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Abstract. K nearest neighbor classification is one of the most successfully used meth-
ods in pattern recognition. Despite its simplicity and effectiveness, it suffers from several
shortcomings referring to high computational cost, high storage requirement and sensi-
tivity to noise. Prototype generation is an appropriate data reduction process to alleviate
these problems. This paper employs particle swarm optimization algorithm to generate
a minimal set of prototypes to correctly represent an original training set in order to
improve the classification performance. After constructing an optimal set of prototypes
for each of the possible classes, the compact K nearest neighbor classifier is utilized to
classify by using the set of prototypes as reference. The performance of the proposed
approach is evaluated on several benchmark UCI datasets. Typical faults of the high-
pressure feedwater heater system are simulated under two different operating points on a
full-scope simulator of a 600-MW coal-fired power unit and the results demonstrate the
validity of the proposed approach.
Keywords: K nearest neighbor classification, particle swarm optimization, power plant,
fault diagnosis

1. Introduction. The K nearest neighbor rule (KNN) is one of the most popular su-
pervised classifier in data mining and pattern recognition tasks. It provides a simple and
intuitive method for solving a great variety of real-world classification problems and is
considered one of the top ten methods in data mining [1].
For a classification problem, an original data set usually splits into a training set TR

which consists of NTR samples and a test set TS composed of NTS samples. Each sample
is represented by an M -dimensional feature vector. Let xp = (xp1, xp2, · ··, xpM)T be
a training sample from TR, and xq = (xq1, xq2, · ··, xqM)T be a test sample from TS.
We seek the classification function which is a mapping from a sample to a class ωl, for
l = 1, 2, · · ·, C with C being the total number of classes. During the training process,
each training sample with a known class ω is used to train the classifier, while the class of
each test sample is assigned during the test process. For the KNN classifier, a test sample
xq is classified according to the classes of the k nearest training samples and a voting
mechanism. Different distance metrics are optional to measure the similarity between the
test sample and each of the training samples, and among them Euclidean distance is the
most commonly used due to its simplicity. For convenience in calculation, the squared
Euclidean distance is adopted and defined as

distance(xq,xp) =
M∑
j=1

(xqj − xpj)
2 (1)
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The simplicity of the KNN classifier makes it easy to implement. However, it is neces-
sary to determine parameter K (number of nearest neighbors), calculate the distances be-
tween the unknown sample and all the training samples, sort the distances and determine
the nearest neighbors, as well as determine the categories of the nearest neighbors [2].
Therefore, KNN suffers from several drawbacks such as high computational cost, high
storage requirement and sensitivity to noise, which can affect its performance.

Several approaches have been suggested and studied in order to tackle the aforemen-
tioned drawbacks. Data reduction is very useful in data mining to improve and simplify
the classification model. This approach tries to find out a sufficient small set of prototypes
to correctly represent the original training set with similar or even higher classification
accuracy for new reduced data set. Data reduction can be divided into two different
approaches: prototype selection [3, 4, 5] and prototype generation [6, 7, 8]. The former
approach selects an appropriate subset of the original training data, while the latter con-
structs a new set of artificial prototypes with lower size and higher classification accuracy.
Prototype generating is effective for improving the classification performance of KNN
classifier and reducing the storage and computation requirement. Developing schemes for
generating prototypes, however, has proved to be a difficult problem [9]. In this paper,
we shall apply particle swarm optimization (PSO) algorithm to generate an optimal set of
prototypes for all classes in order to maximize the diagnostic accuracy while minimizing
the size of the prototype set.

PSO algorithm is a biologically-inspired optimization technique proposed by Kennedy
and Eberhart in 1995 [10], which was motivated by the social behavior of animals, such
as bird flocking and fish schooling. Each particle in the swarm adjusts its flying direction
according to its own experience and other particle’s experiences to search for the global
optimum in the solution space. Some variants of the PSO algorithm [11, 12, 13, 14] have
been studies which address the topics of convergence, parameter selection and trajectory
analysis. Owing to the simple model and easiness to be implemented, PSO has been
successfully applied to many fields. Some work has already been done concerning PSO
algorithm in classification problems. PSO algorithm is used to extract induction rules
to classify data [15], and the binary version of PSO algorithm is also used to encode
induction rules [16]. Furthermore, PSO algorithm is used to generate prototypes from the
training samples [8, 17].

