Ruiz, A. Jindal , Y. Kargin, V. Setty, & J. Schad, Hadoop++ : Making a
yellow elephant run like a cheetah (without it even noticing), Proc. of the VLDB Endowment, pp.
515-529, 2010.

[7] H.T. Dinh, C. Lee, D. Niyato, & P. Wang, A survey of mobile cloud computing: architecture,
applications, and approaches, Wireless Communications and Mobile Computing, vol. 13, no. 18, pp.
1587-1611, 2013.

[8] A. Floratou, J.M. Patel, E.J. Shekita, & S. Tata, Column-oriented storage techniques for MapReduce,
Proc. of the VLDB Endowment, pp. 419-429, 2011.

[9] S. Gupta, C. Fritz, B. Price, R. Hoover, & J. de Kleer, ThroughputScheduler: Learning to Schedule
on Heterogeneous Hadoop Clusters, Proc. of the International Conference on Autonomic Computing
(ICAC ’13), 2013.

[10] Hadoop. Welcome to apacheTM hadoop!. http://hadoop.apache.org/
[11] D. Jiang, B.C. Ooi, L. Shi, & S. Wu, The performance of MapReduce: An in-depth study, Proc. of

the VLDB Endowment, pp. 472-483, 2010.
[12] M.A. Kozuch, M.P. Ryan, R. Gass, S.W. Schlosser, D. O’Hallaron, J. Cipar, & G.R. Ganger, Tashi:

Location-aware cluster management, In the Proc. of the 1st Workshop on Automated Control for
Datacenters and Clouds, pp. 43-48, 2009.

[13] W. Lang, & J. M. Patel, Energy management for mapreduce clusters, Proc. of the VLDB Endowment,
pp. 129-139, 2010.

[14] K. Lee, Y. Lee, H. Choi, Y.D. Chung, & B. Moon, Parallel data processing with MapReduce: A
survey, ACM SIGMOD Record, vol. 40, no. 4, pp. 11-20, 2011.

[15] B. Li, E. Mazur, Y. Diao, A. McGregor, & P. Shenoy, A platform for scalable one-pass analytics using
MapReduce, In the Proc. of the 2011 ACM SIGMOD International Conference on Management of
Data, pp. 985-996, 2011.

[16] Y.C. Li, I.J. Liao, H.P. Cheng, & W.T. Lee, A cloud computing framework of free view point real-
time monitor system working on mobile devices, In International Symposium on Intelligent Signal
Processing and Communication Systems, pp. 1-4, 2010.

[17] A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden, & M. Stonebraker, A compari-
son of approaches to large-scale data analysis, In the Proc. of the 2009 ACM SIGMOD International
Conference on Management of Data, pp. 165-178, 2009.

[18] W.z. Sun & X.j. Wang, The Optimization of Hadoop Scheduling Algorithms on Distributed System
for Processing Traffic Information, Proc. of International Conference on Soft Computing Techniques
and Engineering Application, 2013.

[19] Z. Wang, Z.d. Zhu, P.f. Zheng, Q. Liu, & X. Dong, A new scheduler strategy for heterogeneous
workload-aware in hadoop, Proc. of 8th ChinaGrid Annual Conference (ChinaGrid), 2013.


