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Abstract. We consider the problem of nonlinear filtering under the circumstance of
unknown covariance statistic of the measurement noise. A novel adaptive unscented
Kalman filter (UKF) integrating variational Bayesian methods and fuzzy logic techniques
is proposed in this paper. It is called fuzzy adaptive variational Bayesian UKF (FAVB-
UKF). Firstly, the sufficient statistics of the measurement noise variances are estimated
with a fixed-point iteration of the UKF in real time. Secondly, a fuzzy inference system
(FIS) is introduced to adaptively adjust the measurement noise covariance based on a
covariance matching technique. And last, the standard UKF with modified measurement
noise covariance is carried out to obtain a state estimation. Simulation examples are
used to evaluate the performance of this new algorithm comparing with UKF, and the
results show that the proposed method is efficient and effective for potential practical
applications
Keywords: Nonlinear system; Adaptive filter; UKF; Variational Bayesian methods;
Fuzzy inference system.

1. Introduction. Nonlinear filtering problems abounds in many diverse fields including
economics, statistics and numerous statistical and array processing engineering problems,
such as time series analysis, communications, target tracking, and satellite navigation [1].

The Bayesian framework is the most commonly used method for the study of the
nonlinear dynamic systems. And this most widely used filter in radar tracking application
is extended Kalman filter (EKF), which is based upon the principles of linearizing the
nonlinear models using Taylor series expansions [2]. Due to the assumptions of local
linearization and the computation of the Jacobin matrix of the state vector, EKF may
provide poor performance or divergences. To avoid this problem, the unscented Kalman
filter (UKF) was proposed by Julier, et al. [3, 4]. Unlike the conventional EKF, where
the linearization process is involved, the unscented Kalman filter employs a set of sigma
points by deterministic sampling. When the sample points are propagated through the
true nonlinear system, the posterior mean and covariance can be captured accurately to
the 2nd order of Taylor series expansion for any nonlinear system. One of the remarkable
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merits is that the overall computational complexity of the UKF is the same as that of the
EKF.

A serious limitation in the above methods is that they require a complete priori knowl-
edge of the measurement and dynamic model parameters, including the noise statistics.
The exact knowledge of the parameters, especially, the noise statistics, is not known in
many practical situations a plausible assumption. The use of wrong prior statistics in
UKF can lead to large estimation errors or even divergence. Variational Bayesian (VB)
technology is a strong tool to treat state estimation with unknown noise variance [5, 6].
Recently, a high-efficiency variational Bayesian adaptive Kalman filter algorithm was pre-
sented [7]. which uses the VB method to approximate a joint posterior distribution of
state and measurement noise.By a factorized free form distribution, it realizes suboptimal
synchronous estimation of state and covariance of measurement noise. However, it is only
available to linear systems. Afterward, by use of UKF and cubature Kalman filter(CKF),
some variational Bayesian adaptive filters were proposed to cope nonlinear state estima-
tion with unknown covariance of measurement noise in [8, 9]. In the research of artificial
intelligence, the fuzzy theory has been extensively applied in describing some uncertain
knowledge or physics phenomena [10, 11]. To deal with the noise uncertainty, the fuzzy
inference system(FIS) is employed for dynamically on-line determining the measurement
noise covariance according to the innovation information. Some fuzzy adaptive filters
have been proposed [12, 13, 14]. Obviously, it is necessary to develop an adaptive non-
linear filter algorithm integrating VB methods and fuzzy theory, in order to enhance the
estimation precision and fault-tolerance.

In this paper, VB and FIS are introduced to the traditional UKF, and an adaptive algo-
rithm named fuzzy adaptive variational Bayesian UKF(FAVB-UKF) is proposed. The al-
gorithm uses UKF to estimate the nonlinear system states, at the same time, it adaptively
estimates and adjusts measurement noise variance through VB and FIS. The remainder
of the paper is organized as follows. Section 2 presents the formulation of the problem.
The variational Bayesian UKF(VB-UKF) is briefly reviewed in Section 3. FAVB-UKF
is developed and briefly analyzed in Section 4 and Section 5, respectively. Simulation
results that compare the performances of the existing algorithms are presented in Section
6. Finally, some conclusions are provided in Section 7.

