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Abstract. Small-world networks are abundant in nature and society, describing such
diverse systems as the World Wide Web, communication networks or the neuronal net-
work of the worm C.elegans. In the past ten years, many small-world network models
have been proposed in both probabilistic and deterministic fashions. In this letter, we pro-
pose a new deterministic small-world model by simply extending triangles. Furthermore,
we analytically solve the main characteristics of the model and the results show that it is
indeed a kind of small-world networks.
Keywords: Deterministic small-world networks, Triangle-extended networks, Degree
distribution, Average path length, Clustering coefficient.

1. Introduction. The study of complex networks has emerged over the past several years
as a theme spanning many disciplines, ranging from mathematics and computer science
to the social and biological sciences.Small-world properties have been found in a number
of real-life systems. Small-world networks are famous for their small average node degree,
high clustering coefficient and short average path length. The small-world phenomenon
C the principle that we are all linked by short chains of acquaintances or six degrees of
separation has long been the subject of anecdotal fascination among the general public,
and more recently has become the subject of both experimental and theoretical research.
At its most basic level, it is a statement about networks, and human social networks
in particular; it concerns the graph with one node corresponding to each person in the
world, and an edge joining two people if they know each other on a first-name basis.
When we say that this graph is a small world, we mean, informally, that almost every
pair of nodes is connected by a path with an extremely small number of steps. In the
past dozen years, a considerable number of probabilistic models have been proposed. The
first pioneering WS small-world model [1] was proposed by randomly rewiring each edge
in a ring lattice, resulting in an avalanche of research of complex networks. One year
later, another significant model called NW model [2, 3] was proposed, in which edges are
randomly added between each pair of unlinked nodes, but no edges are removed from the
regular lattice. Subsequently, another small-world network called R+T network [4] was
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presented, which is actually a regular network coupled with a tree structure. Furthermore,
a generalization of the WS model based on a two-dimensional square lattice was proposed
in [5]. To find out other manners for constructing small-world networks, a simple growing
evolution model based on geographical attachment preference was proposed in [6].

However, all these models mentioned above are random. As Barabási et al. said, the
randomness, while in line with the major features of real-life networks, makes it harder
to gain a visual understanding of how networks are shaped, and how do different nodes
relate to each other [7]. Thus, many researchers turn to constructing scale-free or small-
world networks in deterministic manners. In 2000, the first deterministic small-world
network based on graph-theoretic methods was proposed [8]. Two years later, other two
deterministic small-world models with constant and variable degree distributions were
introduced [9]. Later, based on the decomposition of prime numbers, Corso constructed
an interesting prime number small-world model [10]. Inspired by Corso’ s work, a small-
world network based on Goldbach conjecture was proposed [11]. One year later, another
small-world model based on Cayley graphs was proposed [12]. In the same year, in
order to get growing small-world networks, Zhang et al. proposed a deterministic small-
world model by edge iterations [13]. Besides, by using the famous tower of Hanoi puzzle,
Boettcher et al. proposed a fascinating deterministic model called Hanoi Network [14]. In
2012, Guo et al. proposed a tree-structured deterministic small-world network by adding
edges on the binary tree [15]. Furthermore, Lu et al. proposed a small-world model
derived from the deterministic uniform recursive tree with a simple adding-edge rule [16].
Shortly afterwards, an admirable deterministic scale-free small-world network model was
proposed [17]. In this letter, we aim to obtain a new deterministic small-world model by
simply extending a triangle.

2. The Model. In our scheme, the network is created by an iterative method. Assume
that the obtained network after t iterations is SWt that has Nt nodes and Et edges. Define
twin nodes as a pair of nodes that connect to each other. The proposed construction
algorithm can be illustrated as follows: For t = 0, SW0 is a triangle whose three nodes
connect to each other. For t ≥ 1, SWt is obtained from SWt−1 by adding twin nodes for
each node created at Step t− 1 and attaching them to the node (see Fig.1).

Now we compute the size and order of SWt. In the revolution process of the model, for
each node generated at Step t− 1, two new nodes are created at step t. Therefore,

Nt −Nt−1 = 2(Nt−1 −Nt−2), t > 1 (1)

where Nt is the total number of nodes in the network. Since N0 = 3 and N1 − N0 = 6 ,
it follows that

Nt = 6× 2t − 3 (2)

t = 1 t = 2t = 0

Figure 1. Construction of the Proposed Deterministic Small-world Net-
work The first three steps of the iterative process are shown.



336 Z. M. Fang, Z. M. Lu, X. F. Li, M. L. Lv, and L. Zhang

On the other hand, the addition of each new node leads to three new edges, therefore,

Et − Et−1 = 3(Nt−1 −Nt−2) (3)

where Et is the total number of edges in the network. As E0 = 3 and E1 − E0 = 9 , we
have

Et = 9× 2t − 6 (4)

Thus, the average node degree can be calculated as follows

⟨k⟩t =
2Et

Nt

=
2(9× 2t − 6)

6× 2t − 3
= 3− 1

2t+1 − 1
(5)

Since limt→∞⟨k⟩t = 3 ,we can see that the proposed network is a sparse graph whose nodes
have many fewer connections than possible. Compared with our model, the average node
degree of the deterministic model presented in Ref.[13] approaches 4.

3. Topological Properties. Thanks to its deterministic and discrete nature, the model
proposed above can be solved exactly. To show its small-world nature, in the following
three subsections, we concentrate on its degree distribution, clustering coefficient and
diameter.

