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Abstract. This paper presents a method for recognizing natural scene categories based
not only on approximate global geometric correspondence between the features of the same
kind, but also on complementary information cues offered by heterogeneous features. This
technique works by dividing the image into increasingly fine sub-cells and computing the
bag-of-features found inside each sub-cell. The discriminative power of each resulting
spatial pyramid depends largely on its specific choices on interest point detector and local
region descriptor involved in computing the bag-of-features. Different choices on inter-
est point detector and local region descriptor lead to a powerful image representation:
multiple pyramid histograms of words (mPHOW), which is a simple and computation-
ally efficient extension of pyramid histogram of words (PHOW). In order to recognize
an unknown image as correctly as possible, this paper first employs multi-class support
vector machine (SVM) classifiers to compute posterior probabilities from the individual
PHOWs, and then adopt the boosting algorithm to combine the variants of SVM, each
trained on a single PHOW, to obtain the improved estimate of the “final” posterior prob-
abilities. Our proposed method is evaluated on three benchmark scene datasets: OT, FP,
and LSP. Results demonstrate that the proposed method outperforms the compared algo-
rithms consistently.
Keywords: Bag-of-words, Pyramid histogram of words, Support vector machine, Boost-
ing.

1. Introduction. With the exponential growth on high quality digital images, the need
of semantic scene category recognition is becoming increasingly important to support
effective image database indexing and retrieval. However, the recognition of scene cate-
gory, also called scene categorization, is one of the most challenging problems in computer
vision, especially in the presence of intra-class variation, occlusion, clutter, pose and illu-
mination changes.
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Figure 1 shows five example images from each of two scene categories: beaver and cup.
It is evident that each category presents high intra-class variation. Taking cup images in
the second row of Figure 1 as an example, there exists significant variations in appearance,
size, shape, color, and etc. This means that we need a method that can generalize across
all possible instances of certain categories.

(a) beaver

(b) cup

Figure 1. Intra-class variation problem. Both beaver (a) and cup (b)
present high intra-class variation. Note that in this paper all images in the
figures are scaled so as to have same width while the aspect ratio remains
unchanged.

Figure 2 shows three example images from each of four categories: mandarin, woodduck,
inside city, and tall building. Although the mandarin and woodduck scenes are not labeled
as the same category, we can see from Figure 2(a-b) that they would be easily confused
each other. Also, inside city and tall building in Figure 2(c-d) can be easily confused each
other because they have a very similar appearance. But for the case of scene category
recognition, we do not want to confuse between scenes of different categories that are
quite similar.

No one has yet constructed a scene categorization system which approaches the per-
formance level of my two-year-old daughter. However, the progress in the field is quite
dramatic, if judged by how much better today’s algorithms are compared to those of a
decade ago. In summary, most of the scene category recognition algorithms in the liter-
ature thus far are based on one of two basic image representations: parts-and-shape and
bag-of-features. In the first category, the models are to represent real-world scenes by com-
bining individual object appearance components with their spatial relations [1, 2]. The
disadvantage of these models is that the learning and inference process is still extremely
complex when the number of the constituent parts is beyond , say, 15 or 20, which greatly
limits their applications. On the contrary, the bag-of-features models retain only the fre-
quencies of the individual visual features and discard all information about their layout.
The bag-of-features models have been proven to be effective for scene categorization [3,4].
The success of these orderless models for scene categorization tasks may be explained
with the help of an analogy to bag-of-words models for text document analysis, so these
two terms, namely bag-of-words and bag-of-features, are used interchangeably throughout
this paper. Currently, the bag-of-features models are the most popular methods for scene
category recognition.
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(a) mandarin (b) woodduck

(c) inside city (d) tallbuilding

Figure 2. Inter-class similarity problem. Three mandarin images (a) that
could be easily confused by the three woodduck images (b). Three inside
city images (c) are very similar with the tallbuilding images (d).

Inspired by pyramid histogram of words (PHOW) [5,6], this paper represents an image
as multiple pyramid histograms of words (mPHOW), where the discriminative power of
each PHOW depends on its specific choices on interest point detector and local region
descriptor used in the framework of the bag-of-words. Since different interest point detec-
tors and local region descriptors place their respective emphases on different aspects of a
given image such as corner, texture, shape, and etc., such representation is expected to
reflect the content of the image more comprehensively. Then, the multi-class support vec-
tor machine (SVM) classifiers, with kernels based on the histogram intersection distance
(HID) for comparing visual word distributions, are learned from the individual PHOWs.
Finally, in order to take advantage of the complementary information cues that seem to
reside in the individual PHOWs, we adopt the boosting algorithm to obtain the improved
estimate of the “final” a posteriori probabilities for an unknown image. Our proposed
method is evaluated on three benchmark scene datasets: OT [7], FP [8], and LSP [5].
Experimental results demonstrate that the proposed method outperforms the compared
algorithms on all benchmark datasets consistently.

