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Abstract. The earth supports a rich diversity of plants. However, people seldom know
their names. One method of identifying plant species is by referring to illustrated plant
handbooks. However, this method is ineffective for people unfamiliar with plant features.
To help people identify plants, this study develops an application that automatically iden-
tifies leaves by utilizing content-based image retrieval and location information. Back-
ground subtraction, the first step in our method, was performed using Otsu, color slicing,
and GrabCut methods. The most favorable method was determined by evaluating the
image segmentation rate. Subsequently, the plant features were extracted using one- and
two-dimensional Fourier descriptors. Twenty images each of 21 plant species were col-
lected indoors. The GrabCut method and one-dimensional Fourier descriptor demon-
strated the optimal performance. Plant species were automatically identified through
leaf recognition using mobile device. The mobile application records plant information
through crowdsourcing. To test the system, we collected 10 outdoor images each of 50
plant species. Location-based search engine assisted plant recognition. The experimental
results were 78% accurate, that is, the correct species was the first-ranked suggestion in
78% of the cases.
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1. Introduction. The earth supports a rich diversity of plants. Although several species
of plants are encountered in peoples’ everyday lives, few can identify them, because such
identification is time- and effort-intensive for nonexperts. Although illustrated plant hand-
books can be used to identify plants, they are cumbersome for outdoor use. Plants can
also be identified by querying websites, such as the NGA Plant Finder [1] and Agriculture
Knowledge Entry in Taiwan [2]. To use these online services, users must input plant
features, such as the colors of the flowers, blooming season, and foliage characteristics,
rendering these services ineffective for users unfamiliar with plant features; users may
input inaccurate information and receive erroneous results.

In this study, we designed a mobile application that automatically recognizes plant
species using the images of leaves input by the users and the user location. To in-
crease recognition accuracy, users are requested to photograph the leaf on a simple back-
ground. Subsequently, users roughly outline the leaf contour using their touch screens
for background subtraction. The application extracts and searches the one-dimensional
(1D) Fourier description of the leaf in a geotagged plant database. The system retrieves
location-specific plant data from the database, performs feature matching, and lists the
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results in the order of feature matches. After the user selects the most similar plant species
from the list, the plant’s name, images, and geoinformation are uploaded, thus accumu-
lating more geotagged plant information in the database and enhancing the accuracy of
the application. The plant recognition and recording constitute a cycling ecosystem that
increases the system richness and performance. This system thus implements crowdsourc-
ing [12] and citizen science [13] in ecological field studies. The operational procedure of
our system and the implemented subsystems are detailed in the following sections.

2. Related Works. This study crowdsourced plant information through an automatic
leaf-image-based plant recognition system. The concept of crowdsourcing and its appli-
cation is discussed in Section 2.1, and related works on leaf recognition are described in
Section 2.2.

2.1. Crowdsourcing. Because of the variety and ubiquitous distribution of plants, con-
ducting large-scale ecological field studies is difficult. Many unknown plant species ex-
ist, and plant conservation becomes difficult because of the lack of comprehensive plant
distribution information, which is referred to as taxonomic impediment in biodiversity
conservation [3]. The proposed plant recognition and recording system is a type of crowd-
sourcing for ecological field studies. Crowdsourcing was first promoted in Howe’s article
in 2006 [12]. Tasks requiring considerable human effort can be outsourced to willing par-
ticipants, who engage because of either their personal interests or the rewards offered.
Amazon Mechanical Turk is a typical crowdsourcing platform providing customized ser-
vices [6]. Examples of practical applications of outsourcing or crowdsourcing include
gengo [5] and threadless [6]. Gengo is a website providing language translation services;
qualified translators are assigned translation jobs and paid U5 per word. Threadless is
an online clothing and accessory shop that incentivizes designers who participate in their
design campaigns through awards and products.

These examples clarify that for success, a crowdsourcing application must incentivize or
adequately motivate potential participants. The proposed plant recording system realizes
this objective by offering users a novel plant recognition system. Users can quickly identify
the correct or closest answer from the ranked list returned by the automatic recognition
system. By recording and identifying plants, users familiarize themselves with surrounding
plants and also contribute to the database.

2.2. Leaf Recognition. The image-based leaf recognition is implemented by using dif-
ferent features, such as leaf curvature [15] and morphology [17]. Kumar et al. [15] used
histograms to extract features of the leaf’s contour over multiple scales. The leaf samples
were manually collected and flattened, and images were captured in a controlled labora-
tory environment to create a database containing 184 plant species and 23,915 images.
Their program was tested using 5,192 outdoor leaf images, and the correct match was
within the top five results for 96.8% of the queries.

