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Abstract. The maximum flow algorithm has long been known for calculating the mini-
mum edge cut of any two vertices of a connected graph. The original algorithm, however,
does not tell us which edges should be taken exactly and therefore there could be more than
one way to construct a minimum-edge-cut set. In this paper, we propose a new method
to get a minimum-edge-cut set by selecting edges of a graph in the order of betweenness.
By comparing with the augmenting path method, it tends to make the two divided parts
of a graph more balanced.
Keywords: Minimum cut set, Betweenness, Maximum flow.

1. Introduction. Graph partitioning is one of the classical subjects in graph theory and
has many practical applications in traditional aspects, such as chip and circuit design,
robustness enhancement of communication networks, community detection [1] etc. The
simplest graph partitioning problem is the division of a network into just two parts.
Division into two parts is sometimes called graph bisection. Formally, the graph bisection
problem is the problem of dividing the vertices of a network into two non-overlapping
groups of given sizes such that the number of edges running between vertices in different
groups is minimized. The number of edges between groups is called the cut size. Recently,
the graph partition problem has gained more importance due to its application for clique
detection [2] in social, and biological networks. Finding the minimum cut of any pair of
nodes in undirected, edge-weighted graphs is a fundamental problem in graph partitioning.
Precisely, the purpose is to find a way to set the pair of vertices separately into two parts
such that the cut weight, i.e., the sum of the weights of the edges connecting the two parts,
is minimum. The well-known approach to solve this problem is to use the Max-Flow-Min-
Cut theorem by Ford and Fulkerson who showed the equivalence of the maximum flow and
the minimum s-t-cut, where s and t are two vertices that are the source and the sink in
the flow problem and have to be separated by the cut set. Based on this idea, the classical
augmenting path method can provide us a construction of a minimum cut set. However,
the augmenting path method only gives us a certain one of possible minimum cut sets
and tells nothing else. Is there any approach better than the almost random method(i.e.
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augmenting path method) when partitioned graphs are expected to have some structural
characteristics? In next sections, we will discuss this problem in more detail and propose
a new method to construct a minimum s-t-cut set.

2. Problem Statement and Preliminaries. In an undirected, unweighted network, a
cut set, or more precisely an edge cut set, is a set of edges whose removal will disconnect
a specified pair of vertices. Although the definitions here apply equally to directed and
weighted ones, for simplicity, we just consider undirected, unweighted graphs in this paper.
There is also anther definition of cut set called a vertex cut set which is a set of vertices
whose removal will disconnect a specified pair of vertices. But in this paper we simply
consider the former one, i.e., edge cut set. A minimum edge cut set is an edge cut set
with the least edges. It is notable that a minimum cut set is not necessarily unique. For
instance, there are different minimum edge cut sets of size two between the vertices A
and B in a network as showed in Fig.1, where X,Y, W,Z and V,W are all minimum edge
cut sets for this network. Of course, all the minimum cut sets must have the same size.
Calculating the size of a minimum edge cut set directly is a rather difficult problem, thus
it is usually translated to another simpler one, the so called maximum flow.

Figure 1. The vertices A and B in this network have more than one min-
imum edge cut sets, such as {X,Y}, {W,Z} and {V,W}.

Imagine a network consisting of water pipes, where the edges of the network correspond
to the pipes and the vertices to junctions between pipes. Suppose that there is a maximum
rate r, in terms of volume per unit time, at which water can flow through any pipe. What
then is the maximum rate at which water can flow through the network from one vertex,
A, to another, B? This is the maximum flow question.

The well-known max-flow-min-cut theorem indicates that the maximum flow between
two vertices is always equal to the size of the minimum cut set times the capacity of a
single pipe. Here the maximum rate r=1 corresponds to an unweighted network.

The equivalence of the maximum flow and the minimum cut set size has an important
practical consequence. There are simple computer algorithms, such as the augmenting
path algorithm [3] that can calculate maximum flows quite quickly (O(|E|2log|V |)) for
any given network, and the equivalence means that we can use these same algorithms to
quickly calculate a minimum cut set as well.

The augmenting path algorithm to construct a minimum edge cut set is defined as
follow:

Step 1. Pick a pair of vertices, say S and T, in a graph.
Step 2. Calculate the maximum flow from S to T.
Step 3. In the final residual graph generated by step 2, let Vs be the subset of vertices

reachable from S by some paths and let Vt be the set of all the other vertices in the graph
that are not in Vs. By definition Vs and Vt do not share any vertices and all vertices in
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the graph belong to either Vs or Vt. Then the set of edges on the original graph that
connect vertices in Vs to vertices in Vt constitutes a minimum cut set.

