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Abstract. Blur is a key factor in the perception of image quality, leading to spread of
edges in images. The quantity of feature points extracted from images can represent image
shape changes. Compared with sharp images, blurred images tend to contain less feature
points, and the reduction of feature points is related to blur. In this paper, we propose
a new blind blur assessment metric based on feature points. First, we apply Gaussian
blur to the blurred image, producing the re-blurred image. Then feature points from the
blurred and re-blurred images are extracted and used to form feature point maps. Next,
each feature point map is divided into blocks to compute block-wise quantity map, based
on which a feature point similarity map is calculated. Finally, a visual saliency map is
employed to conduct the pooling, producing the final blur score. Experimental results on
four public databases demonstrate that the predicted blur scores has high correlation with
subjective evaluations, and the proposed method outperforms several no-reference image
blur metrics, as well as some representative general-purpose blind image quality metrics.
Keywords: Image quality assessment, No-reference, Blur, Feature points, Visual saliency.

1. Introduction. The processing and transmission of digital images usually lead to de-
graded visual quality. The subjective evaluation is time-consuming and difficult to im-
plement in real world applications. Hence, we require objective image quality assessment
(IQA) algorithms that can measure image quality, and the objective assessment results
need to keep consistent with the human visual system (HVS). IQA aims at evaluating the
quality of an image in an automatic and perceptually consistent way.
The current objective IQA methods can be classified into full-reference (FR), reduced-

reference (RR) and no-reference (NR) metrics [1]. For FR metrics, the quality of a
distorted image is evaluated with full access to the undistorted reference image [2]. Instead
of using the whole reference image, RR metrics only use partial information of it [3].
However, in many practical application, the partial/full information about the reference
image is inaccessible. Therefore, NR metrics that can predict the image quality only using
the distorted image are comparatively more desirable. The NR metrics can be further
classified into two types, namely distortion-specific metrics and general-purpose metrics.
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While the former evaluates a specific kind of distortion, such as blocking artifacts [4, 5, 6],
blur [7, 8] and ring artifacts [9], the latter estimates the quality of an image without
knowing the exact distortion types [10]. In this paper, we focus on the NR image blur
assessment.

In recent years, several algorithms have been proposed for image blur assessment.
Marziliano et al. [11] detected image edges through the Sobel operator. Then the spread
of edges was measured by the widths of the edges and blur score was computed as the
average edge width. Shaked et al. [12] utilized localized frequency content analysis in
a feature-based context, which facilitated automatic image blur enhancement. Ferzli et
al. [13] proposed a sharpness metric by measuring curve variation of the image in the
Riemannian manifold and mapping the image into a non-Euclidean space. The same
authors [7] also proposed the concept of Just Noticeable Blur (JNB). Based on the lo-
cal contrast and edge width of blocks, the image blur was modeled by a probabilistic
framework. In [14], a NR metric (Q-metric) was proposed based on the singular value
decomposition, and the gradients of local image anisotropic patches was calculated.

Blur is typically characterized by the spread of edges in images. Feature point detection
is an important procedure in many computer vision applications, which is sensitive to
image shape changes. Generally, more feature points can be extracted from a sharp
image than a blurred counterpart, and the reduction of feature points is related to blur.
Besides, the variation of feature points has correlation with geometric structures of image
pixels. Hence, we can evaluate blur extent through the reduction speed of feature points
combined with proper content-based pooling.

Based on this observation, this paper presents a new NR blur assessment method based
on feature points. In order to evaluate the blur extent, we use the idea of relative blur.
Therefore, we first apply Gaussian blur to the blurred image and obtain the re-blurred
image. Then feature points of both the blurred and re-blurred images are extracted using
the Harris corner detector [15], and the extracted feature points form a feature point map.
Next, the feature point maps are divided into blocks to compute block-wise quantity maps,
respectively. Later, a feature point similarity map is calculated based on the block-wise
quantity maps. Finally, an overall blur score is produced by pooling this similarity map
with a visual saliency map, which is mainly incorporated to adapt to the characteristics
of the HVS.

