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Abstract. Nowadays, almost all images acquired are in color format. Traditional meth-
ods process color images by either transforming them into gray scale or dividing them
into red, green, and blue components for independent processing, which is definitely not
effective in representing color information. Recently, a novel Polar Linear Canonical
Transform (PLCT) with parameters in SL(2,<) has been reported, which is a general-
ization of the well-known Polar Harmonic Transform (PHT). However, PLCT is defined
on gray-scale images, so it cannot handle color images directly. To solve the problem, this
paper generalizes PLCT from complex domain to hypercomplex domain using quaternion
algebras, producing the Quaternion Polar Linear Canonical Transform (QPLCT). The
performance of QPLCT is then evaluated with Quaternion Fractional Polar Exponential
Transform (QPFrET) as an example. The experimental results show that the QPLCT
performs better than the commonly used Quaternion form Zernike Moment (QZM) and
pseudo-Zernike Moment (QPZM) in terms of image representation capability and nu-
merical stability.
Keywords: Orthogonal transforms, Quaternion polar linear canonical transform, Quater-
nion fractional polar exponential transform, Rotation invariance

1. Introduction. Nowadays, almost all images acquired are chromatic. However, most
of the current image processing algorithms process color images by first converting them
into gray scale. An alternative way is to divide color images into red, green and blue
channels for independent processing. This definitely loses significant color information
and cannot capture the correlation among color channels. In order to solve these prob-
lems, quaternion theory has been introduced into color image processing, such as image
watermarking [1], sparse representation [2], image quality assessment [3] and image au-
thentication [4]. The use of quaternion-based moment functions to color images has also
been proposed recently [5, 6, 7, 8].

Orthogonal moments/transforms have been widely used in image analysis, such as
data hiding [9], visual quality assessment [10] and image forensics [11]. Yap et al. [12]
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introduced the Polar Harmonic Transforms (PHTs) based on trigonometric functions,
which are extremely simple to compute. Compared with other orthogonal moments, PHTs
have better image representation capability, lower noise sensitivity, and low computational
complexity. Since their first appearance, PHTs have been widely used in a variety of
applications, such as image watermarking [13] and fingerprint classification [14]. Recently,
Qi et al. [15] introduced a novel orthogonal transform namely Polar Linear Canonical
Transform (PLCT), which is based on the linear canonical transform. It is worthy noting
that the Fractional Polar Exponential Transform (PFrET) [16] is a special case of the
PLCT. Furthermore, the Polar Complex Exponential Transform (PCET) [12], which is
one form of PHT, is a special case of the PFrET.

The advantage of using the quaternion theory is that a color image can be treated as a
vector field and processed directly, without losing color information. As a generalization
of PCET, PLCT holds all good properties of PHTs. However, the PLCTs can not handle
color image in a holistic manner, which restricts its practical applications for color im-
ages. In this paper, we generalize PLCTs from the complex domain to the hypercomplex
domain using quaternion algebras. We test the performance of the proposed QPLCT on
color images and compare its performances with the well-known quaternion form Zernike
moments (QZM) and pseudo-Zernike moments (QPZM). Experimental results demon-
strate the advantages of the proposed method in terms of image representation capability
and numerical stability.

2. Preliminaries. In this section, we briefly review the Polar Linear Canonical Trans-
form (PLCT) for gray images and introduce some basic definitions of the quaternion.

2.1. Definition of PLCT. Polar Linear Canonical Transform (PLCT) [15] of order n
with repetition l, |n| = |l| = 0, 1, 2, ...,∞, is defined as

MA
nl =

1

π

∫ 2π

0

∫ 1

0

HA
nl(r, θ)f(r, θ)rdrdθ

=
1

π

∫ 2π

0

∫ 1

0

RA
n (r)eilθf(r, θ)rdrdθ, (1)

where HA
nl(r, θ) denotes the kernel consisting of an angular part eilθ and a radial part

RA
n (r) with A =

[
a b
c d

]
∈ SL(2,<); RA

n (r) = exp{−iKA
n (r)} = exp{−i

2b
[d(2πnb)2 −

4πnbr2 + ar4]}, and ∗ denotes the complex conjugate.
It is obvious that the component b of A is not equal to zero, otherwise the transform

is not rational. Moreover, |HA
n,l(r, θ)| 6= |HA

−n,−l(r, θ)| and |MA
n,l(r, θ)| 6= |MA

−n,−l(r, θ)| if

A 6=
[

0 b
−1/b 0

]
.

