
Journal of Information Hiding and Multimedia Signal Processing c©2015 ISSN 2073-4212

Ubiquitous International Volume 6, Number 5, September 2015

Combinatorial Test Suites Generation Method Based
on Fuzzy Genetic Algorithm

Chang-An Wei, Yun-Long Sheng and Shou-Da Jiang

Department of Automatic Testing and Control
Harbin Institute of Technology

no. 2 Yi-Kuang Street, Nangang District, Harbin, 150080, China
weichangan@hit.edu.cn; 13B901008@hit.edu.cn; jsd@hit.edu.cn

Jian-Feng Wang

China Shipbuilding Industry Technology and Economy Research Institute
no. 70 Southern College Road, Haidian District, Beijing, 10081, China

hit08b901005@126.com

Received March, 2015; revised May, 2015

Abstract. In this paper, we present an algorithm for generating combinatorial test
suites using Fuzzy Genetic Algorithm (FGA). According to the problem of falling into
local optimum of the traditional Genetic Algorithm (GA) method, we introduce the fuzzy
control method to select the cross and variation probability adaptively using the entropy
and discrete degree in the population, which improves the efficiency and reduces the
time of generating the test data. Compared to other well-known algorithms, the final
experiment results show the competitiveness of our algorithm both in the test suite size
and the running time.
Keywords: Combinatorial Testing, Software Test, Fuzzy Genetic Algorithm.

1. Introduction. Software errors are usually caused by interaction of parameters. A
study found that software errors caused by a single parameter only account for 20% to
40% of the total, caused by interaction of two parameters account for 70%, and caused
by three parameters account for about 90% [1, 2]. With the increasing number of param-
eters, the scale of the test suites and the degree of the complexity of algorithms grows
exponentially. That is why pairwise testing has always been the research hotspot in the
field of combinatorial testing.

As a special form of software, embedded software has characteristics of real-time, em-
bedded, high-reliability requirements and complex parameters, which makes it particu-
larly necessary and more complex to take depth testing on it. In this paper, we apply
the combinatorial testing methods to embedded software testing. The automatic test of
embedded software can be implemented through automatically injecting test data and
getting test result through hardware interfaces. The generation of the test suites is an
important part of embedded software test. This paper focuses on the method of generat-
ing combinatorial test suites of embedded software. At present, the test suites generation
method includes algebraic construction, greedy algorithm, heuristic intelligent algorithm,
etc [3]. Orthogonal design [4] and TCconfig [5] are the chief methods among the alge-
braic construction. Greedy algorithm consists essentially of AETG, TCG, IPO, etc. Ant
Colony Algorithm [6], Particle Swarm Optimization [7, 8, 12], Evolutionary Algorithm [9]
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and Genetic Algorithm [10, 11] belong to intelligent algorithm. Compared to greedy algo-
rithm, heuristic algorithm can return better result, but most heuristic algorithms require
multiple matrix computing, which consume a lot of time.

Genetic Algorithm is widely used in generating combinatorial test suites, but it has
the problem of falling into local optimum, which will cause large amount of test data
and long generation time. To deal with this problem, we introduce fuzzy control method
to improve Genetic Algorithm. By selecting the genetic operator under the adaptively
control of the entropy and discrete degree in the population, increasing the cross and
variation probability when the diversity of the population becomes worse, the population
will evolve in the direction of global optimum, making a smaller amount of test data and
a shorter generation time.

2. Background and Definitions. Considering a Software Under Test (SUT) that has
k parameters, assume that these parameters each has v1, v2, · · · , vk values, that is to say,
for i(1 ≤ i ≤ k), there are vi values which are represented by 0, 1, · · · , vi−1. Use notation
[0, vi− 1] to represent the set{0, 1, · · · , vi− 1}. Meantime, assume that each parameter is
independent in value. Referring to the current common combinatorial test model, make
definitions as followed:

Definition 2.1. Interaction, Point. Assume I = {(i1, ai1), (i2, ai2), · · · , (it, ait)}, and ij
differs from each other, aij ∈ [0, vij − 1](j = 1, 2, · · · , t), then it is named a t-way interac-
tion if |I| = t, the 1-way interaction {(ij, aij)} can be named point, devoted by (ij, aij) as
simple. In addition, let EI = {i1, i2, · · · , it} devote the set of all factors corresponding to
an interaction I, and Ht = {I|I = {(i1, ai1), (i2, ai2), · · · , (it, ait)}} devote all of the t-way
interaction in the SUT.

Definition 2.2. Test Data. A test data is a k-tuple T = (t1, t2, · · · , tk), ti ∈ [0, vi−1](i =
1, 2, · · · , k). A test data T = (t1, t2, · · · , tk) covers interaction
I = {(i1, ai1), (i2, ai2), · · · , (it, ait)} if T (ij) = aij(j = 1, 2, · · · , t), devoted by T ⊇ I. Let
HT,t devote the set of all t-way interactions covered by T . Thus, a test data covers exactly(

k
t

)
t-way interactions.