The rest of this paper is organized as follows. Section 2 describe our method in detail.
Experimental results on standard datasets are shown in Section 3. Section 4 makes a
conclusion.

2. Our method. Figure 3 shows the basic stages involved in the design of our scene cat-
egorization system: mPHOW based image representation, recognition with the individual
PHOWs, and decision-level classifier combination by the boosting. System evaluation
stage is also included here for completeness, but it is not our focus in this work. In the
following, Section 2.1 extends the PHOW to mPHOW based on different interest detectors
and local region descriptors, Section 2.2 presents the design of multi-class SVM classifiers
where each one is trained on a single PHOW, and at last Section 2.3 shows a decision-level
classifier combination by the boosting algorithm.

2.1. mPHOW. Let xm denote the PHOW of type m for an image I and xmlc denote the
bag-of-words feature of the cell c at level l of the spatial pyramid (SP) constructed from
the image I. Note that the first level of the SP consists of only one cell, i.e., the whole
image itself. In each subsequent level each cell is split into four non-overlapping subcells.
The process is repeated up to level L [5]. Computing the bag-of-words feature of the cell
c at level l, xm, involves three main steps:
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Figure 3. The basic stages involved in the design of our scene categoriza-
tion system.

• Extract local region descriptors (either at interest points, or densely sampled).
• Generate a code book by K-means and vector quantize (VQ) descriptors to code

words according to nearest neighbor (NN) rule.
• Encode the cell as a histogram of visual code words.

In this way, xm is of dimensionality D = V
∑L

l=1 4l−1 for the spatial pyramid of L levels
and the dictionary of V words. In order to capture multiple information cues resided in
an image, we can apply different interest point detectors and local region descriptors to
the framework of bag-of-words. Let us take for example local descriptors. To date there
exist a number of descriptors in the literature, such as scale invariant feature transform
(SIFT) [9], census transform (CT) [10] and self-similarity (SSIM) [11]. Therefore, selecting
different interest point detectors and local region descriptors leads to multiple pyramid
histograms of words (mPHOW), {xm}.

2.2. Kernel-Based Recognition With the individual PHOWs. Having computed
the PHOW, xm, which is based on certain choices (indicated by the superscript, m, in
xm) on interest point detector and local region descriptor, we use SVM for classification.
In a two-class case, the decision function of SVM for a test image with the PHOW, xm,
is of the following form:

g(xm) =
N∑
n=1

αmn ynK(xm,xmn ) + bm, (1)

where K(xm,xmn ) is the value of a kernel function for the test image and the nth training
image, yn the class label of xmn (+1 or −1), αmn the learned weight of the nth training
image, and bm the learned threshold parameter.

In Eq. (1), we use extended Gaussian kernels:

K(xm,xmn ) = exp (− 1

µ
dhi(x

m,xmn )), (2)

where

dhi(x
m,xmn ) =

D∑
i=1

min(xm(i),xmn (i)) (3)
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is the histogram intersection distance (HID) between xm and xmn , and µ is set to the
average HID between all the training images.

LIBSVM [12], an integrated software for SVM, is used to train the two-class classifiers.
Multi-class classification in LIBSVM is conducted following the one-versus-one strategy
and LIBSVM is able to provide posterior probabilities at the outputs of the respective
classifiers, i.e.,

gk(x
m) = P (ωk|xm), k = 1, 2, . . . , K, (4)

which satisfies gk(x
m) ≥ 0 and

∑K
k=1 gk(x

m) = 1, where K is the total number of classes.
However, in this work, we conduct multi-class classification following the one-versus-
the-rest strategy. The reason is that we have found the recognition accuracy rates of
employing the one-versus-the-rest strategy are higher than those of employing the one-
versus-one strategy according to our preliminary experiments. The steps involved in the
one-versus-the-rest multi-class classification is summarized in Algorithm 1, where the
superscript, m, is omitted in order to simplify the presentation.

Algorithm 1 One-versus-the-rest multi-class classifier

Require: Training set Dtrain = {(x1, y1), . . . , (xN , yN)} with yn ∈ {1, 2, . . . , K}, n =
1, . . . , N .

1: for j = 1 to K do
2: D+

j = {(xn, yn)|(xn, yn) ∈ Dtrain,∀yn = j}
3: D−

j = {(xn, yn)|(xn, yn) ∈ Dtrain,∀yn 6= j}
4: Learn a two-class SVM and obtain a discrimination function

gj(x) =
N∑
n=1

αjnynK(x,xn) + bj.