Based on the PSO algorithm, this paper propose a novel prototype learning approach
for the compact KNN classifier (CKNN). After constructing an optimal set of prototypes
for each of the possible classes, a new sample is classified based on the majority of the K
nearest prototype categories. PSO algorithm is used to evolve the location of prototypes
per class in the input space. The proposed approach is evaluated on several real-world
benchmark problems. Finally, a high-pressure feedwater heater system of a 600-MW
coal-fired power unit is taken as a target system for investigation. Several faults under
two different operating points are simulated in a power plant simulator and diagnosed by
CKNN. The obtained results demonstrate the validity of the proposed CKNN approach.

The remainder of this paper is organized as follows. Section 2 describes the detail of
PSO algorithm for prototype generation in K nearest neighbor classifier. Experimental
results on several benchmark datasets are provided in Section 3 to demonstrate the effec-
tiveness of the proposed algorithm. Section 4 presents how the proposed approach is used
for fault diagnosis in the feedwater heater system of a 600-MW coal-fired power plant and
the experimental results are reported in this section. Finally, conclusions are drawn in
Section 5.
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2. PSO for K nearest neighbor classifier. In this section, we employ the PSO al-
gorithm to find a sufficient small set of prototypes from the training samples. These
prototypes of the generated set can represent accurately the training samples and be used
to classify as reference using the K nearest neighbor classifier.

2.1. Encoding Scheme. Prototype generation can be expressed as a continuous space
search problem. PSO algorithm is an attractive method to optimize the location of
prototypes. A prototype is represented as a feather vector that is in the same vector
space as a training sample. In PSO algorithm, particles represent complete solution to
the problem, so we encode a set of candidate prototypes in each particle. Prototypes are
encoded sequentially in the particle in terms of their classes, therefore the class for each
prototype is defined by its position inside the particle. Particles move in the search space
using both local information and neighbor information and the swarm finally converges
to the global optimum solution. Fig.1 represents the structure of a single particle. Each
particle consists of NP×C vectors of dimensionM , where NP is the number of prototypes
for each class, C is the number of categories and M is the number of variables for each
prototype. Thus, the dimension of each particle equals to D = M ×NP × C.

2.2. Fitness Function. To evaluate the fitness of a particle, the objective function con-
sidering the effectiveness in classification (classification error for TR ) is defined as

f = 1− 1

NTR

NTR∑
p=1

h(xp) (2)

Each sample in training data set TR is assigned the class of the nearest prototype from
the set of prototypes encoded in the particle. If the assigned class is the same as the true
class of the sample, we think that it is correctly classified by the classifier. If a sample
xp is correctly classified by the classifier, h(xp) = 1 , and 0 in other cases. The algorithm
searches for the best prototypes with the aim of minimizing the diagnostic error. The
process is repeated until either the convergence criterion is achieved or the performance
is satisfactory.

2.3. Algorithm Equations. In PSO algorithm, the system initially has a swarm of
random solutions. Each potential solution, called a particle, is given a random initial
velocity and is flown through the problem space. These particles find the global best
position by competition as well as cooperation among themselves after some iteration.
Supposing the dimension of a searching space is D, the total number of particles is P ,
the position of the ith particle is expressed as xi = (xi1, xi2, ....xiD); the velocity of the
ith particle is represented as vi = (vi1, vi2, ..., viD). The best previous position (which
possesses the best fitness value) of the ith particle is denoted as pi = (pi1, pi2, ..., piD),
which is also called pbest. The index of the best pbest among all the particles is represented
by the symbol g and the position pg = (pg1, pg2, ..., pgD) is also called gbest. Therefore
the particle updates its velocity and positions according to the following equations:

vi(k + 1) = wvi(k) + c1r1(pi(k)− xi(k)) + c2r2(pg(k)− xi(k)) (3)