Definition 2.3. Mixed Cover Array. Assume that A is a n × k matrix. The factor of
the ith column has values from alphabet [0, vi − 1] and every possible t-way interaction
is covered by some row, or in other words, ∀I ∈ Ht , there exists at least one row r
(corresponding to a test case) such that A[r, ij] = aij . Then, A is called a mixed covering
array, denoted by MCA(n; t, (v1, v2, · · · , vk)). Especially, if v1 = v2 =, · · · ,= vk = v, we
call the objects simply covering arrays (CAs) and simplify the notation to CA(n; t, k, v).

In addition, if some columns take the same possible values, the number of factors k is
omitted, so an MCA(n; t, (v1, v2, · · · , vk)) can be also devoted by
MCA(N ; t, Sp1

1 , Sp2
2 , · · · , Spr

r ), k =
∑r

i=1 pi, and the same as CAs.

Definition 2.4. Discrete Degree of Two Test Data. Considering test data
T1 = (t11, t12, · · · , t1k) and T2 = (t21, t22, · · · , t2k), t1j, t2j ∈ [0, vj − 1](j = 1, 2, · · · , k)

define DT1,T2 =
∑k

j=1
|t1j−t2j |
vj−1 /k as the discrete degree of T1 and T2.

3. Test Suites Generating Algorithm Based on GA. We adopt the one-test-at-one-
time strategy to generate each test data by selecting, crossing and variation using GA,
Repeat the process till the terminal condition is met.

Definition 3.1. Chromosome. Let each test data T = (t1, t2, · · · , tk), ti ∈ [0, vi − 1](i =
1, 2, · · · , k) as a chromosome, ti is a gene of the chromosome and vi is the gene bank.
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Definition 3.2. Adaptive Value Function. Let A be the set of test suites generated already,
Uc be the set of all the interactions that not covered by any test data in A, that is, Uc =
{I|I ∈ Ht,∀Ai ∈ A, I /∈ HAi,t}. So, for a test data x, its adaptive value function is defined
asf(x) = |{Hx,t

⋂
Uc}|.

When an evolution period ends, according to the one-test-at-one-time strategy, select
the test data x that the adaptive value is largest into A, and remove all the t-way inter-
action covered by A from Uc. That is,
∀I = {(i1, ai1), (i2, ai2), · · · , (it, ait)} ∈ x, if ∃I ∈ Uc, then remove I from Uc.

Recalculate the adaptive value of the test suites except for x and reserve test data y
that the adaptive value is largest. Reserving y to next generation helps the population
mature rapidly.

The Test Suites Generating Algorithm Based on GA is given as Algorithm 1.

Algorithm 1 Test Suites Generating Algorithm Based on GA

1: Initialize the generation number M as zero. Initialize the test suites A = Φ. Initialize
the scale of population N . Initialize the set of uncovered t-way interaction Uc;

2: Initialize the population randomly and evaluate each gene of the chromosome;
3: (Selection) Calculate the adaptive value of each chromosome, and sort them in-

creasingly. Let f(xi), i ∈ N be the adaptive value of the ith chromosome. Generate a

random number p ∈ [0, 1].If
∑n

j=1 f(xi)/
∑N

k=1 f(xk) ≤ p, select the nth chromosome
to be the result. Repeat the process N times to renew the population;

4: (Cross) Match two chromosomes in population N randomly, and generate a random
number q ∈ [1, k] for each pair of chromosomes. Cross the gene at position q by
probability pc.

5: (Variation) Generate a random number t ∈ [1, k] for each chromosomes, mutate the
gene at position t by probability pm.

6: Calculate the adaptive value of each chromosome. If the largest adaptive value of the
population is C2

k or m equals to M , go to Step 7, otherwise, let m = m + 1, go to
Step 3.

7: Put the chromosome which has the largest adaptive value into A. Renew Uc, if Uc is
empty, end the algorithm and A is the final test suites, otherwise, go to Step 2.

4. Test Suites Generating Algorithm Based on FGA. In GA, the cross and vari-
ation of chromosomes are in given probabilities. But it is better to reduce the cross
probability pc and the variation probability pm when the diversity of population is good,
and increase pc and pm when it is worse. We introduce entropy and discrete degree of the
population to value the diversity of a population.