5: end for
6: Assign x in ωi if gi(x) > gj(x) if ∀j 6= i.

2.3. Combination By the Boosting. Following the procedure given in Section 2.2, we
have obtained M×K binary SVMs gmk(x

m), m = 1, . . . ,M and k = 1, . . . , K, where M is
the total number of PHOWs in mPHOW and K is the total number of scene classes. Now
let xmn be the mth PHOW computed from the nth training image. We can obtain a M×K
matrix, Gn = (gmk(x

m
n )), where the (m, k) element is the response of gmk(x) for xmn . Then,

the new feature tn for the nth training image is generated by lexicographic ordering of the
elements of Gn. With the reformulated training set {(t1, y1), (t2, y2), . . . , (tN , yN)}, and
once again, we first concentrate on the two-class classification. The goal of AdaBoost [13]
(adaptive boosting, the most popular algorithm of the boosting family) is to construct an
optimally designed classifier of the form

f(t) = sign(F (t)) (5)

where

F (t) =
T∑
t=1

αtφ(t, kt, pt, θt). (6)

In Eq. (6), the base classifier φ(t, k, p, θ) is defined as

φ(t, k, p, θ) =

{
+1 if p[t]k < pθ,

−1 otherwise
(7)
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Algorithm 2 The Adaboost approach to combine classifiers

1: Initialize w
(0)
n = 1

N
, n = 1, 2, . . . , N

2: t = 1
3: repeat
4: Compute

(kt, pt, θt) = arg min
k,p,θ

{
N∑
n=1

w(t)
n I(1− ynφ(tn, k, p, θ))

}
5: Pt =

∑
w

(t)
n for ynφ(tn, kt, pt, θt) < 0

6: αt = 1
2

ln 1−Pt

Pt

7: Zt = 0
8: for n = 1 to N do
9: w

(t+1)
n = w

(t)
n exp (−ynαtφ(tn, kt, pt, θt))

10: Zt = Zt + w
(t+1)
n

11: end for
12: for n = 1 to N do
13: w

(t+1)
n = w

(t+1)
n /Zt

14: end for
15: T = t
16: t = t+ 1
17: until A termination criterion is met.
18: return f(t) = sign

∑T
t=1 αtφ(t, kt, pt, θt).

where [t]k is the kth element of the vector t, p is a polarity indicating the direction of the
inequality, and θ is a threshold. The weak classifier of Eq. (7) is usually called decision
stump in the machine learning field. Algorithm 2 shows the pseudocode of the AdaBoost
algorithm used in this paper. Note that in Algorithm 2, Function I(·) is either 0 or
1, depending on its argument, whether it is zero or positive, respectively. To obtain a
classifier response, we use the raw outputs of the AdaBoost, given by Eq. (6). Multi-class
classification is then done with the one-versus-the-rest rule. Specifically, an AdaBoost
classifier is learned to separate each class from the rest, and a testing image is assigned
the label of the classifier with the highest response.

3. Experimental Results.

3.1. Datasets and Protocols. We evaluated our scene categorization algorithm over
three benchmark datasets:

1. Oliva and Torralba [7],
2. Fei-Fei and Perona [8], and
3. Lazebnik et al. [5]

We will refer to these datasets as OT, FP, and LSP, respectively. Figure 4 shows some
example images from these three datasets. Here, we give an brief overview of these
datasets.

• OT. It includes 2688 images classified as eight categories: 360 coast, 328 forest, 374
mountain, 410 open country, 260 highway, 308 inside of city, 356 tall building, and
292 street. The average size of each image is 250× 250 pixels.
• FP. It is composed of thirteen scene categories and is only available in gray scale.

It consists 2688 images of the OT dataset plus: 241 suburb residence, 174 bedroom,
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151 kitchen, 289 living room, and 216 office. The average size of each image is
approximately 300× 250 pixels.
• LSP. It is composed of fifteen categories and, as with FP, is only available in gray

scale. It consists of thirteen scene categories of the FP dataset plus: 315 store and
311 industrial. The average size of each image is approximately 300× 250 pixels.

(a) coast (b) forest (c) highway

(d) inside of city (e) mountain (f) open country

(g) street (h) tall building
(i) suburb

(j) bedroom (k) kitchen (l) living room

(m) office
(n) industrial

(o) store

Figure 4. Example images from the OT (a)–(h), FP (a)–(m) and LSP
(a)–(o) datasets.