2. Problem formulation. Consider a class of nonlinear dynamic system with additive
noise, which is described as,

x(k + 1) = f(x(k)) + w(k) (1)

z(k) = h(x(k)) + v(k) (2)

where x(k) ∈ <n×1 and z(k) ∈ <n×1 are the state of the system and the measurement
at time step k, respectively; f : <n → <m is the nonlinear process model; f : <m → <n

stands for the nonlinear observation model; w(k) ∈ <n×1 and V(k) ∈ <m×1 are the process
noise and measurement noise with zero means and covariances Q(k) and R(k),respectively.
It is supposed that the initial state x(0) and all noise vector are mutually statistically
independent.

In some practical systems, such as target tracking system and the integrated navigation
system, statistical properties of the measurement noise is very difficult to predict. The
reasons are as follows: 1) It is hard to determine the exact values of the measurement
noise covariance in advance. 2) There is a coupling error of coordinate transformation. 3)
The dynamic system may be affected by various disturbance at any time, which results
in changing the statistical properties of measurement noise.In a word, it is not reliable to
describe measurement noise by using limited prior information. In this paper, the main
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problem is presented as follows: Aiming at the nonlinear system modelled by (1)and (2),
when measurement noise statistics is unknown, how to design adaptive estimator.

3. Variational Bayesian UKF. In this section,the variational Bayesian UKF (VB-
UKF) is briefly reviewed. In VB-UKF, Variational Bayesian (VB) technology is adopted
to approximate a joint posterior distribution of state and measurement noise and realize
suboptimal synchronous estimation of state and covariance of measurement noise by a
factorized free form distribution. Formula of VB-UKF are summarized as follows [8]:

Algorithm1: Variational Bayesian UKF

Time update
1) Determine the sigma point and weighting coefficients
X0(k − 1|k − 1) = x̂(k − 1|k − 1)

Xj(k − 1|k − 1) = x̂(k − 1|k − 1) + (
√

(n+ λ)P(k − 1|k − 1))j, j = 1, 2, · · · , n
Xj(k − 1|k − 1) = x̂(k − 1|k − 1)− (

√
(n+ λ)P(k − 1|k − 1))j−nx , j = i+ n, · · · , 2n

(3)
where n is the dimension of state x(k); x̂(k−1|k−1) and P(k − 1|k − 1) are state estimate
and its corresponding covariance at time (k − 1),respectively; λ = a2(n + k) − n is the
scale parameter,α determines the degree of dispersion of sigma points, usually is set to
a small positive number (e.g,0.01). κ is usually set to zero. (

√
(n+ λ)P(k − 1|k − 1))j

meas the j-th row of matrix square root.
The weighting coefficients of mean and covariance are obtained as follows

ω
(m)
0 = λ/(n+ λ)

ω
(c)
0 = λ/(n+ λ) + (1− α2 + β)

ω
(m)
j = ω

(c)
j = 1/2(n+ λ), j = 1, 2, ..., 2n

(4)

where βis used to describe the distributed information(the optimal value is 2 under Gauss
circumstance).

2) Compute the propagated sigma points

X∗
j(k|k − 1) = f(Xj(k − 1|k − 1)) (5)

3) Estimate the predicted state and its error covariance

x̂(k|k − 1) =
2n∑
j=0

ω
(m)
j X∗

j(k|k − 1) (6)

P(k|k − 1) =
2n∑
j=0

ω
(c)
j [X∗

j(k|k − 1)− x̂(k|k − 1)][X∗
j(k|k − 1)− x̂(k|k − 1)]T + Q(k − 1)

(7)
4) Evaluate parameters predict of variance{

ζ(k|k − 1) = ρ • ζ(k − 1)
η(k|k − 1) = ρ • η(k − 1)

(8)

where”•”is the point operation in Matlab. ρ = [ρ1, · · · , ρm]T , ρi ⊂ (0, 1)(i = 1, · · · ,m),η(k) =
[η1(k), · · · , ηm(k)]T .