Nikesh et al. [17] used morphological features, such as leaf width factor, diameter, major
axis, minor axis, area, perimeter, form factor, rectangularity, narrow factor, perimeter
ratio of diameter, and contour. Their database included 10 plant species and 30 images
for each species. Combining different features for matching realized an average recognition
precision of 85%-90%.

These studies present opposite research directions. Kumar et al. extracted complex
features for leaves and obtained a more favorable recognition performance. A single
recognition request requires 5.4 s on an Intel Xeon machine with two quadcore processors
running at 2.33 GHz and 16-GB RAM, whereas Nikesh et al. used simpler morphological
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features that were computed on mobile devices at lower computational power. Contrast-
ingly, this study utilized efficient and effective features computable on mobile devices. To
compensate for the precision loss, we used a location-based search, which increased both
matching speed and precision.

3. System Architecture. This study implemented a mobile-device-based plant recog-
nition and recording system. This system utilizes the open-source data from the Tai-
wan Biodiversity Network (TBN) [7], an organization supported by the Taiwan Endemic
Species Research Institute. TBN provides application programming interfaces (named i35
APIs) [8] that access plant distribution over certain geographical ranges, which helps real-
ize location-based plant recognition. Photographs and geographical information recorded
by users are uploaded to the TBN database to enrich its collection. Users can identify
plants from anywhere. Users’ interests in plant ecology will be evoked if they can acquire
knowledge ubiquitously.
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Figure 1. System architecture

The system architecture (Fig. 1) consists of a frontend client and backend server. The
client side is implemented on Android OS, and the server side is implemented on the
TBN server. Both sides communicate through the i35 APIs, and data are stored in the
i35 database. The system consists of the following 3 subsystems:

Plant recognition A user can either capture a photograph of the leaf or select an image
from the gallery. Next, the user contours the leaf using the touch screen, and background
subtraction is processed using the user-drawn contour. Subsequently, the 1D Fourier de-
scriptor is extracted from the background-removed leaf shape. During image processing,
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another thread queries the i35 database on the nearby plant species. Feature matching is
restricted to target features in the same geographical region as the user, which is detected
using GPS data. A list, ranked according to feature matches, is presented to the user.

Plant recording The client interface provides options to capture photographs of dif-
ferent parts of the plants, such as the whole plant, flower, leaf, stem, seed, and root.
Moreover, users can add tags explaining the features of each image, such as the shape,
margin, and arrangement of leaves. These stored tags can help develop a multimodal
plant search in the future. In addition, users can view their plant collections in the form
of a photobook.

Hotspot analysis Hotspot analysis provides visualization of the geographical distri-
butions of the user’s plant collection. The motivation of a map-based visualization is
similar to that of the widely-used application Fog of world [9], which visualizes the user’s
GPS tracks on a world map: users are motivated to add plant records on viewing their
collections on a map.

The flowchart of these subsystems is shown in Fig. 2.
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Figure 2. Flowchart of the client APP.

4. Plant Leaf Recognition. A leaf photographed in its natural environment includes
a cluttered background. Moreover, the direction, position, and viewing angle of the
leaf in the image affect feature extraction, which in turn affects matching precision. To
remove the background, different background subtraction methods were evaluated in this
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study. Feature extraction was performed on the segmented leaf region. Contour-based
features were 1D and two-dimensional (2D) Fourier descriptors, which are introduced in
Section 4.2.

4.1. Background Subtraction. Background subtraction separates the leaf from its
background in the target image. Performances of three background subtraction meth-
ods are evaluated in this paper: the Otsu method [16] segments gray-level images, the
color slicing method [18] processes images directly in the color space, and the GrabCut
method [10] combines color and edge features for interactive segmentation. The following
sections describe these methods, and the experimental results are presented in Section 5.

4.1.1. The Otsu method. The Otsu method was proposed by the Japanese researcher N.
Otsu in 1979 [16]. It is a computationally simple but effective method. The optimal
threshold is computed on the basis of the statistics of an image’s gray-level values. The
criterion of this threshold separates all pixels to two classes, and the intraclass variance
is minimum. For each leaf image in the database, the Otsu method computes an optimal
threshold. Because most leaves are green and have low reflectance, we assumed that
pixels lower and higher than the threshold constitute the foreground the background,
respectively.

4.1.2. Color slicing. The color slicing method segments the color space into the foreground
and background. A simple realization uses a spherical region, as shown in Fig. 3. A
prototype color index P must be predetermined. For example, P can be the average color
of leaves. The color values inside the sphere of center P and diameter T are foreground
pixels, and those outside are background pixels.