2. Harris Corner Detector. The Harris corner detector [15] has been widely used in
literature. The idea of Harris corner detector is to detect corner points (i.e., feature
points), which are chosen by the local maxima of corner strength map based on the auto-
correlation matrix of image gradients. In implementation, the Harris corners are detected
following four steps. First, an image is filtered by Gaussian filter to obtain directional
derivative distorted images Im and In. Second, eigenvalues or the autocorrelation matrix
M are computed in a Gaussian window W around each pixel. The matrix M can be
defined as

M =

[ ∑
W (Im(mi, ni))

2
∑

W (Im(mi, ni)In(mi, ni))∑
W (Im(mi, ni)In(mi, ni))

∑
W (In(mi, ni))

2

]
(1)

where Im and In denote partial derivatives of I with respect to m and n, respectively, and
(mi, ni) represents pixel position in the window (W). In the third step, a corner response
function R is defined to avoid the explicit eigenvalue decomposition of M , written as

R = det(M)− k(trace(M))2 (2)

where k denotes a small positive constant which is set to 0.01 in our experiments empiri-
cally, and det(·) and trace(·) are determinant and trace of the matrix, respectively. After
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computing the corner response for all pixels, a threshold on the R and the non-maximum
suppression is used to get corner points. More details on Harris corner detector can be
found in [15].
Fig.1 shows an example of blurred and re-blurred images and their extracted Harris

feature points. The re-blurred image (the right one) exhibits less feature points than the
blurred image (the left one). The reason is that blur causes image degradation, which
leads to feature points reduction. We can also notice that the reduction extent in smooth
areas is more obvious than that in texture areas, which proves that feature points can
capture image structure changes.

Figure 1. An example of blurred and re-blurred images and their ex-
tracted Harris feature points

3. Proposed Method. Fig.2 shows the flowchart of the proposed image blur assessment
method. First, we apply Gaussian blur to the blurred image to obtain the re-blurred
image. Then we extract feature points from the blurred and re-blurred images through
Harris corner detector, and the the feature point maps are produced. Next, the feature
point maps are divided into blocks to compute block-wise quantity maps, then the block-
wise quantity similarity map is calculated. At last, a resized visual saliency map is used
to pool this similarity map, producing the overall blur score.
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Figure 2. Flowchart of the proposed image blur metric

3.1. Gaussian Blur. Gaussian blur is widely used to produce a blurred image by re-
ducing the high-frequency components of an image. In this paper, a re-blurred image
is produced by applying Gaussian blur to a blurred image with a window size of 3 × 3
and a standard deviation σ set to 5. While generating the re-blurred images, we conduct
the blur operation twice, and we find that for extremely blurred images, further blurring
produces little effect.
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3.2. Image Blocking. The variation of feature points has correlation with geometric
structures of image pixels, which means blur extent may differ from different image con-
tents. Instead of directly use all the feature points of a test image to represent its blur
extent, we divide the feature points into blocks for better illustration. Given a blurred
image Ix and we can get the corresponding re-blurred image Iy, both of them are of
size M × N . Through the Harris corner detector we get feature point maps P x and P y,
respectively. Then they are partitioned into non-overlapping blocks of size B ×B, which
are denoted by P x

ij and P y
ij, respectively, i ∈ {1, 2 · ··, E}, j ∈ {1, 2 · ··, T}, where E = ⌊M

B
⌋,

T = ⌊N
B
⌋, ⌊·⌋ is the floor operation. Then, we compute the sum of feature points in each

block, thus producing the block-wise quantity maps F x and F y, respectively, which can
be represented as

F x(i, j) =
∑

P x
ij (3)

F y(i, j) =
∑

P y
ij (4)

where x and y are the blurred and re-blurred images.

Figure 3. The block-wise quantity maps of the blurred and re-blurred
images in Fig.1

Fig.3 shows the block-wise quantity maps of the blurred and re-blurred images in Fig.1.
We can see that the block-wise quantity map of re-blurred image exhibits less feature
points, compared to that of the blurred image. Besides, the reduction of quantity varies
among different block-pairs, which is caused by different image shape changes.

3.3. Feature Point Quantity Similarity. Since we consider to use the difference be-
tween blurred image and re-blurred image to represent image quality, the similarity of
block-wise quantity maps F x and F y is proposed to evaluate the blur extent or relative
blur of the test image. With two block-wise quantity maps F x and F y, the feature point
quantity similarity map is computed as

S(i, j) =
2F x(i, j)F y(i, j) + C

[F x(i, j)]2 + [F y(i, j)]2 + C
(5)

where i ∈ {1, 2 · ··, E}, j ∈ {1, 2 · ··, T}, x and y are the blurred and re-blurred images,
C is a small constant used to ensure numerical stability. The similarity of feature point
quantity maps is computed pixel-wisely, so S serves as a local quality map, which is the
indicative of local distortions in the image.