xi(k + 1) = xi(k) + vi(k + 1) (4)

where w is the inertia weight; c1 and c2 are the cognitive and social acceleration con-
stants; r1 and r2 are uniformly distributed random numbers in the range [0,1]. Velocities
of particles on each dimension can be clamped with a user defined maximum velocity
Vmax, which would prevent them from exploding, thereby causing premature convergence.
The inertia weight is employed to control the impact of the previous history of velocities

on the current velocity. Suitable selection of inertia weight can provide a balance between
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global exploration and local exploitation abilities, and on average results in less iterations
required to find the optimum. As originally developed, the inertia weight w is set according
to the following equation

w = wmax − k(wmax − wmin)/kmax (5)

where k is the current iteration number, kmax is the predefined maximum iteration number,
wmax and wmin are the maximal and minimal weights.

Ratnaweera et al. [12] used the time-varying acceleration coefficients strategy to effec-
tively control the global search and converge to the global best solution in PSO algorithm.
The major consideration of this modification was to avoid premature convergence in the
early stages of the search and to enhance convergence to the global optimum solution
during the latter stages of the search. In the work, the same strategy has been adopted
for the acceleration coefficients. The modification can be mathematically represented as
follows:

c1(k) = c1i + k(c1f − c1i)/kmax (6)

c2(k) = c2i + k(c2f − c2i)/kmax (7)

where c1i, c1f , c2i and c2f are constants.

2.4. Algorithm Pseudocode. The procedure of prototype generation is briefly de-
scribed as follows:

Step 1. Initialize a population of particles with random positions and velocities.
Step 2. Evaluate the fitness value of each particle according to Equation (2).
Step 3. Update the optimum solution of each particle.
Step 4. Update the optimum particle of the whole swarm.
Step 5. For each particle:

5.1 Change parameter values using Equation (5), (6) and (7).
5.2 Calculate the new velocity of the particle according to Equation (3).
5.3 Calculate the new position of the particle according to Equation (4).
5.4 Evaluate the fitness value of the particle according to Equation (2).
5.5 Update the optimum solution of each particle.
5.6 Update the optimum particle of the whole swarm.

Step 6. If a sufficiently good fitness or a maximum number of iterations is attained, go to
step 7. Otherwise, go to Step 5.

Step 7. Output the best particle of the whole swarm and the algorithm terminates.

Figure 1. Encoding of a particle
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3. Benchmark Problems. In this section we investigate the performance of the pro-
posed approach and compare it with several other classification methods on five bench-
mark datasets. They are well-known real world classification problems taken from the
UCI machine learning data repository [18]. A summary of the characteristics of these
datasets (number of attributes (#Attr.), number of samples (#Samp.), and number of
classes (#Clas.)) is reported in Table 1. As suggested by many classification approaches,
all the datasets have been rescaled to [0,1] by a linear function. The datasets considered
are partitioned using a twofold cross-validation and the results have been averaged over
10 experiments.
Table 2 compares the results of CKNN against those of nearest neighbor classifier

(1NN), learning quantization vector (LVQ) [19], evolutionary nearest prototype classifier
(ENPC) [20], GA for prototype selection [21] and radial basis function neural network
(RBFNN) in terms of the average classification error after a fixed number of iterations in
this investigation. In the experiments, the values of wmax, wmin, c1i, c1f , c2i and c2f were
set to 0.9, 0.4, 2.5, 0.25, 0.25 and 2.5, respectively, according to the suggestion in [12]. The
population size was set to 30, the maximum number of iterations to 600. The parameter
K for the CKNN classifier was manually tuned for different datasets. The results from
the Table 2 show that CKNN obtains the lower classification error than ENPC except
for the Glass dataset, where the difference is not significant. Compared to 1NN, LVQ,
GA and BPNN, CKNN obtains the best results for all data sets. This means that the
patterns are correctly represented by the prototypes in the particle.