Measurement update (N iterations)
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1) Determine the sigma points
X0(k|k − 1) = x̂(k|k − 1)

Xj(k|k − 1) = x̂(k|k − 1) + (
√

(n+ λ)P(k|k − 1))j, j = 1, 2, ..., n

Xj(k|k − 1) = x̂(k|k − 1)− (
√

(n+ λ)P(k|k − 1))j−n, j = n+ 1, ..., 2n

(9)

2) Compute the propagated sigma points

Zj(k|k − 1) = h(Xj(k|k − 1)) (10)

3) Calculate the predicted measurement

ẑ(k|k − 1) =
2n∑
j=0

ω
(m)
j Zj(k|k − 1) (11)

4)Evaluate the cross-covariance matrix

Pxz(k|k − 1) =
2n∑
j=0

ω
(c)
j [Xj(k|k − 1)− x̂(k|k − 1)][Zj(k|k − 1)− ẑ(k|k − 1)]T (12)

5) Iteration initialization, namely t = 1 and give iteration number N(generally N = 3
and 1 ≤ t ≤ N), and {

ζ(k) = [1/2, 1/2, · · · , 1/2]T + ζ(k|k − 1)
x̂1(k|k − 1) = x̂(k|k − 1)

(13)

6) Compute the covariance of measurement noise

R̂t(k) = diag(ηt(k)•
/
ζ(k)) (14)

where operation diag(*) means that diagonal entries of matrix * form a column vector.
7) Compute the innovation covariance matrix

Pzz(k|k) =
2n∑
j=0

ω
(c)
j [Zj(k|k − 1)− ẑ(k|k − 1)][Zj(k|k − 1)− ẑ(k|k − 1)]T + R̂t(k) (15)

8) Calculate the Kalman gain

Kt(k) = Pxz(k|k)[Pt
zz(k|k)]−1 (16)

9) Estimate the updated state and its error covariance

x̂t(k|k) = x̂(k|k − 1) + Kt(k)(z(k)− ẑ(k|k − 1)) (17)

Pt(k|k) = P(k|k − 1)−Kt(k)[Pt
zz(k|k) + R̂t(k)]−1[Kt(k)]T (18)

10) If t < N , update parameter ηt(k)

ηt(k) = η(k|k − 1) + (z(k)− ẑ(k|k − 1)))•2/2 + diag{Pzz(k|k)/2 (19)

Then, let t = t+ 1, and go back to step 1); else go to 11).
11) When t = N , the iteration finished ,and{

η(k) = ηN(k)

R̂(k) = R̂N(k)

{
x̂(k|k) = x̂N(k|k)
P(k|k) = PN(k|k)

(20)
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4. Fuzzy Adaptive Variational Bayesian UKF. In this section, an on-line adaptive
scheme of the VB-UKF employing the principles of fuzzy logic is presented. The adapta-
tion is in the sense of adaptively adjusting the measurement noise covariance matrix from
data as they are obtained. In that sense, a fuzzy inference system (FIS) is used to obtain

the adjusting factors for Rk = R̂(k). The basic idea behind the covariance-matching
technique is to make the actual value of the covariance of the innovation sequence match
its theoretical value [12]. A graphical representation of the Fuzzy adaptive VB-UKF
(FAVB-UKF) is shown in Fig.1.
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Figure 1. Membership functions for Structure of the FAVB-UKF

The innovation sequenceγ(k) = z(k)−ẑ(k|k−1) and its theoretical covariance Pzz(k|k) =

PN
zz(k|k) obtained from the VB-UKF. Then, the actual covariance Ĉ(k) is given by

Ĉ(k) =
1

W

W∑
i=i0

γi(k)γTi (k) (21)

where i0 = k−W + 1 is the first sample inside the window. The window size W is chosen
empirically to give some statistical smoothing.

Thus, if it is found that the actual covariance of γ(k) has a discrepancy with its theo-
retical value, then adjustments have to be made to Rk in order to correct this mismatch.
Now, a new variable called the Degree of Matching DoMk is defined to indicate the degree
of discrepancy between Pzz(k|k) and Ĉ(k) as follows [8]:

DoMk = Pzz(k|k)− Ĉ(k) (22)

The main idea of adaptation used by a FIS is as follows. Rk can be used to vary
Pzz(k|k) accordance with the value of DoMk in order to reduce the discrepancies between