3.4. Pooling by Visual Saliency. Visual saliency for quality score pooling has already
been used as a weighting method in some previous works [16]. In particular, distortions
in textured areas have more impact on the subjective quality than those in smooth areas.
The saliency detection algorithms can determine which regions of an image attract the
most attention of human eyes automatically.
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Fig.4 shows the saliency map detected from the blurred image in Fig.2. We can observe
that the detected salient areas correspond to the foreground areas, which contribute more
in the perception of blur. With the saliency map of an image, the blur score can be
measured by assigning bigger weights to the visually salient areas. As a result, we generate
the final image blur score by incorporating visual saliency.

Figure 4. The saliency map detected from the blurred image in Fig.1

In this paper, the visual saliency map of the blurred image is first calculated and
denoted by {V (i, j)}, i ∈ {1, 2 · ··,M}, j ∈ {1, 2 · ··, N}, Then the saliency map is resized
to the size E × T , such that one image block corresponds to one weight. Suppose the
resized saliency map is represented by {VR(i, j)}, i ∈ {1, 2 · ··, E}, j ∈ {1, 2 · ··, T}, the
final image blur score is computed as

Q =

∑E
i=1

∑T
j=1 S(i, j)VR(i, j)∑E

i=1

∑T
j=1 VR(i, j)

. (6)

The proposed method will generate high scores for more blurred images, and the scores
will be no greater than 1.

4. Experimental Results and Analysis.

4.1. Experimental settings. We evaluate the performance of the proposed method on
four public image quality databases, namely LIVE [17], CSIQ [18], TID2008 [19] and
TID2013 [20]. The numbers of blurred images in the databases are 145, 150, 100, and
125, respectively. For each image, the subjective quality is measured, which refers to
Difference Mean Opinion Score (DMOS) in LIVE and CSIQ, and Mean Opinion Score
(MOS) in TID2008 and TID2013.
The size of the blocks is set to 9× 9 (B = 9) and the Harris corner detector threshold

is set to 0.036, which are determined by experiments. In the literatures, many saliency
detection models have been proposed. In this paper, we employ the SR model [24], because
it can produce slightly better results and is also computationally efficient.
Three commonly used criterions are employed to evaluate the performance of the pro-

posed metric. The first two are the Pearson linear correlation coefficient (PLCC) and
the root mean square error (RMSE), which are used to measure the prediction accuracy.
Another one is the Spearman rank order correlation coefficient (SROCC), which is used
to evaluate the prediction monotonicity. SROCC can be calculated according to the rank
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of the scores, while PLCC and RMSE can be computed by applying a nonlinear regres-
sion between the subjective scores and the predicted scores. In this paper, we adopt the
four-parameter logistic fitting function:

f(x) =
τ1 − τ2

1 + e(x−τ3)/τ4
+ τ2 (7)

where τ1, τ2, τ3, τ4 are the parameters to be fitted. Typically, an excellent metric exhibits
high PLCC and SROCC values, as well as low RMSE value.

4.2. Performance Evaluation. In this subsection, we test the performance of the pro-
posed method on the four image quality databases. Only the blurred images in each
database are included in the computation.
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Figure 5. Scatter plots of the subjective scores against the predicted blur
scores obtained by the proposed metric on four databases. The X-axis
denotes the metric score, and Y-axis denotes the subjective score (DMOS
for LIVE and CSIQ, MOS for TID2008 and TID2013)

Fig.5 shows the scatter plots of the subjective scores against the predicted scores using
our proposed metric on four databases, where test images are represented by the sam-
ple points. We can see that the predicted scores have high consistency with subjective
evaluations.

We also compare the proposed method against five existing no-reference image sharp-
ness/blur metrics which include Marziliano [11], HP Metric [12], Riem. Metric [13],
JNB [7] and Q-Metric [14]. Table 1 summarizes the experimental results of the six blur
metrics on the four databases in terms of PLCC, SROCC and RMSE. For each database,
the best result is marked in boldface. Note that the performance of one metric may differ
from different databases. To provide an overall evaluation, we also compute the weighted
average PLCC and SROCC results for each metric over all four databases. The weighted
average is based on the size, namely number of blurred images in each database, which
means larger size will be assigned bigger weight.