Table 1. Characteristics of the datasets used in the experiments

Dataset #Samp. #Attr. #Clas.
Diabetes 768 8 2
Glass 214 9 6
Heart 270 13 2
Iris 150 4 3
Wisconsin 683 9 2

Table 2. Comparison with other classifiers in term of the average classifi-
cation error

Dataset CKNN 1NN LVQ ENPC GA RBFNN
Diabetes 25.13 29.69 27.86 26.56 26.30 25.78
Glass 18.22 28.04 36.92 17.76 37.78 34.58
Heart 15.93 20.74 17.04 16.30 21.48 16.67
Iris 4.00 4.67 5.34 4.67 5.34 4.00
Wisconsin 3.81 5.28 4.40 4.11 4.69 3.96

4. Fault Diagnosis Simulation. In this section, the capability of the proposed ap-
proach is tested with respect to the classification of faults in the feedwater heater system
of a 600-MW coal-fired power plant. The diagnostic problem considered is the early
identification of a predefined set of faults in the plant. The corresponding faults have
been simulated under two different operating points on a full-scope simulator of a 600-
MW coal-fired power unit. The power unit is running in ”turbine-base boiler-following”
coordination mode for the 600-MW loading condition. The automatic control systems,
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including fuel control, feedwater control, high-pressure heaters’ water level control, super-
heater steam and reheater steam temperature control, etc., are all in normal operation.

4.1. System Description and Preprocessing. The feedwater heater system under
investigation is shown in Figure 2. The three heaters are named No. 1, No. 2, and No.
3 high-pressure heaters, according to the high-to-low sequence of their extraction steam
pressure. Each heater includes three heat transfer stages: overheated steam cooling stage,
saturated steam condensing stage, and drain water cooling stage.

The measured points related to this system in the data acquisition system (DAS) in-
clude: speed of each feedwater pump; feedwater pressure and temperature at pump exit
pipe; each heater’s inlet and exit feedwater temperatures, and its drain water tempera-
ture; each heater’s inlet steam pressure and temperature; each heater’s water level and the
openings of its normal and emergency drain valves; feedwater pressure and temperature
before economizer; water level of the deaerator and the opening of its water level control
valve, etc.

For the feedwater heater system in Fig. 2, besides the normality condition (F0), 7
typical faults are generalized as follows [22, 23]:

1) Feedwater leakage from pipe to shell side in each heater (F1, F2, and F3);
2) Leakage from water-intake chamber to outlet chamber in each heater (F4, F5, and

F6);
3) Inlet three-way valve’s bypass side not fully closed or inner leak (F7);
To diagnose aforementioned faults, 12 feature variables, those most contribute to the

fault characterization, are selected. These variables are either directly taken from the
distributed control system (DCS) or obtained through simple calculation with several
DCS variables. The selected variables are listed as follows:

1) Terminal temperature difference (TTD) of each heater (V1, V2, and V3);
2) Drain subcooling approach (DCA) of each heater (V4, V5, and V6);
3) Feedwater temperature rise of each heater (V7, V8, and V9);
4) Total opening of the two drain valves of each heater (V10, V11, and V12);
If a fault occurs inside a thermal system, the fault-correlated variables will increase

or decrease notably, while other irrelevant variables will experience small changes. If a
feature variable decreases from its nominal value after a fault occurs, its corresponding
symptom may take a negative value [-1, 0). On the contrary, if a variable increases from
its nominal value, its symptom may take a positive value (0,+1]. If it does not change,
its fault symptom will take the value 0. With this prescaling method, a fault symptom
valued within [-1,1] can reflect a possible double-sided change of a feature variable under
different faults [22] . With the fault symptom prescaling method described in [23], all fault
samples are normalized in the interval [-1,1]. Every fault’s severity degree is reasonably set
to ensure that its interrelated symptoms change distinctively and the topological structure
of the system maintains unchanged.