At last, we get one of possible minimum edge cut sets.
The drawback of this augmenting path method is that we cannot control the result of

partition. In other words, the obtained minimum cut set depends on the constructing of
the final residual graph which may not be unique for a graph. For instance, in Fig.1, if
we get the minimum cut set {X,Y} or {V,W}, the size of the largest component of the
divided graph is 4, 80% of the original graph size and if we get the minimum cut set
{W,Z}, the size of the largest component of the divided graph is 3, 60% of the original
graph size. One might imagine that one could simply look through all possible minimum
cut sets and select what we want. For all but small networks, however, this exhaustive
search turns out to be costly in terms of computer time. So we want to find another way
to construct a minimum cut set if some characteristics of the graph to be divided are
expected, such as the size of the largest component.

Betweenness centrality is a core concept for the analysis of social networks. It was in-
troduced independently by Freeman [4] and Anthonisse whose work was never published
[5] and measures a node’s or an edge’s centrality in a network. Over the past few years,
betweenness centrality has become a popular strategy to deal with complex networks.
Applications include social and computer networks [6, 7], transport [8], scientific coopera-
tion [9] and so forth. In this paper we only concern ourselves with betweenness centrality
in terms of edges. It is equal to the number of shortest paths from all vertices to all others
that pass through that edge.

The betweenness of an edge e is given by the expression:

g(e) =
∑
s 6=t

σst(e)

σst
(1)

Where σst is the total number of shortest paths from node s to node t and σst(e) is the
number of those paths that pass through edge e.

Edges with high betweenness centrality may have considerable influence within a com-
munication network. They are the ones through which the largest number of messages
pass. The edges with highest betweenness are also the ones whose removal from the net-
work will most disrupt communications between other vertices because they lie on the
largest number of paths taken by messages.

3. Combination of Maximum Flow and Betweenness. As can be seen above, the
drawback of augmenting path method is that it does not fully utilize structural character
of the graph and does not give us any insights into the impact of minimum cut sets on
networks.

On that account, we propose our methodology which takes advantage of the structural
feature, i.e., betweenness, of a network. The algorithm is described as follows:

Step 1: Pick a pair of vertices S and T in a graph.
Step 2: Calculate the maximum flow (denoted by MF) from S to T.
Step 3: Calculate the betweenness of every edge in the graph.
Step 4: Choose the edge with the highest betweenness and test whether it is in the

minimum cut set. If MF is reduced after removing the edge, it is in a minimum cut set,
otherwise it is not. If it is in the minimum cut set, the edge is therefore removed from
the network and we recalculate the betweenness of all edges since the network has been
changed. If it is not in the minimum cut set, we choose the edge with the second highest
betweenness to test, and so forth.
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Step 5: Repeat Step 4 until MF from S to T becomes zero.
The hightest betweenness can also be replaced by the lowest one, i.e., the edges with the

lowest betweenness are tested first. In next section, we will show the differences between
these methods.

4. Experimental Results. To demonstrate the superior of the hightest-betweenness-
order based method to the augmenting path method and show the difference between
the hightest-betweenness-order based method and the lowest-betweenness-order based
method, we produce 100 connected community networks at random and apply the aug-
menting path method, the hightest-betweenness-order method and the lowest-betweenness-
order method respectively. The parameters of these simple community networks are: The
number of vertices N = 100; The number of groups G = 8; The probability of nodal
connection in a group Pi = 0.18; The probability of nodal connection between groups
Po = 0.018. At first we select two vertices with the highest and second highest degree
respectively. Then let n1 and n2 be the sizes of the two components produced by removal
of the minimum edge cut set, where N = n1 + n2. Let E = n1 × n2 which has its largest
value when n1 = n2 and the smallest value when n1 = 1 or n2 = 1. We will measure E as
an indication of the balance of the resulting networks.

Figure 2. Comparison of highest-betweenness order and augmenting path method.

From Fig.1 and Fig.2, we can see that selecting edges in the highest-betweenness order
tends to make the resulting two components more balanced, i.e., the difference of the
number of vertices in the two components is relatively small. On the other hand, selecting
edges in the lowest-betweenness order makes the two components drastically unbalanced
compared to the highest-betweenness order method.

In Fig.1, compared with the E values produced by augmenting path method, those
produced by the highest-betweenness method are bigger in 60% graphs, are equal in 30%
graphs, and are only smaller in 10% graphs. This means that the difference between n1
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Figure 3. Comparison of highest-betweenness order and lowest-
betweenness order.

Figure 4. Comparison of lowest-betweenness order and augmenting path method.
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and n2 is smaller in 60% graphs when using the highest-betweenness-order method. In
Fig.3, the difference of E values between the augmenting path method and the lowest-
betweenness-order method is not significant since the E values of augmenting path method
are smaller in 36% graphs, equal in 30% graphs and larger in 34% graphs. This result indi-
cates that the highest-betweenness-order method is an advisable alternative to augmenting
path method if we want to minimize the difference of the resulting two components.

5. Conclusion. This paper proposes a new method to construct a minimum edge cut set
based on maximum flow. We make use of edge betweenness when finding a minimum edge
cut set. Experimental results demonstrate that our highest-betweenness-order method is
superior to the original augmenting path method when two divided parts of a graph are
expected to be more balanced. Future work will focus on the combination of minimum
vertex cut set and vertex betweenness and its impacts on networks.
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