It can be seen from Table 1 that the proposed method achieves the best performance
over the four databases, and it outperforms other metrics by a amount of more than about
0.1000 for both PLCC and SROCC values in all databases, which is quite noticeable. For
weighted average, our proposed method also achieves the best accuracy and monotonicity,
which exhibits really significant improvement. Hence, we can conclude that blur scores
predicted by our metric correlate much more consistently with subjective evaluations than
all the other blur metrics evaluated.

In order to further illustrate the superiority of the proposed method, we compare it with
several general-purpose NR image quality metrics, namely Blind Image Quality Index
(BIQI) [21], BLind Image Integrity Notator using DCT Statistics (BLIINDS2) [22] and
Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [23]. Table 2 lists the
simulation results, and we highlight the best result with boldface. It should be noted that
BIQI, BLIINDS2 and BRISQUE use the LIVE database to train their quality models, so
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Table 1. Summary of the experimental results for the proposed method
and five existing image blur metrics on four databases

Database Criterion Q-Metric [14] HP [12] Riem. [13] Marziliano [11] JNB [7] Proposed

PLCC 0.6787 0.7402 0.7735 0.8060 0.8160 0.9187

LIVE SROCC 0.5482 0.7020 0.7223 0.8043 0.7871 0.9036

RMSE 13.5646 13.1141 11.7071 10.9328 10.6769 7.2967

PLCC 0.7219 0.6894 0.8710 0.7969 0.8061 0.9158

CSIQ SROCC 0.6530 0.7053 0.8415 0.7697 0.7624 0.8645

RMSE 0.1983 0.2076 0.1408 0.1731 0.1696 0.1151

PLCC 0.3066 0.6286 0.6099 0.7179 0.6931 0.8460

TID2008 SROCC 0.3276 0.5197 0.5941 0.7252 0.6667 0.8449

RMSE 1.1170 0.9127 0.9300 0.8169 0.8459 0.6257

PLCC 0.3059 0.7442 0.6643 0.7738 0.7114 0.8690

TID2013 SROCC 0.3098 0.6861 0.6347 0.7690 0.6902 0.8663

RMSE 1.1880 0.8336 0.9327 0.7904 0.8770 0.6175

Weighted PLCC 0.5300 0.6950 0.7439 0.7787 0.7644 0.8919

average SROCC 0.4787 0.6641 0.7110 0.7706 0.7335 0.8721

they are marked by “training images” in the table and not included into comparison for
the LIVE database.

Table 2. Comparison with the general-purpose no-reference image quality metrics

Database Criterion BIQI [21] BLIINDS2 [22] BRISQUE [23] Proposed

LIVE PLCC training training training 0.9187
(145 images) SROCC images images images 0.9036

CSIQ PLCC 0.8556 0.9102 0.9279 0.9158
(150 images) SROCC 0.7713 0.8915 0.9033 0.8645

TID2008 PLCC 0.7550 0.8415 0.8043 0.8460
(100 images) SROCC 0.7468 0.8388 0.7990 0.8449

TID2013 PLCC 0.7819 0.8580 0.8240 0.8690
(125 images) SROCC 0.7642 0.8557 0.8134 0.8663

It can be observed from the table that the proposed method outperforms all the com-
pared general-purpose NR image quality metrics by the best overall performance on four
databases. Although BRISQUE performs the best in CSIQ, the performances on the rest
databases are not very competitive. Compared with these general-purpose NR image
quality metrics, our metric has the advantage of less computation cost for no training
model procedure. Besides, our proposed method exhibits a comparable well performance.

5. Conclusions. Blur is a key factor in perception of image quality. Based on the ob-
servation that blur distortion leads to the shape of images and this kind of shape changes
can be represented using feature points variations, we have proposed a novel image blur
metric based on feature points. In this paper, we first extract feature points from the
blurred image and re-blurred image, then the two feature point maps are divided into
blocks to generate block-wise quantity map respectively. Later, the block-wise quantity
maps are combined to compute the feature point quantity similarity map. Finally, an
overall blur score is achieved by pooling this similarity map with a visual saliency map.
We have done extensive experiments on public image quality databases. The exper-

imental results demonstrate that the proposed method can produce blur scores highly
consistent with human perception. We have also compared the proposed method with
representative image blur metrics as well as several general-purpose no-reference image
quality metrics, and the results demonstrate the superiority of our method.
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