The radial part satisfies the orthogonality condition:∫ 1

0

RA
n (r)RA

n′(r)rdr =
1

2
δnn′ , (2)

and the whole kernels satisfy∫ 2π

0

∫ 1

0

HA
nl(r, θ)H

A
n′l′(r, θ)rdrdθ = πδnn′δll′ . (3)

Since the kernels HA
nl(r, θ) satisfy the orthogonality condition, so the PLCT is an or-

thogonal transform. In addition, the series {exp(ikπt/T ), |k| = 0, 1, 2, ...,∞} is a set of
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completely orthogonal basis on t ∈ [0, 2T ]. Hence, the kernels HA
nl(r, θ) of PLCT are

complete in [0, 1]× [0, 2π].

When A =

[
cosα sinα
− sinα cosα

]
, PLCT becomes the PFrET:

Mα
nl =

1

π

∫ 2π

0

∫ 1

0

Hα
nl(r, θ)f(r, θ)rdrdθ, (4)

with the kernel

Hα
nl(r, θ) = Rα

n(r)eilθ

= exp{− i
2

[(2πn sinα)2 + r4] cotα + i2πnr2}eilθ, (5)

where α ∈ [0, 2π], except for 0, π, 2π. Moreover, when R
π
2
n (r) = exp{i2πnr2} with α =

π/2, PFrET becomes the PCET [12].
The PLCT is defined continuously in a unit circle domain. For an M×N image g(p, q),

it is first transformed into the unit domain (xp, yq) ∈ [−1, 1]× [−1, 1] :

xp =
p−M/2

M/2
, yq =

q −N/2
N/2

. (6)

Then the PLCTs can be computed as

MA
nl =

1

π

M−1∑
p=0

N−1∑
q=0

H ′nl(xp, yq)f
′(xp, yq)∆x∆y

=
4

πMN

M−1∑
p=0

N−1∑
q=0

H ′nl(xp, yq)f
′(xp, yq), (7)

where f ′(xp, yq) = g[p, q], x2p + y2q ≤ 1, and ∆x = 2/M,∆y = 2/N .

2.2. Quaternion Algebra. Quaternions, a generalization of the complex numbers, were
introduced by the mathematician Hamilton in 1843 [17]. A quaternion with one real part
and three imaginary parts can be written as follows:

q = a+ bi+ cj + dk, (8)

where a, b, c and d are real numbers, and i, j, k are three imaginary units obeying the
following rules:

i2 = j2 = k2 = −1, (9)

ij = −ji = k, jk = −kj = i, ki = −ik = j. (10)

As shown in Eq.(10), the quaternion multiplication is not commutative. If a = 0, then
q = bi+ cj + dk is called a pure quaternion, and if q has a unit norm (|q| = 1), then q is
called unit pure quaternion.

The conjugate and modulus of a quaternion are respectively defined by

q = a− bi− cj − dk. (11)

|q| =
√
a2 + b2 + c2 + d2. (12)

For any two quaternions p and q, pq = q.p holds. Euler’s formula holds for quaternions,
namely eqϕ = cosϕ + q sinϕ, with |eqϕ| = 1. In [18], Sangwine proposed to encode the
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three channel components of a RGB image using the three imaginary parts of a pure
quaternion. In other words, a RGB format color image can be represented as

f(x, y) = fR(x, y)i+ fG(x, y)j + fB(x, y)k, (13)

where fR(x, y), fG(x, y), and fB(x, y) represent the red, green and blue components, re-
spectively. A more complete discussion about the properties of quaternion can be found
in [19].

3. Quaternion Polar Linear Canonical Transform.

3.1. Definition of QPLCT. Let f(r, θ) be a RGB image defined in polar coordinates,
we define the left-side Quaternion Polar Linear Canonical Transform (QPLCT) of order
n with repetition l as

ML
nl =

1

π

∫ 2π

0

∫ 1

0

exp{µKA
n (r)}e−µlθf(r, θ)rdrdθ

=
1

π

∫ 2π

0

∫ 1

0

e
µ
2b

[d(2πnb)2−4πnbr2+ar4]e−µlθf(r, θ)rdrdθ, (14)

where µ is a unit pure quaternion, which is µ = (i+ j + k)/
√

3 in this paper.
The right-side QPLCT can be obtained by reversing the orders of image and transform

kernel in Eq.(14):

MR
nl =

1

π

∫ 2π

0

∫ 1

0

f(r, θ)exp{µKA
n (r)}e−µlθrdrdθ. (15)

