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Abstract. This paper is to present a novel kernel-optimized based Fisher classification
for hyperspectral imagery. Kernel learning provides a promising solution to the nonlinear
problems. The performance of kernel-based learning system has been increased. However,
kernel-based system still endures the selection of kernel function and its parameters.
Traditional choosing the parameters from a discrete value set did not change the structure
of data distribution in kernel-based mapping space. Based on this motivation, we present
a uniform framework of kernel self-optimization for kernel-based feature extraction and
recognition. In this framework, firstly data-dependent kernel is extended and has a higher
ability of adjust the kernel structure, and secondly two criterions are proposed to solve
the kernel optimization problem. Evaluations on Two real data sets, namely Indian Pines
and Washington, D.C. Mall are implemented to testify the performance of the proposed
hyperspectral imagery classification.
Keywords: Hyperspectral Imagery, kernel learning, Fisher classification

1. Introduction. Hyperspectral sensor system has gained popularity in recent decades
due to its poten-tial superiority in remote sensing. Among the hyperspectral community,
classification of various land covers is one of the fundamental issues, which can partic-
ularly benefit from the high spectral resolution of each pixel, compared to the standard
images. Among various Hyperspectral imagery classification algorithms, one of the most
suc-cessful techniques is the appearance-based method. To resolve the too large dimen-
sion problem when using original face images, dimensionality reduction techniques are
employed widely [1, 2].Two of the most popular algorithms of these dimensionality re-
duction techniques are Principal Component Analysis (PCA) [1] and Linear Discriminant
Analysis (LDA) [2]. Recently, the nonlinear methods, KPCA [7] and KFD [3, 4], have
been widely used since kernel machine techniques [5, 6] were applied to the face recogni-
tion. The Gabor wavelets, which capture the properties of spatial localization, orientation
selectivity, and spatial frequency selectivity to cope with the variations in illumination and
facial expressions, are widely employed in face recognition [8, 9]. As the relative works, re-
cently video-based technology have been developed and applied into many research topics
including coding [10, 11], enhanc-ing [12, 13] and image processing [14, 15] as discussed
in the previous section. In this paper, we propose a novel kernel-optimized based Fisher
classification for hyperspectral imagery. The performance of kernel-based learning sys-
tem has been increased. However, kernel-based system still endures the selection of kernel
function and its parameters. Traditional choosing the parameters from a discrete value set
did not change the structure of data distribution in kernel-based mapping space. Based
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on this motivation, we present a uniform framework of kernel self-optimization for ker-
nel-based feature extraction and recognition. In this framework, firstly data-dependent
kernel is extended and has a higher ability of adjust the kernel structure, and secondly
two criterions are proposed to solve the kernel optimization problem. Evaluations on Two
real data sets, namely Indian Pines and Washington, D.C. Mall are implemented to testify
the performance of the proposed hyperspectral imagery classification.

2. Method. We apply a novel classification method called Kernel Self-optimization Fisher
Dis-criminant (KSFD) for region classification. KSFD method comes from KFD method
as follows. The main idea of KFD is to map the original training samples to the fea-
ture space F with the nonlinear mapping Φ, and the linear discriminant analysis is
implemented in the feature space F . Supposed that G = diag(G1, G2, ..., GL), Gi is a
ni × ni matrix consisted of 1

ni
, K is the kernel matrix calculated by k(x, y). In fact, let

Aopt = [α1, α2, ..., αd] consisted of d discriminant vector α1, α2, ..., αd. The matrix Aopt
satisfies

Aopt = arg max
A

∣∣ATKGKA∣∣
|ATKKA|

(1)

Then the feature vector y of sampe x is y = ATopt[k(x, x1), k(x, x2), ..., k(x, xn)]T .
KFD algorithm:
Step 1. Select kernel function k (x, y) and its parameters, calculate the kernel matrix K;
Step 2. Calculate the projection matrix Aopt;
Step 3. The feature of the sample x is y = ATopt[k(x, x1), k(x, x2), ..., k(x, xn)]T .
As the above discussion, the projection matrix is the function of kernel matrix. If the
kernel function and its parameter are not appropriately chosen, the projection matrix is
not optimal for the mapping from the input space to the feature space. So the tradi-tional
KFD is not automatically to adjust the data structure in the feature space for feature
extraction.

KFD finds an optimal linear projection from the kernel feature space to the projection
subspace. Supposed that the nonlinear mapping Φ is inappropriately chosen, KFD can not
find the optimal linear projection. In our algorithm, we optimize the nonlinear map Φ to
maximize the class separability in feature space by optimizing the kernel, and then find the
optimal transformation to maximize the class separability in projection subspace. Based
on the above idea, we propose two stages of KFD algorithm, the first one is to optimize the
kernel and the second is to find the optimal projection with the traditional method same
as KFD. The geometry structure of sample data in the nonlinear projection space is differ-
ent with the different kernel function. Accordingly, data in the nonlinear projection space
has the different class discriminative ability. So the kernel function should be dependent
to the input data, which is the main idea of data-dependent kernel. The parameter of the
data-dependent kernel is changed according to the input data so that the optimal geome-
try structure of data in the feature space is achieved for the classification. In this paper,
we extend the definition of the data-dependent kernel k(x, y) = f(x)f(y)k0(x, y) as the
objective function for creating the constrained optimization equation to solve the solution,
where k0(x, y) is the basic kernel function, such as polynomial kernel and Gaussian kernel.