Definition 4.1. Entropy of the Population. Assume that the kth generation has R sub-
sets Qk1, Qk2, · · · , QkR,the ith subset contains |Qki| individuals, and ∃q ∈ {1, 2, · · · , R},⋃R

q=1Qkq = Bk, Bk is the set of the kth population, then the entropy of the population is
defined as:

SN = (−
R∑

j=1

Pj logPj)/ logN (1)

Pj =
|Qkj |
N

, N is the scale of the population. When R = 1, SN = 0, when R = N ,
SN = 1. The entropy reflects the distribution of different individuals of the population,
that is, the larger entropy, the better diversity of the population.
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Definition 4.2. Discrete Degree of the Population. According to the discrete degree DT1,T2

of two test data T1 and T2, define the discrete degree of the population as follows:

DN =
|Qk1||Qk2|D12 + · · ·+ |Qk(R−1)||QkR|D(R−1)R

|Qk1||Qk2|+ · · ·+ |Qk(R−1)||QkR|
(2)

Where, |Qk1||Qk2|, i, j ∈ [1, R] and i 6= j is the weight of the discrete degree between
subset Qi and Qj. When R = 1, DN = 0, When R = N , DN = 1. The discrete degree
also reflects the diversity of the population. That is, the larger discrete degree, the better
diversity of the population.

Both the entropy and the discrete degree describe the diversity of a population, but
they have no deterministic functional relationship with the cross probability and vari-
ation probability. We change the cross probability pc and the variation probability pm
according to the entropy and the discrete degree adaptively using the Fuzzy Genetic
Algorithm(FGA)[13].

We design a controller of a fuzzy interference system (FIS), the entropy and the discrete
degree be the inputs, the cross probability pc and variation probability pm be the outputs
of controller. Describe the membership of output and input using triangular function.
We divide entropy and discrete degree into three fuzzy states: large, medium and small.
And the functions are defined as Fig. 1 and Fig. 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy

M
em

be
rs

hi
p

 

 

small
medium
large

Figure 1. Entropy membership function.

The fuzzy rule of the population diversity with the entropy and discrete degree for the
cross probability pc and variation probability pm is defined as table 1.

Table 1. Fuzzy rules of genetic operators

Entropy

Population diversity Discrete degree
Small Medium Large

Small Bad Bad Good
Medium Bad Good Excellent
Large Good Excellent Excellent

It is suggested that the population evolves using small cross and variation probability
when the population diversity is excellent, and using large cross and variation probability
when the population diversity is bad.
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Figure 2. Discrete degree membership function.

The process of calculating cross probability and variation probability using FGA is as
Algorithm 2.

Algorithm 2 Test Suites Generating Algorithm Based on FGA

1: (Fuzzing) Calculate the gradation of entropy and discrete degree according to the
functions given above.

2: (Fuzzy inference) Use the entropy and discrete degree to reason the membership of
the activated fuzzy rules according to the minimization method.

3: (De-fuzzing) According to the gradation of every fuzzy rules, calculate the
cross probability and variation probability using weighted average method, z0 =∑n

i=1 ziuc(zi)/
∑n

i=1 uc(zi). Here, the weight is 1.0 when the Population diversity is
bad, 0.5 when the Population diversity is good, and 0 when the Population diversity
is excellent.

Example 4.1. Let us consider the following example. When entropy S = 0.4, and discrete
degree D = 0.7, we get the Entropy membership from Fig. 1, and get the Discrete degree
membership from Fig. 2.

Table 2. the Entropy membership when S = 0.4

Fuzzy State Entropy membership

Small 0.2
Medium 0.35

Large 0

Using the non-zero value of table 2 and table 3, when Entropy fuzzy state is small and
Discrete degree fuzzy state is large, according to table 1, the result is Good, so the weight
is 0.5; when Entropy fuzzy state is medium and Discrete degree fuzzy state is large, the
result is excellent, so the weight is 0.

When Entropy fuzzy state is small, the Entropy membership is 0.2, when Discrete de-
gree fuzzy state is large, the Discrete degree membership is 0.22, using the minimization
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Table 3. the Discrete degree membership when D = 0.7

Fuzzy State Discrete degree membership

Small 0
Medium 0

Large 0.22

method, we get the membership is min(0.2, 0.22) = 0.2. Similarly, When Entropy fuzzy
state is medium and Discrete degree fuzzy state is large, the membership is min(0.35, 0.22) =
0.22.

Here we set pc = pm, then we get the cross probability pc and variation probability pm
as:

pc = pm =
n∑

i=1

ziuc(zi)/
n∑

i=1

uc(zi) = (0.5× 0.2 + 0× 0.22)/(0.2 + 0.22) ≈ 0.23; (3)

5. Experiment Results. In this section, the proposed method is used to generate test
suites in some typical SUTs and compared with other heuristic algorithms.