A color image can be reconstructed by its QPLCT coefficients, and the reconstructions
based on left-side and right-side QPLCT coefficients can be written as follows:

f(r, θ) =
+∞∑

n=−∞

+∞∑
l=−∞

exp{−µKA
n (r)}eµlθML

nl, (16)

f(r, θ) =
+∞∑

n=−∞

+∞∑
l=−∞

MR
nlexp{−µKA

n (r)}eµlθ. (17)

3.2. Relationship Between Left-Side and Right-Side QPLCTs. In Eq.(14), if A =[
0 b
−1/b 0

]
, it becomes QPCET. In [20], Li has analyzed the relationship between the left-

side and right-side QPCET, namely ML
n,l = −MR

−n,−l. On the contrary, if A 6=
[

0 b
−1/b 0

]
,

we have

ML
n,l =

1

π
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∫ 1

0
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n (r)}eµlθrdrdθ

= − 1

π
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0

∫ 1

0

f(r, θ)exp{−µKA
n (r)}eµlθrdrdθ, (18)
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π
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0

∫ 1

0

exp{−µKA
n (r)}eµlθf(r, θ)rdrdθ

= − 1

π

∫ 2π

0

∫ 1

0

exp{−µKA
n (r)}eµlθf(r, θ)rdrdθ. (19)
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Based on Eq.(18) and Eq.(19), we know that the left-side and right-side QPLCTs are

related by ML
n,l(µ) = −MR

n,l(−µ) and MR
n,l(µ) = −ML

n,l(−µ).

3.3. Rotation Invariants. Let f ′ be the rotated version of f , i.e, f ′(r, θ) = f(r, θ− α),
where α denotes the rotation angle, then the QPLCTs of the two images are related by

ML
nl(f

′) =
1

π

∫ 2π

0

∫ 1

0

e−µlθexp{µKA
n (r)}f ′(r, θ)rdrdθ

=
1

π

∫ 2π

0

∫ 1

0

e−µlθexp{µKA
n (r)}f(r, θ − α)rdrdθ

=
1

π

∫ 2π

0

∫ 1

0

e−µl(θ+α)exp{µKA
n (r)}f(r, θ)rdrdθ

= e−µlα
1

π

∫ 2π

0

∫ 1

0

e−µlθexp{µKA
n (r)}f(r, θ)rdrdθ

= e−µlαML
nl(f). (20)

Likewise, the right-side QPLCTs are related by MR
nl(f

′) = MR
nl(f)eµlα. Therefore, the

modulus of QPLCT coefficient is invariant to image rotation.
When computing the rotation invariants, modulus only contain part of the moment

information, because the phase information is not considered. In this paper, we define a
new rotation invariant.

Theorem 3.1. The scalar Φl
nm(f) = ML

nl(f)ML
ml(f) is invariant to image rotation for

any order n and m with repetition l, which satisfy |n|+ |l| ≤ T and |m|+ |l| ≤ T .

Proof: Let f ′ be any rotated version of f , we have:

Φl
nm(f ′) = ML

nl(f
′)ML

ml(f
′)

= ML
nl(f)eµlαe−µlαML

ml(f)

= ML
nl(f)ML

ml(f)

= Φl
nm(f). (21)

Similarly, we have Φl
nm(f) = MR

nl(f)MR
ml(f). In fact, if n = m, ΦL

nl(f) = ML
nl(f)ML

nl(f) =

|ML
nl(f)|2. For right-side QPLCTs, ΦR

nl(f) = MR
nl(f)MR

nl(f) = |MR
nl(f)|2.

4. Experiments. In this section, several experiments are carried out to test the perfor-
mance of the proposed QPLCT, with QPFrET as an example. We will first discuss the
impact of the parameter α. Then image reconstruction using QZM, QPZM and QPFrET
are carried out to test their image representation capabilities. Finally, we validate the
rotation invariance of QPFrET. Thirty test images from CSIQ [21] database with size
128 × 128 are used to conduct the experiments, which are shown in Fig.1. In the image
reconstruction experiment, the difference between an image and its reconstructed version
is measured using the Root-Mean-Squared Error (RMSE), which is defined as follows:

RMSE =

√∑
x′2+y′2≤1[f(x, y)− f̂(x, y)]2

|{(x′, y′)|x′2 + y′2 ≤ 1}|
. (22)
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Figure 1. Thirty test images used in the experiments.

4.1. Impact of Parameter α. In this subsection, we show the impact of parameter α
on the image reconstruction ability of QPFrETs. Considering cot(α) = cot(α + π) and
sin(α) = − sin(α+ π) when α ∈ (0, π), then we have Hα

nl(r, θ) = Hα+π
nl (r, θ). So, we only

discuss α ∈ (0, π). In this experiment, we use different α values to compute the QPFrETs
and approximate images are reconstructed. Then the RMSE values are calculated to
measure the distortions, which can be used to evaluate the image representation abilities.
The simulation results are listed in Table 1.