We perform all processing in grayscale, even when color images are available. In each
dataset, the available data are randomly split into a training set and a testing set based
on published protocols on these datasets. The random splitting is repeated five times,
and the average recognition rate is reported for each run. The final results are reported
as the mean and standard deviation of the results from the individual runs.

3.2. Implemental Details. SIFT, SSIM, CENTRIST and original normalized pixel
patch are computed at points on a regular grid with spacing 8 pixels. At each grid
point all descriptors are computed over a 16×16 pixel patch. This leads to four PHOWs.
The size of all code books is empirically set to 200 based on Lazebniks’ work [5]. Spatial
pyramids of depth L = 3 are used for all experiments.
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3.3. Results. Table 1 lists the results of the proposed method. For comparison, the
results obtained by the individual PHOWs are also shown.

Table 1. The results of our proposed method and obtained by the indi-
vidual PHOWs.

Datasets OT FP LSP
Patch 82.6± 0.3 79.3± 0.5 75.9± 0.6
SIFT 87.2± 0.3 84.6± 0.4 80.2± 0.3
SSIM 87.3± 0.5 81.2± 0.7 77.8± 0.4
CENTRIST 84.3± 0.6 82.3± 0.4 79.7± 0.5
Boosting 88.4± 0.3 87.6± 0.4 85.5± 0.4

Over all three scene datasets, it is seen from Table 1 that the proposed algorithm consis-
tently outperforms the recognition methods of only using single PHOW. For example, our
algorithm achieves a higher recognition rate 85.5% compared to that obtained by the best
single feature, i.e. the PHOW with SIFT being local descriptor. This does not come as a
surprise since our method exploits multiple information cues that may be complementary
for discriminating the scene categories.

Figure 5 shows the resulting confusion matrix on LSP from the second run of using
our proposed method. A closer look at the confusion matrix reveals that the most heavy
confusion occurs among the four indoor categories: bedroom, living room, kitchen and
office. This can be explained by the fact that there exists similar components (e.g.,
windows, tables, and so on) and similar configuration.

Figure 5. Confusion matrix resulted from our algorithm on LSP. The
recognition rate is 85.5%. Only accuracies higher than 10% are shown.

Table 2 compares the proposed method with state-of-the-art ones over the benchmark
datasets. For the OT dataset, the proposed method obtains an accuracy rate of 88.4%,
which is much higher than the result of 83.7%, achieved with GIST [7]. For the FP
dataset, the variant of latent Dirichlet allocation (LDA) obtained an accuracy of 65.2% [8].
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Classification accuracy for the bag-of-visterms representation was 66.5% [3]. In our pre-
vious work, we proposed a powerful image representation: pyramid histogram of topics
(PHOTO), which introduced approximate global geometric correspondence between the
topics learned by probabilistic latent semantic analysis (pLSA). PHOTO gave 75.0% ac-
curacy. The proposed method in this paper achieves the highest accuracy rate, 87.6%.
Finally, for the LSP dataset, the standard pLSA achieves a classification rate of 65.9% [5]
and spatial pyramid matching yields an accuracy of 81.1% [5]. Both Wu [10] and Liu [15]
reported an 83.8% accuracy, which is also below the result of 85.5% achieved by the
propose method in this paper.

Table 2. Comparison with state-of-the-art methods on the OT, FP and
LSP datasets.

OT FP LSP
Ours 88.8 Ours 87.6 Ours 85.5
[7] 83.7 [8] 65.2 [5] 81.1

[3] 66.5 [10] 83.3
[14] 75.0 [15] 83.3

4. Conclusion. Based on various choices of interest point detectors and local region de-
scriptors, this paper generalizes pyramid histogram of words (PHOW) to multiple pyramid
histograms of words (mPHOW), which are shown to succeed in catching different informa-
tion cues for scene category recognition. Given an unknown image, in order to recognize
its class label as correctly as possible, this paper firstly employs support vector machine
classifiers to compute posterior probabilities from the individual PHOWs, and then adopt
the boosting algorithm to combine the variants of SVM, each trained on a single PHOW.
Experimental results on several benchmark scene datasets have shown that the proposed
algorithm leads to an overall better performance than could be achieved by using each of
the variants of the same classifier separately.

Obviously, the boosting is not the only classifier combination algorithm available. For
example, recently many experts in the field of machine learning developed the multiple
kernel learning to combine different types of kernels in the framework of support vector
machine, and obtained the satisfactory results on some datasets. However, from the
practical point of view, the multiple kernel learning is computationally prohibitive in
practical applications, and therefore, is not suitable for large scale dataset scenarios. Our
future work is to conduct experimental comparative studies, and furthermore, to make
what is a strategy that one has to adopt for combining the individual outputs in order to
reach the final conclusion.
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