Pzz(k|k) and Ĉ(k). Because all matrices Rk, Pzz(k|k), Ĉ(k) and DoMk are of the same
dimension the adaptation of the (i, i) element of Rk, can be made in accordance with
the (i, i) element of DoMk(i = 1, 2, · · · ,m). Thus,a single-input, DoMk(i, i), single-
output, ∆Rk, FIS can be used to sequentially generate the tuning or turning factors for
the elements in the main diagonal of Rk. The FIS is implemented considering three fuzzy
sets for input DoMk(i, i): N=Negative, ZE=Zero, and P=positive; and three fuzzy sets
for output ∆Rk: I=Increase, M=Maintain, and D=Decrease; as in shown in Fig.2. The
general rules of adaptation are as follows:

1) if DoMk(i, i) = N , then ∆Rk = I.
2) if DoMk(i, i) = ZE, then ∆Rk = M
3) if DoMk(i, i) = P , then ∆Rk = D
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Then ,using the compositional rule of inference sum-prod and the center of area(COA)
defuzzification method, the adjusting factor for the diagonal elements of Rk, are sequen-
tially obtained by a FIS, and the adjustments are performed in this way [15]

Rk(i, i) = Rk−1(i, i) + ∆Rk (23)
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Figure 2. Membership functions for DoMk and ∆Rk

In view of the above analysis, running formula of the FAVB-UKF are summarized as
follows:

Algorithm2: Fuzzy Adaptive Variational Bayesian UKF

Step1: Parameter Initialization
Set initial state x(0), covariance x(0) and the size of moving estimation window W .
Step2: VB-UKF is carried out inside a moving estimation window
VB-UKF is used to calculate the measurements predictions ẑi(k|k − 1),(i = i0, · · · , k),

and covariance of innovations Pzz(k|k) by equations (3)-(20).
Step3: Adjust measurement noise covariance with FIS
Firstly, actual covariance Ĉ(k) and Degree of Matching DoMk are computed by equa-

tion(21) and (22), respectively. And then, FIS is used to modify Rk by equation (23).
Step4: Update state and covariance
In this step, standard UKF with adjusted measurement noise covariance Rk is adopted

to update state and the covariance by equations (3)-(12), and (15)-(18).

5. Brief Analysis. In this section, brief analysis of novel algorithm is presented. As de-
scribed previously, the standard UKF formulation assumes complete a priori knowledge of
the noise statistics. However, in most practical applications measurement noise statistics
are initially estimated or, in fact, unknown. The problem here is that the performance
of UKF is closely connected to the quality of these priori noise statistics. Evidences have
shown how a poor estimation of the input noise statistics may seriously degrade the filter
performance, and even provoke the divergence of the filter. In view of this, a new adap-
tive UKF based on variational Bayesian methods and fuzzy logic techniques is developed,
which is called fuzzy adaptive variational Bayesian UKF (FAVB-UKF). Compared with
standard UKF, the advantages of FAVB-UKF are as follows:

(1) FAVB-UKF relaxes the assumptions of a priori knowledge of the noise statistics.
(2) For the existing fuzzy adaptive filters, initial measurement noise covariance is in-

dispensable. However, in FAVB-UKF, it is not necessary. This is because the estimation
of noise covariance by VB method can be considered as a initial value.
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(3) A fuzzy inference system (FIS) is introduced to adaptively adjust the measure-
ment noise covariance based on a covariance matching technique, which can avoid filter
divergence and improve the robustness.

6. Numerical Example. Simulation experiment have been carried out to evaluate the
performance of the proposed approach (FAVB-UKF) in comparison with the conventional
UKF and variational Bayesian UKF(VB-UKF)[8]for target tracking scenario.

The targets are modeled as constant velocity objects in a plane with process noise
(Gaussian zero mean) that accounts for slight changes in the velocities. More specifically,
let a state vector x(k) = [x(k) ẋ(k) y(k) ẏ(k)]T where x(k) are the position components
of east and north,respectively. ẋ(k)andẏ(k) are the corresponding velocity components
respectively. the state model is given by

f (x(k)) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 · x(k) + w(k)

where sampling interval T=1s. The parameters of the target is given by initial state:
[1500m, 150m/s, 1200m, 120m/s]T ,P0 = diag{(50m)2, (10m/s)2,(50m)2, (10m/s)2}. w(k)
is zero mean Gaussian noises with known covariance matrix Q(k), which is given by