R 

G 

B 

P 

T 

Figure 3. Color slicing in the RGB color space.

4.1.3. GrabCut. GrabCut is an interactive background removal algorithm from Microsoft
Research [10] currently used in Microsoft Office products. Users draw a mask around
the foreground object or choose foreground and background reference points in the target
image. To apply GrabCut to our application, two types of masks were considered:

Rectangular mask The user draws a rectangular mask around the leaf region. GrabCut
then applies the graph cut algorithm that iteratively approximates the true leaf boundary
by using color and edge features. An example is presented in Fig. 4(b). Drawing the mask
is easy, but the results may be unsatisfactory.

Custom mask In our implementation, we applied the GrabCut function in the OpenCV
library, where a custom mask with an arbitrary shape is defined. Each pixel is assigned
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four labels: background, possible background, foreground, and possible foreground. The
assumption is that the user draws the contour slightly outside the leaf. The drawn track
is defined as the possible background, the pixels within are defined as the possible fore-
ground, and the pixels outside are defined as the background. An example is presented
in Fig. 4(c). This custom mask is applied in GrabCut for background subtraction.

Figure 4. Interactive masks using GrabCut. (a) Photograph of a leaf; (b)
Rectangular mask; (c) Custom mask.

4.2. Feature Extraction. In this study, the plant species were recognized by their
leaves’ features. A leaf can be distinguished using its features such as apex, base, vein,
margins, and petiole. Leaves are typically linear, elliptic, ovate, spatulate, and cordate,
and leaf shape is a general feature used for classifying plant species. In this study, we
used a 1D Fourier descriptor [11] to represent the 1D trace of the leaf contour. To extract
the leaf vein and margin, a 2D Fourier descriptor [19] was applied to represent the 2D
features.

4.2.1. 1D Fourier descriptor. After background subtraction, we obtained the 2D coordi-
nates (x, y) of the leaf contour. These 2D coordinates were transformed to a 1D signal. A
1D Fourier transform was then applied to extract its frequency properties. These Fourier
coefficients were used as a feature vector to represent the leaf shape. The detailed pro-
cessing steps are explained herein.

Step 1: Contour sampling In the collected leaf images, all leaves have different shapes
and sizes, and the number of coordinates is not uniform. For comparison, all samples must
have the same number of contour coordinates. A higher number yields a more precise
leaf shape, but the effects of noise also increase. We evaluated the effect of number of
sampling points in our experiments.

Step 2: Centroid distance The sampled 2D coordinates x(t) and y(t), t = 0, 1, ...,M−1,
are transformed to a 1D signal by computing their distances to the centroid (xc, yc). The
formula of centroid distance r(t) is:

r(t) =
√

(x(t)− xc)2 + (y(t)− yc)2 (1)

The centroid distance is invariant to translation of the leaf in the image because it is
normalized with respect to the leaf’s centroid.

Step 3: Fourier transform The centroid distance r(t), t = 0, 1, ...,M − 1 is processed
with Discrete Fourier Transform as follows:
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R(w) =

∑M−1
t=0 r(t)exp(−j2πwt

M
)

M
(2)

The Fourier transform coefficients R(w) represent the phase and weight at each fre-
quency w. Low frequency coefficients represent the rough contour of the leaf and the high
frequency coefficients represent the detailed variation of the leaf margin.

Step 4: 1D Fourier descriptor Fourier transform is applied, only half of the Fourier
coefficients R(w) are informative. To achieve scale and rotation invariance of the leaf, the
1D Fourier descriptor F1 was computed using R(w) as follows:

F1 = (
|R(1)|
|R(0)|

,
|R(2)|
|R(0)|

,
|R(3)|
|R(0)|

, ...,
|R(M/2)|
|R(0)|

) (3)

The absolute values of R(w) were used to achieve shift invariance for r(t) and thus
rotation invariance of the leaf. By dividing all elements by |R(0)|, F1 becomes invariant
to the average strength of r(t), thus becoming invariant to the leaf scale (or size).

4.2.2. 2D Fourier descriptor. Leaf veins are vascular tissues in the spongy layer, and the
central vein is called the midrib; secondary and lateral veins also exist. Various leaf vein
patterns are present, such as pinnate, arcuate, parallel, and palmate veins. These features
can aid leaf identification. The 2D Fourier descriptor has been used to recognize complex
2D patterns [19]. Before computing the 2D Fourier descriptor, the leaf image must be
preprocessed to extract veins and normalized. The processing steps are described herein.