The function f(x) is defined as f(x) =
∑

i∈SV aie
−δ‖x−x̃i‖2 , where x̃i is the support vector,

SV is the set of support vector, ai denotes the positive value which represent the distri-
bution of x̃i, δ is the free parameter. We extend the definition of data-dependent kernel

through defining the function f(x) with the different ways as f(x) = b0 +
NXV∑
n=1

bne(x, x̃n),
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where δ is the free parameters, x̃i is the expansion vectors (xvs) and NXV is the number
of expansion vectors, bn(n = 0, 1, 2, , NXV ) is the according expansion coefficients. In
our previous work [15], we present four methods of defining e(x, x̃n).

Fisher criterion is to measure the class discriminative ability of the samples in the
empirical feature space. The discriminative ability of samples in the empirical feature
space is defined as

JFisher =
tr(SΦ

B)

tr(SΦ
W )

(2)

where JFisher measure the linear discriminative ability, SΦ
B is the between class scat-

ter matrix, SΦ
W is inter class scatter matrix, and tr denotes the trace. Let K is the

kernel matrix with its element kij, (i, j = 1, 2, ..., n) is calculated with xi and xj. The
matrix Kpq, p, q = 1, 2, ..., L is the np × nq matrix with p and q class. Then in the
empirical feature space, we can obtain tr(SΦ

B) = 1TnB1n and tr(SΦ
W ) = 1TnW1n, where

B = diag( 1
n1
K11,

1
n2
K22, ...,

1
nL
KLL)− 1

n
K. The class discriminative ability is defined as

JFisher =
1TnB1n
1TnW1n

(3)

According to the definition of the data-dependent kernel, let D = diag(f(x1), f(x2), ...,
f(xn)), the relation between the data-dependent kernel matrix K and the basic kernel
matrix K0 calculated with basic kernel function k0(x, y) is defined as K = DK0D. Ac-
cordingly, B = DB0D and W = DW0D. Then

JFisher =
1TnDB0D1n
1TnDW0D1n

(4)

where 1n is n dimensional unit vector, according to the definition of data-dependent kernel,
then

D1n = Eα (5)

where α = [a0, a1, a2, ..., aNXV s
]T , the matrix E is consisted of e(x, x̃n). Then

JFisher =
αTETB0Eα

αTETW0Eα
(6)

where ETB0E and ETW0E are constant matrix, JFisher is a function with its variable
α. Under the different expansion coefficient vector α, the geometry structure of data in
the empirical space causes the discriminative ability of samples. Our goal is to find the
optimal α to maximize JFisher. Supposed that α is an unit vector, i.e., αTα = 1, the
constrained equation is created to solve the optimal α as follows.

max JFisher(α)

subject to αTα− 1 = 0 (7)

There are many methods of solving the above optimization equation. The following
method is a classic method. Let J1(α) = αTETB0Eα and J2(α) = αTETW0Eα, then{ ∂J1(α)

α
= 2ETB0Eα

∂J2(α)
α

= 2ETW0Eα
(8)

Then
∂JFisher(α)

∂α
=

2

J2
2

(J2E
TB0E − J1E

TW0E)α (9)

In order to maximize JFisher, let ∂JFisher(α)
∂α

= 0, then

J1E
TW0Eα = J2E

TB0Eα (10)
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If
(
ETW0E

)−1
exists, then

JFisherα = (ETW0E)−1(ETB0E)α (11)

JFisher is equal to the eigenvalue of (ETW0E)−1(ETB0E), and the corresponding eigen-
vector is equal to expansion coefficients vector α. In many applications, the matrix
(ETW0E)−1(ETB0E) is not symmetrical or ETWE is singular. So the iteration method
is to solve α as follows.

α(n+1) = α(n) + ε(
1

J2

ETB0E −
JFisher
J2

ETW0E)α(n) (12)

ε is the learning rate as follows. The definition of learning rate is

ε (n) = ε0(1− n

N
) (13)

where ε0 is the initialized learning rate, n and N is the current iteration number and the
total iteration number in advance respectively.

The initialized learning rate ε0 and the total iteration number N is set in advance
for the solution of the expansion coefficient. The initial learning rate ε0 influences the
convergence speed of the algorithm, and the total iteration number N determines the time
of solution. Only when the parameter ε0 and N are chosen appropriately we choose the
optimal expansion coefficient vector. So the solution of expansion coefficient is not unique,
which is determined by the selection of learning parameter. The iteration algorithm costs
much time. So we select the maximum margin criterion as the objective function to solve
the optimal expansion coefficients.