Q(k) = 0.25× diag(Q1,Q1),where Q1 =

[
T 3/3 T 2/2
T 2/2 T

]
Radar is fixed at the origin of the plane and equipped to measure the range. Hence,

the measurement equation is written as:

z(k) =
√
x2(k) + y2(k) + v(k)

where v(k)is an additive zero-mean Gaussian noise vector with variance R(k).In this sim-
ulation experiment,R(k)is designed to change according to

R(k) =

 R0 0 ≤ k ≤ 10
10R0 11 ≤ k ≤ 30
2R0 other

,where R0 = R̂(0) = 4m2

The parameters of UKF are chosen as :α = 0.01, κ = 0, β = 2. The parameters of
VB-UKF are set as ρ = 0.001, ζ(k) = 1, η(k) = 0.1, N = 3.

For performance comparison, we compute the accumulative absolute error (AAE) in
position and velocity. and mean AAE (MAAE). We define the AAE and MAAE in
position

AAEpos(k) = |x(k)− x̂(k)|+ |y(k)− ŷ(k)| ; MAAEpos(k) =
1

Ns

Ns∑
k=1

AAEpos(k)

where (x(k), x̂(k)) and (y(k), ŷ(k)) are the true and estimated positions at time k. Ns

is the simulation steps. Similarly to the AAEpos(k) and MAAEpos ,we may also write
formula of the AAEvel(k) and MAAEvel. Simulation steps Ns = 60 in this example.

Example 1:UKF VS FAVB-UKF In this example, tracking performance of UKF
and FAVB-UKF is demonstrated and the simulation results are shown by Fig. 3, Fig. 4,
and Table 1.
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Table 1. The mean accumulative absolute error of two algorithms

MAAE
Algorithm

FAVB-UKF UKF

position(m) 12.3564 98.7973
Velocity(m/s) 1.9398 4.1106
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Fig. 3 and Fig.4 show the AAE for the two methods. From two figures, it can be seen
that FAVB-UKF performs significantly than UKF. Compared with FAVB-UKF, the state
estimate of UKF deviated from the true state very large. Note that as expected in Table1,
the mean accumulative absolute errors of FAVB-UKF are obviously less than that of stan-
dard UKF. The reason is that the FAVB-UKF can estimate the unknown measurement
noises online whereas the standard UKF depends on the fixed prior knowledge about the
measurement noises.

Example 2:VB-UKF VS FAVB-UKF In this simulation, two adaptive algorithms
are compared.The results are given from Figure 5 to Figure 7, and Table 2.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

time k

A
A

E
 in

 v
el

oc
ity

(m
/s

)

 

 
VB−UKF
FAVB−UKF

Figure 5. The accumulative
absolute error in position

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

A
A

E
 in

 p
os

iti
on

(m
)

 

 
VB−UKF
FAVB−UKF

Figure 6. The accumulative
absolute error in velocity



748 G. Y. Wang, and B. L. Guan

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

time k

es
tim

at
io

n 
of

 n
oi

se

 

 
Real noise
VB−UKF
FAVB−UKF

Figure 7. Estimation of
measurement noise variance

Table 2. The mean accumu-
lative absolute error of two al-
gorithms

MAE
Algorithm

FAVB-UKF VB-UKF

R̂(k) 1.0010 1.3556

From Fig.5 and Fig.6, it is easy to see that FAVB-UKF obtains better estimation accu-
racy than VB-UKF. In Table 2, the MAAE of two methods also proved this. Obviously,
FUKF not only can estimate the variance of measurement noise similar to VB-UKF, but
also be able to adjust the estimation results. Estimation error of the noise variance also
confirmed this argument in Fig.7 and Table2 . These results are consistent with our anal-
ysis in section 5. It means that the proposed method is an effective approach for real
application.

7. Conclusions. In order to deal with the noise uncertainty and system nonlinearity
simultaneously, VB technology and FIS are introduced in traditional UKF, a new adaptive
UKF is presented in this article. The simulation results show that the proposed method
performs excellently, and it is an efficient algorithm for the real application. In the future,
we would like to consider the system with unknown process noise and measurement noise.
On the basis of these adaptive methods, it will also be interesting to design nonlinear
fusion algorithms in centralized and distributed fusion framework. Furthermore, another
interesting future research topic is to compare the computational demands of various
adaptive filters.
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