3.1. Degree Distribution. The degree distribution is one of the most important sta-
tistical characteristics of a network. In the study of graphs and networks, the degree of
a node in a network is the number of connections it has to other nodes and the degree
distribution is the probability distribution of these degrees over the whole network. The
degree of Node i can be defined as the number of its direct connections to other nodes, and
the degree distribution P (k) is defined as the probability that a randomly selected node
has exactly k links. According to the iterative algorithm, for t > 0 , we can easily prove
that the possible degree values in the proposed network are 2 and 4, which correspond to
the nodes created at Step t (called the outer layer nodes) and the other nodes (called the
inner layer nodes) respectively. Thus, we can easily obtain

P (k) =
6× 2t−1

6× 2t − 3
δ(k − 2) +

6× 2t−1 − 3

6× 2t − 3
δ(k − 4) (6)

Where δ(k) = 1 for k = 0 and δ(k) = 0 for k ̸= 0. When t → ∞ , we can easily obtain
the following degree distribution

lim
t→∞

P (k) = 0.5× δ(k − 2) + 0.5× δ(k − 4) (7)

Therefore, the degree distribution of the proposed network is discrete and focuses mainly
on two degree values. This is usually called delta distribution, which is different from
most proposed small-world models including the WS model.

3.2. Clustering Coefficient. Clustering is another important property of a network,
which provides a measure of degree to which nodes in a graph tend to cluster together.
Roughly speaking it tells how well connected the neighborhood of the node is. If the
neighborhood is fully connected, the clustering coefficient is 1 and a value close to 0
means that there are hardly any connections in the neighborhood. The most immediate
measure of clustering is the clustering coefficient Ci for every node i, which is defined as
the number of links Li that actually exist between its nearest neighbors divided by the
number of links that could possibly exist between them, i.e., Ci = 2Li/ki(ki − 1) . The
clustering coefficient of the whole network is obtained by averaging over all individual
Ci. The global clustering coefficient can be also defined using triplets of nodes. A triplet
is three nodes that are connected by either two (open triplet) or three (closed triplet)
undirected ties. A triangle consists of three closed triplets, one centred on each of the
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nodes. The global clustering coefficient is the number of closed triplets (or 3 × triangles)
over the total number of triplets (both open and closed). Here, because of the symmetry
of the proposed network, the nodes with the same degree k have the same local clustering
coefficient C(k). For t > 0 , we can easily prove that the local clustering coefficient of
outer layer nodes is 1, while the local clustering coefficient of inner layer nodes is 1/3.
Thus, we can easily get the following results

C(k) = 1× δ(k − 2) +
1

3
× δ(k − 4) (8)

Furthermore, the average clustering coefficient ⟨C⟩ can be easily obtained as follows.

⟨C⟩ =
1

6× 2t − 3

6×2t−3∑
i=1

Ci(t)

=
1

6× 2t − 3

[
(6× 2t−1)× 1 + (6× 2t−1 − 3)× 1

3

]
=

2

3
+

1

3(2t+1 − 1)
(9)

It can be seen that the clustering coefficient ⟨C⟩ decreases monotonically with the iteration
step t. When t approaches infinity, we get the minimum value ⟨C⟩ = 2/3 = 0.6667 , so
the clustering coefficient of the proposed network is high.

3.3. Diameter and Average Path Length. In the mathematical field of graph theory,
the distance between two vertices in a graph is the number of edges in a shortest path (also
called a graph geodesic) connecting them. This is also known as the geodesic distance.
The diameter of the network is defined as the longest geodesic, i.e., the longest shortest
path between any two nodes in the network. Average path length is a concept in network
topology that is defined as the average number of steps along the shortest paths for
all possible pairs of network nodes. It is a measure of the efficiency of information or
mass transport on a network. The small-world concept describes the fact that there is a
relatively short distance between most pairs of nodes compared with the size of network.
The average path length (APL) well characterizes this feature, which is defined as the
average distance over all possible pairs of nodes. In general, it is hard to obtain the
analytic solution of APL, thus researchers adopt another parameter called diameter to
demonstrate the short distance between any two nodes in a network. By definition,
diameter is the maximal distance between any pair of nodes, which characterizes the
maximal communication delay in a network. If a network is with a small diameter, it is
undoubtedly with a short APL. Denote the diameter at Iteration t as D(t). Because of
the symmetry of the proposed network, we can easily prove that the diameter always lies
between the new added nodes, and for each iteration the diameter always increases by 2
on the basis of the previous iteration. Therefore, we can get the following result

D(t) = D(t− 1) + 2, t > 0 (10)

Since D(0) = 1 , according to Eq. (2), we have

D(t) = 2t+ 1 = 2 log2
Nt + 3

3
− 1 (11)

Thus, the diameter grows logarithmically with the number of nodes. Because the average
path length is smaller than D, so the APL should increase more slowly. To show the
relationship more clearly, we give the simulation results in Fig.2.

Based on the above discussions, we can conclude that the proposed model is a deter-
ministic small-world network, because it is a sparse one with high clustering and short
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Figure 2. The APL and Diameter Versus the Logarithm of the Number
of Nodes.

diameter and average path length, which satisfy the three main necessary features for
small-world networks.

4. Conclusions. In this letter, we have proposed a deterministic small-world model by
simply extending a triangle. We have derived the analytic solutions for degree distribution,
clustering coefficient and diameter of the network, and they are all close to those for
existing random small-world networks. The proposed model may provide a new way to
generate a network with specific properties and help to understand some properties of real-
world planar networks. Future work will focus on finding the small-world phenomenon in
image processing and image analysis[18, 19, 20, 21].
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