Step 1: Edge detection The background-removed colored leaf image is converted into
its corresponding gray-level image, and Laplacian zero-crossing [18] is used to detect vein
edge. An example is presented in Fig. 5(b).

Step 2: Position normalization The centers of the leaf and the leaf image are not
always aligned. Thus, the leaf centroid is first obtained. According to the motion vectors
computed from the leaf centroid to the image center, the leaf edges are moved to the
center of the image. This step makes the feature translation-invariant.

Step 3: Polarization To achieve scale and rotation invariance, the original 2D coordi-
nates (x, y) are transformed to polar coordinates (r, θ). Fig. 5(c) shows the polarization
of the image presented in Fig. 5(b). Although, the angle ranges from 0◦ to 360◦, the
range of the radius varies with leaf size. Therefore, the maximum value of the radius is
normalized to 120. Radius normalization results in scale invariance.

Step 4: Fourier transform The polarized image p(r, θ) is processed using 2D discrete
Fourier transform as follows:

P (u, v) =

∑R−1
r=0

∑T−1
θ=0 p(r, θ)exp(−j2π(ur

R
+ vθ

T
))

RT
(4)

The Fourier transform coefficients P (u, v) represent the phase and weight of the 2D
frequency patterns that compose the polarized leaf edges.

Step 5: 2D Fourier descriptor High frequency components of P (u, v) are typically



Location and Image-Based Plant Recognition and Recording System 905

small and may contain noise. According to [19], the Fourier descriptor F2 of length 23 is
obtained using the normalized P (u, v) as follows:

F2 = (
|P (0, 1)|
|P (0, 0)|

, ...,
|P (0, 5)|
|P (0, 0)|

,
|P (1, 0)|
|P (0, 0)|

, ...,
|P (1, 5)|
|P (0, 0)|

, ...,
|P (3, 0)|
|P (0, 0)|

, ...,
|P (3, 5)|
|P (0, 0)|

) (5)

The absolute value of P (u, v) makes the image invariant to θ-directional shift of p(r, θ),
thus achieving rotation invariance.

Figure 5. 2D Fourier description. (a) Original image; (b) Leaf contour
and veins; (c) Polarization of Fig. 5(b).

5. Experimental Results. Section 5.1 discusses the plant database used in the exper-
iments. Background subtraction is evaluated in Section 5.2. Finally, plant recognition
performance is examined in Section 5.3.

5.1. Plant database. As shown in Fig. 2, the GPS coordinates were transmitted to the
TBN server to retrieve the distribution of plant species near the user. Location-based
search is more effective if complete plant records for the queried region are available. To
demonstrate location-based plant search, we surveyed the woody plant distribution in
the campus of National Chi Nan University, Taiwan. To avoid dense recording of plant
distribution, we recorded one tree for every two neighboring trees of the same species.
Photographs, plant species, and GPS location were recorded.

For location-based searching, plant species around the user’s position were retrieved.
The search region must be appropriately determined. A large region implies more plant
species, but more similar plants reduce recognition accuracy. After considering plant
distribution density, we set a square region of 0.001◦ × 0.001◦ (longitude × latitude),
which equals 102.6 m × 111.6 m, as shown in Fig. 6.

For the experiments, we collected a dataset, OutDB, containing 50 plant species and
10 outdoor images of each species. Another dataset, InDB, containing 21 plant species
and 20 images of each species. The images were captured using smartphones to match
the real application-use scenario.

5.2. Background Subtraction. An evaluation metric must be defined to assess back-
ground subtraction performance. Fig. 7 presents two cases of leaf segmentation. Binary
image A was obtained using a professional photographic software and is termed the ”an-
swer,” and the result of the automatic background subtraction using the Otsu method,
color slicing, or GrabCut is denoted as B. Precision and recall are defined using the
following formulas.
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Figure 6. Location-based search.

Figure 7. Manual segmentation results (A) and background subtraction
result (B).

Precision =
|A ∩B|
|B|

, Recall =
|A ∩B|
|A|

(6)

High precision implies that the computed foreground covers more pixels in the answer.
As the computed leaf region covers numerous pixels not in the true answer, recall reduces.
In data mining, a single measure of accuracy, the F-measure, is commonly used.
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F −measure =
2× Precision×Recall
Precision+Recall

(7)

Dataset InDB was used for the background subtraction experiments. F-measures of dif-
ferent background subtraction methods are depicted in Fig. 8. Because the Otsu method
processes images only at the gray level, it performs poorly. Color slicing considers color
information and thus outperforms the Otsu method. GrabCut outperforms the other two
methods because of its complex computing which considers color and edge features. Cus-
tom masked GrabCut outperforms the rectangular masked GrabCut. The custom mask
is drawn by the user and provides more a priori information to the GrabCut algorithm.
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Figure 8. F-measures of different background subtraction methods.