4.2. Prototype Generation. In this research, we set different values for the minimum
number of prototypes Np and limit the position of each particle to the range [-1,1]. Then,
the algorithm is used to search for the best prototypes for each value of Np averaged over
10 independent runs. Fault samples under 600-MW rated loading condition are selected
to form the training data set for prototype generation. The data of the 12 variables were
recorded with a sampling period of 1s. All faults start after 30 seconds of steady state
operation. Given that the goal is early fault diagnosis, only the data of the first 200
seconds after the beginning of the faults have been considered for each fault. A sample
every 2 seconds has been considered in the interval [31,230] seconds. Thus the training set
contains 1600 patterns of 8 different classes (F0, F1, F2, F3, F4, F5, F6 and F7). Fitness
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Figure 2. High-pressure heater system of a 600-MW unit

convergence of PSO algorithm for different values of Np in the training procedure is given
in Figure 3. With the increase of the value of Np, the accuracy of the algorithm is not
significantly improved, while the computational cost is increased sharply. So the results
are compared in Figure 3 only when the values of Np are less than 5. From the figure, it
is clear that the system with 5 prototypes (Np =5) is undoubtedly better, therefore the
system with 5 prototypes of each class will be used in the following experiments.

Figure 3. Fitness convergence for different values of NP

4.3. Results and Discussion. In order to further validate the proposed approach, the
KNN without prototype generation (KNN), the KNN with prototype generation randomly
(RKNN) and the proposed CKNN are tested on the same data set and the diagnostic
accuracies are compared. In this experiment, 7 typical faults (F1, F2, F3, F4, F5, F6, F7)
were simulated and diagnosed on a full-scope power plant simulator under two different
loading conditions, 600 and 480 MW. The 480-MW-load steady-state condition is obtained
by dropping load with slide pressure mode from the full-load condition. The nominal
reference values of the feature variables under the two operating points are taken from
the simulation when the unit is operating stably with no fault. The diagnostic results
under two different loading conditions using the KNN, RKNN and CKNN are given in
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Table 3 and Table 4, respectively. It is clear from Table 3 and Table 4 that three methods
obtain the better diagnostic results under 600-MW load point. This is mainly because
the testing data under the same load condition as those of the training data are used in
this experiment. Under two different loading conditions, the proposed CKNN obtains the
highest diagnostic accuracies. It shows PSO algorithm can find a sufficient small set of
prototypes which are generated from the samples of the training set and these generated
prototypes can represent efficiently the distributions of the classes and discriminate well.
RKNN selects some training samples as prototypes randomly. It means that it could select
some fault-unrelated samples and there is a high degree of overlap between the prototypes.
These prototypes would confuse the classification process and make diagnostic accuracies
decline. Therefore, RKNN produces the worst diagnostic results. KNN uses not only the
effective prototypes but also the other fault-unrelated prototypes to recognize thermal
system faults, which lead to the middle classification results.

Table 3. Diagnostic results under 600-MW operating point

Fault Diagnostic accuracy(%)
KNN RKNN CKNN

F1 96 94 100
F2 86 89 96
F3 92 90 98
F4 93 67 99
F5 94 78 100
F6 87 84 100
F7 89 86 100
Average 91 84 99

Table 4. Diagnostic results under 480-MW operating point

Fault Diagnostic accuracy(%)
KNN RKNN CKNN

F1 92 84 96
F2 76 82 89
F3 84 88 92
F4 85 59 93
F5 82 73 95
F6 77 76 93
F7 80 75 94
Average 82 77 93

5. Conclusions. In this paper, a novel PSO-KNN classifier is proposed for diagnosing
faults under two different operating points (600-MW and 480-MW) for power plant ther-
mal system. Since developing schemes for generating prototypes from training patterns
is a difficult problem, PSO algorithm is employed to find an ideal set of prototypes for
each class with respect to a given classification problem. Five well-known benchmark
problems have been used to evaluate the performance of the proposed method. Finally,
the feedwater heater system of a 600-MW coal-fired power generating unit is taken as an
example to further demonstrate the validity of the proposed method.
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Further investigation will concentrate on diagnosing faults with varying degrees of sever-
ity and multiple faults under different operating conditions. The scope of loading condi-
tions in fault diagnosis should be further expanded. The research needs to step into the
case of gradual load-changing dynamics and multiple faults under different stable operat-
ing conditions. All of these are expected to greatly improve the practicability of the fault
diagnosis system in actual power plant application.
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