Table 4. the test suites size in some typical SUTs

SUT
test data number

AETG SA GA ACA CE PSO PGA

CA(N ; 2, 4, 3) 9 9 9 9 9 9 9
CA(N ; 2, 13, 3) 17 16 17 17 17 18 18

MCA(N ; 2, 31245) 31 NA NA NA 28 28 28
CA(N ; 2, 6, 4) 28 NA NA NA 22 22 22

MCA(N ; 2, 514431125) 21 28 21 26 25 28 25
MCA(N ; 2, 513822) 20 15 15 16 NA 20 18
CA(N ; 2, 10, 10) NA NA 157 159 NA 168 154

MCA(N ; 3, 524232) 114 100 108 106 NA 108 105

Table 5. the running time in some typical SUTs

SUT
running time(s)

AETG1 SA1 GA2 ACA2 CE3 PSO4 PGA4

CA(N ; 2, 4, 3) NA NA NA NA NA 0.85 0.03
CA(N ; 2, 13, 3) NA NA NA NA NA 42 15

MCA(N ; 2, 31245) NA NA NA NA NA 81 23
CA(N ; 2, 6, 4) NA NA NA NA NA 6.2 5

MCA(N ; 2, 514431125) 368 379 124 154 593 146 59
MCA(N ; 2, 513822) 58 214 22 31 91 23 10

MCA(N ; 2, 6151463823) 378 579 149 188 556 141 36
CA(N ; 2, 10, 10) NA NA 886 1180 985 178 84

MCA(N ; 3, 524232) NA NA NA NA NA 38 35
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Table 4 and table 5 show the experiments results of our algorithm (FGA) with AETG,
SA [14], GA [14], ACA [14], CE [15] and PSO in some typical SUTs. In order to remove
the effect of different environments on the running time, we code and run FGA and
PSO under the same conditions of hardware and software (C++, Windows 7, INTEL
Core(TM)2 2.5GHz) . And the data of SA, GA, ACA, CE and AETG are according to
the paper declared.

Notes:1. C++,Linux, INTEL Pentium IV 1.8GHz; 2. C, Windows XP, INTEL Pentium
IV 2.26GHz; 3. Matlab, Windows XP, INTEL Core(TM)2 2.66GHz; 4. C++, Windows
XP, INTEL Core(TM)2 2.5GHz.

According to table 4 and table 5, for the typical SUTs, the size of test suites generated
by FGA is a little smaller than other algorithms, and the running time of FGA is less
than others. The more complex of the SUT, the better results getting by our method
FGA.

Furthermore, in order to eliminate the influences of experiment environment and pro-
gramming methods, we compare FGA with PSO [15] in some SUTs under the same
experiment environment. The statistical results are provided in Table 6 and table 7.

Table 6. Comparison of the test suites size in SUTs between PSO and FGA

SUT
test data number
PSO PGA

CA(N ; 2, 11, 10) 189 163
CA(N ; 2, 11, 11) 232 197
CA(N ; 2, 12, 12) 290 237
CA(N ; 2, 12, 13) 347 272

MCA(N ; 2, 135146) 363 298
MCA(N ; 2, 145157) 440 344
CA(N ; 3, 6, 10) 1499 1455
CA(N ; 3, 7, 5) 231 212

MCA(N ; 3, 101624331) 393 371

Table 7. Comparison of the running time in SUTs between PSO and FGA

SUT
running time(s)
PSO PGA

CA(N ; 2, 11, 10) 263 190
CA(N ; 2, 11, 11) 347 243
CA(N ; 2, 12, 12) 615 459
CA(N ; 2, 12, 13) 751 582

MCA(N ; 2, 135146) 595 446
MCA(N ; 2, 145157) 1120 811
CA(N ; 3, 6, 10) 1020 788
CA(N ; 3, 7, 5) 186 150

MCA(N ; 3, 101624331) 256 233

Let the scale NP = 500 and the iteration times m = 20. The testing environment is
C++, Windows XP, INTEL Core(TM)2 2.5GHz.
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Compared to PSO, FGA has the advantages both in the size of test suites and the
running time. This is because the characteristic that PSO algorithm is very easy to fall
into local optimum affects the result more apparently with the growth of factors. So it
need more iterations to get the better result, therefore, the number of iterations is 1000 in
paper [16]. From Table 6 and Table 7, our algorithm FGA improves the quality efficiency
of test suites effectively, that is, reduces the running time by 10%− 30%, and the size of
test suites is reduced in different degrees as well.

6. Conclusions. Based on genetic algorithm to generate combinatorial test data, this
paper introduced fuzzy control method and designed membership functions and fuzzy
rules to adaptively change the cross and variation probability according to the diversity
of the generation. It efficiently reduces prematurity issues and makes the generation
evolved in the right direction. Experiments have verified that this algorithm is better
than others in generation time and the scale of test data is smaller, so it can be effectively
applied to generating combinatorial test data.
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