5.3. Plant Recognition. To avoid the results of background subtraction affecting the
evaluation of feature extraction, we use the InDB with manually background subtraction
leaf images as the dataset. The query feature is compare with the database features using
Euclidean distance. Results are sorting with descending distances. Experiments were
carried out by using 5-fold cross validation to separate the InDB as the query set and the
database set in each iteration. The performance measure uses Top N precision. For the
first N plant species in the ranking list, if one of N returns contains the true answer, this
query is counted as successful trial.

As mentioned in Section 4.2, the leaf contour must be sampled to a fixed number
M in process of 1D Fourier descriptor. After Fourier transform, length of M/2 Fourier
descriptor is taken as the feature vector. Top N precisions with different sampling points
are shown in Table 1.

Table 1. 1D Fourier descriptor performance.

Sampling Points Top 1 Precision Top 5 Precision Top 10 Precision

100 60.71% 84.76% 92.38%
150 61.42% 84.04% 92.14%
200 61.19% 83.80% 92.61%

From Table 1, the number of sampling points does not affect the Top N precision.
Experiments of more than 200 sampling points have been tried, the results were similar
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and not shown here. We conjecture that more samples will contain more noise, thus the
performance gain by raising the number of samples is reduced by the effects of noise. The
highest Top 10 precision is about 92%, it means the user has high chance to find the true
answer from the first 10 search returns.

To make a fair comparison with 1D Fourier descriptor, the number of edge points
were also sampled to evaluate the performance of 2D Fourier descriptor. Results without
sampling were also evaluated. The Top N precisions are shown in Table 2.

Table 2. 2D Fourier descriptor performance.

Sampling Points Top 1 Precision Top 5 Precision Top 10 Precision

100 26.90% 57.14% 76.19%
150 26.19% 64.76% 78.81%
200 31.67% 67.62% 78.33%
no sampling 52% 79% 88%

Since 2D Fourier descriptor takes the leaf contour and vein edges in an 2D image as
input, sampling will dramatically reduce the performance. Results without sampling has
the best performance. 2D Fourier descriptor performs poorer than 1D Fourier descriptor
in all cases. After analysis of the process, we find that performance of edge detection can
be the main reason. Detection of edge points on leaf veins can be affected by the lighting
condition, thus different number of vein edges points will be detected even for the same
plant species.

According to the experimental results of background subtraction and feature extraction,
we apply GrabCut with custom mask and 1D Fourier descriptor with 100 sampling points
to implement the mobile client system. To simulate the use cases in outdoor environment,
the OutDB was used in the experiments. Conditions with and without the location
information were examined. Experimental results are shown in Table 3.

Table 3. Location-based plant recognition.

Location-based recognition Top 1 Precision Top 5 Precision Top 10 Precision

Yes 78% 94% 96%
No 28% 58% 64%

The Top 10 precision drops to 64% in outdoor environment. The images taken outdoors
have different lighting condition and complex background that make recognition harder.
With the help of location information, the precisions raise more than 30% in all cases.
The Top 10 precision with location-based search is up to 96%. Query examples with
and without location-based search are shown in Fig. 9 and 10. For the same query plant
small-leaved mulberry, location-based search returned only two plant species, 5 out of 10
were correct and the first answer was correct. While query without using location-based
search, 6 plant species were returned. The correct answer fell to the 4th place.

6. Conclusions. This paper proposes to automatically identify the leaves by applying
content-based image retrieval assisted with location information. The goal is to investigate
appropriate methods that can be implemented on mobile devices with limited computa-
tional power and memory. For background subtraction, GrabCut with custom mask has
the best performance. A User spends few seconds drawing the contour of the leaf on
the touch screen to dramatically increase precision of background removal. 1D Fourier
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Figure 9. Example with location-based search.

Figure 10. Example without location-based search.

descriptor is efficient and effective to capture the leaf contour feature. The realized mobile
APP has been tested outdoors in the campus of National Chi Nan University, Taiwan.
By using location-based search, the correct answer appears in the Top 1 position of the
ranking list about 78%. The Top 10 precision raises to 96%, which means users can easily
find the correct answer by looking over the first 10 returns. The idea of citizen science for
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ecological field studies is realized by providing people a mobile APP that can reord plant
information and help users to identify plant species.

The future work will extend the number of species in our database and add mechanism
of relevance feedback to further increase the performance.
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