3. Experimental results.

3.1. Results on simulated data. We test the proposed kernel optimization methods
through simulation, which are implemented on simulated dataset and two face databases.
We use the basic kernel function for the nonlinear mapping from the input space into
the empirical feature space. Figure 1 shows the data distribution in the empirical feature
space with the basic kernels of Gaussian kernel and Polynomial kernel. The discrimina-
tive ability of samples decreased if the kernel function is not good as shown in Figure
2, so kernel optimization is necessary. Figure 3 shows the comparison of Fisher criterion
and maximum margin criterion, where the iteration number of Fisher method is set to
400. The data in the empirical feature space is similar with Fisher method and maximum
margin criterion method, but the Fisher criterion method is influenced by parameter set-
ting, such as the learning rate and iteration number. So the maximum margin criterion
out-performs Fisher criterion method. As the above discussion, kernel function influ-
ences the performance of kernel learning. If the kernel function and its parameters are
inappropriately chosen the performance will decrease. Two kernel optimization methods,
Fisher criterion and maximum margin criterion methods, achieve the similar performance
of kernel optimization, but Fisher method endures the solution problem.

3.2. Results on two real datasets. Two real data sets, namely Indian Pines and Wash-
ington, D.C. Mall, with various spectral and spatial resolutions reecting dfierent environ-
ments of remote sensing are adopted in the experiments.Two real data sets, namely Indian
Pines and Washington, D.C. Mall, with various spectral and spatial resolutions reflecting
different environ-ments of remote sensing are adopted in the experiments.

1) Indian Pines data: the first test set to be used was the well-known Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) image scene, which was captured over the
agricultural region of Northwestern Indiana in June 1992, with spectral resolution of
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Figure 1. Two classes of two-dimensional data samples with Gaussian distribution

(a) Gaussian kernel (b) Polynomial kernel

Figure 2. Distribution of data samples in the empirical feature space

(a) Maximum margin criterion (b) Fisher criterion

Figure 3. Performance comparison of two algorithms

224 bands covering the 0.4-2.5 µm range and spatial resolution of 20m per pixel. After
removing the noisy and water-vapor absorption bands, 200 bands reserved for experiments.
Although the whole scene consists of 145×145 pixels with 16 classes of interest, ranging
the size from 20 to 2468 pixels, only 9 classes with high number of samples are selected.
Additionally, the false color image and spectral signatures are depicted in Figure 4 .

2) D.C. Mall data: the second test set was acquired by the airborne hyperspectral
digital imagery collection experiment (HYDICE) sensor over a Mall in Washington D.C.
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(a) Three band false color composite (b) Spectral signatures

Figure 4. Indian Pines data

on August 23, 1995. The whole urban image size is 1280×307 pixels with the spatial
resolution of 1.5m by pixel and 210 spectral bands in the 0.4-2.4 µm region. Several
undesirable bands influenced by the atmospheric absorption are discarded, leaving 191
bands for experiments. From the original image, we crop a [870-1080]×[1-307] subset
with a size of 211×307, which composed of 7 classes of land-covers (i.e. roof (o1), grass
(o2), street (o3), trees (o4), water (o5), path (o6) and sha-dow (o7)). Table 7 exhibits the
detailed number of each class utilized in the experi-ments. The false color image together
with spectral signatures are displayed in Figure 5.

(a) Three band false color composite (b) Spectral signatures

Figure 5. D.C. Mall data

It is notable that all the experimental results are the mean accuracies over 10 repeti-
tions, which helps to compare different methods in a fair and reasonable way. Without
loss of generality, the classification maps of a trial with both HSI data sets are de-picted,
where the classifiers with the kernels are illustrated on the bottom of each map. One can
roughly observe that with the same classifiers, the KSFC based methods ex-hibit lower
classification errors than other ones for both data sets. Observed from Tables 1-2, four
main results can be highlighted: 1) Among all algorithms, the OMP-based SRC without
any kernels lead to the worst classification accuracies for both data sets. 2) With the
same classifiers (i.e. SVM or SRC), results of the KSFC are the best, the RBF is next,
whereas those of the POL are the lowest. 3) With the same ker-nels (i.e. POL, RBF or
KSFC), the SRC reveals slightly better performance than the SVM. 4) With the same
data sets (i.e. Indian Pines data or D.C. Mall data), the com-putation time of the KSFC
based classifiers is longer than other ones, which is accept-able since the MKL is quite
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time consuming in dealing with HSI. Moreover, the SVM is much fast than the SRC in
case the same kernels are provided. In a nutshell, the KSFC achieves better classification
results than the widespread POL and RBF within moderate time.

Table 1. Two classes of two-dimensional data samples with Gaussian distribution

Table 2. Two classes of two-dimensional data samples with Gaussian distribution

4. Conclusions. In this paper, we present a novel kernel-optimized based Fisher clas-
sification for hyperspectral imagery. The proposed classifier is applied to classification.
The expe-rimental results on two real data sets, namely Indian Pines and Washington,
D.C. Mall show that the proposed algorithm is effective.
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