Table 1. Impact of Parameter α

α\NM 41 145 313 545 1013 1405 1861

0.2π 39.3719 32.5377 28.5646 25.6383 22.3567 20.7317 19.3072

0.5π 39.4010 32.5609 28.5875 25.6654 22.3932 20.7709 19.3479

0.7π 39.3750 32.5426 28.5722 25.6504 22.3759 20.7540 19.3310

Table 1 shows that different parameters α with the same NumberofMoments(NM)
have limited influence on the RMSE values. It is also observed that the QPFrETs have
good image representation capability and show fine numerical stability, regardless of choice
of parameters α.

4.2. Image Representation. Image reconstruction is carried out in this subsection.
In this experiment, QZM, QPZM and QPFrET coefficients of the lenna image are first
calculated. Then the image is reconstructed according to Eq.(16). Let T be a constant,
we have limited the number of moments used in reconstruction based on the following:
QZMs: n− |l| = even, |l| ≤ n ≤ T ; QPZMs: |l| ≤ n ≤ T ; QPFrETs: |l|+ |n| ≤ T .

The reconstruction results are shown in Fig.2. As more moments are added to the
reconstruction process, the reconstructed images get closer to the original image. In
order to verify the image representation capability of the QPFrETs, 30 test images were
used. In Fig.3, we show plots of the average RMSE values of the 30 images. For QZM,
the numerical stability breaks down when the number of moments is increased to 460.
Similar phenomenon happens to QPZM, which does not happen to QPFrET. It can be
observed that the QPFrETs have better numerical stability than QZMs and QPZMs.

4.3. Rotation Invariance. In order to verify the rotation invariance of QPFrET, the
Lenna image is resized to 128× 128, based on which seven rotated versions are produced,
which are shown in Fig.4. Then the rotation invariants are calculated, which are listed in
Table 2. Note that we set α = 0.2π in this experiment.
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Figure 2. Reconstructed images using different types of quaternion moments.
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Figure 3. Average RMSE values of QZM, QPZM and QPFrET

 

Figure 4. The original image and seven rotated versions of it. From left
to right rotation angles are: 0, 30, 60, 120, 150, 210, 280, 330.
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Table 2. Rotation Invariants of QPFrET

|ΦL
0,−1(f)| |ΦL

0,1(f)| |ΦL
0,3(f)| |ΦL

1,−2(f)| |ΦL
1,−1(f)| |ΦL

1,2(f)|
0o 236.4617 368.2300 89.3691 63.6107 71.7578 172.6477

30o 233.2333 363.0605 89.0608 62.2914 72.5711 174.4658

60o 234.7689 364.1322 88.9331 61.9919 72.1775 171.8471

120o 232.5249 362.4330 89.2649 61.9786 72.0885 173.9093

150o 234.0379 362.7529 89.0772 62.3589 72.5747 172.0100

210o 232.4369 362.1215 88.6749 62.1152 72.5215 174.2891

280o 234.9381 364.9644 88.8713 62.6471 73.0832 171.5820

330o 234.3537 363.1164 89.0881 62.1695 72.3730 172.0788

ν 234.0944 363.8514 89.0424 62.3954 72.3934 172.8537

σ 1.3519 1.9952 0.2191 0.5370 0.3965 1.1807

σ/ν% 0.5775 0.5484 0.2461 0.8606 0.5477 0.6831

Table 2 shows the rotation invariants ΦL
nl(f) values and the corresponding σ/ν%, which

indicates the percentage of spread of the ΦL
nl(f) values from their corresponding means,

where ν is their respective sample mean and σ is the sample standard deviation. It can
be seen from the table that excellent results have been obtained.

5. Conclusions. In this paper, we have proposed the Quaternion Polar Linear Canonical
Transform (QPLCT) for color image analysis. The mathematical definitions of QPLCTs
are first presented. Then the properties of QPLCTs are discussed with QPFrET as an
example. A new form of rotation invariance has also been defined with approved. Finally,
the image representation capabilities and numerical stabilities are discussed by experi-
ments on real color images. Experimental results have demonstrated that the proposed
QPLCTs have achieved very promising results, and it outperforms the commonly used
QZMs and QPZMs in terms of both image representation ability and numerical stabilities.
As future works, we will apply the proposed QPLCTs in a variety of applications, such
as color image retrieval and color image watermarking.
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