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Abstract. The oblivious transfer (OT) protocol is a two-party protocol that is used
extensively in applications of cryptography, such as wireless communication, video on
demand, electronic contract signing, and secret exchanges. In a t-out-of-n OT protocol,
the sender provides n messages from which the receiver can choose only t messages. After
executing the t-out-of-n OT protocol, the sender does not know which t messages were
received by the receiver, and the receiver gets no information other than the t messages
that he or she received. Recently, Lee and Chang presented a novel t-out-of-n protocol
based on the generalized Chinese remainder theorem (GCRT) that is more efficient than
Wakaha and Ryota’s protocol. Inspired by Lee and Chang’s method, we propose a novel
t-out-of-n protocol based on the generalized Aryabhata remainder theorem (GART). We
proved that our proposed protocol can protect the secrecy of the message transfer phase by
using BAN logic. Our analysis also indicated that the efficiency of our proposed protocol
is higher than that of Lee and Chang’s protocol.
Keywords: Oblivious transfer (OT), Generalized Aryabhata remainder theorem (GART),
BAN logic, Security, Efficiency
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1. Introduction. In recent years, many applications of cryptography, such as wireless
communication, video on demand, electronic contract signing, and secret exchanges, have
been proposed in which the provider stores extensive information from which users can
choose what they need. As a result, these applications must provide one essential func-
tionality from the aspect of privacy, i.e., the user can obtain only the desired information
from the provider, and the provider would not know which information the user selected.
Oblivious transfer (OT) can be used to achieve this functionality, giving it an extremely
important role in cryptography.
The concept of OT was first discussed by Rabin [21]. In 1981, Rabin proposed a two-

party OT protocol in which two participants were involved, i.e., the sender, Alice, and the
receiver, Bob. Alice transports a bit to Bob, and Bob has a 50% probability of obtaining
the same bit and a 50% probability of obtaining nothing. Alice does not know which of the
two options occurred. Rabin’s OT protocol has been used extensively by cryptographic
researchers around the world, and numerous OT variations of Rabin’s idea have been
proposed [2, 3, 13].
One well-known variation is the one-out-of-two OT protocol [13], denoted as OT2

1 and
which is executed as follows. Alice transmits two bits to Bob, and Bob has a 50% prob-
ability of receiving only one of the two bits. In addition, Alice does not know which bit
Bob received. In 1986, Brassard et al. [3] proposed the 1-out-of-n OT protocol, denoted
as OTn

1 , which is a natural extension of OT2
1. In the OTn

1 protocol, Alice owns n messages,
and Bob can receive only one of them. According to mutual secrecy, Alice has no idea
which message has been received by Bob, and Bob cannot obtain any message except the
desired one. Since Bob can get only one of n messages in OTn

1 , a more practical t-out-of-n
OT protocol [2], called OTn

t , is proposed, in which Alice owns n messages and Bob can
reveal t out of them simultaneously. Furthermore, Alice cannot determine which messages
Bob received, and Bob cannot obtain the other n-t messages.
Many publications related to OTn

t protocols have been presented [1, 5, 6, 11-15, 18-20,
25] in which t calls of OTn

1 are required to accomplish the functionality of OTn
t . However,

such an approach is not efficient due to the high costs of computation and communication.
In 2004, Wakaha and Ryota [24] proposed an improved OTn

t protocol in which Bob can
retrieve t out of n messages sent from Alice at the same time in every protocol run.
Although their method guarantees two-party privacy, it is not practical because it lacks
efficiency. Recently, Lee and Chang [17] proposed an efficient OTn

t protocol based on
the generalized Chinese remainder theorem (GCRT) [7, 8, 16]. They claimed that their
OTn

t scheme meets the basic requirements of a general OTn
t protocol and also significantly

reduces computation overhead of both the sender and the receiver.
In Lee and Chang’s OTn

t protocol, Alice uses the GCRT to compute an integer Y .
Then, after interacting with Alice, Bob can successfully recover tmessages that he chose by
using the integer Y and some related information sent from Alice according to the GCRT.
However, we found that some improvement can be made in Lee and Chang’s OTn

t protocol.
Since the method of generating the integer Y dominates the computation cost of the
sender, we can utilize a more efficient method to compute Y , thereby reducing the entire
computation cost of an OTn

t protocol. Therefore, inspired by Lee and Chang’s method, we
propose a secure and efficient OTn

t protocol based on the generalized Aryabhata remainder
theorem (GART) [10]. The main contributions of our proposed OTn

t protocol are listed
below.
(1) In the system set-up phase, the sender randomly chooses n positive, co-prime in-

tegers, a1, a2, ..., an, and an additional integer k and then computes an integer Y by
the GART. In the message transfer phase, after interacting with the sender, the receiver
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recovers t integers out of {ai}1≤i≤n, which can be combined with Y and k in the GART
to successfully obtain the t messages that he or she wants to know.

(2) Our protocol can reduce computation cost of the sender since the GART utilized
in our method has less time complexity than that of the GCRT, which is an important
construction element in Lee and Chang’s protocol.

(3) Our protocol meets the essential requirements of a general OTn
t protocol, i.e., cor-

rectness, privacy of the receiver, and privacy of the sender.
(4) Our protocol can protect the secrecy of the message transfer phase by using BAN

logic.
The rest of this paper is organized as follows. In Section 2, we briefly introduce some

preliminaries that will be used in the design of our OTn
t protocol. In Section 3, we

propose our novel OTn
t protocol on the basis of the GART. Section 4 presents analyses of

the proposed protocol and the comparisons between the proposed protocol and Lee and
Chang’s mechanism. Finally, our conclusions are given in Section 5.

2. Preliminaries. In this section, we briefly introduce some fundamental preliminaries
that are important in the development of our protocol. First, we review the essential
requirements of a general OTn

t protocol and then describe the generalized Aryabhata
remainder theorem (GART), which is a main building block of our novel OTn

t protocol,
which is presented in Section 3.

2.1. The essential requirements of a general t-out-of-n OT protocol. In a general
t-out-of-n protocol, two participants, the sender and the receiver, are involved. The
sender possesses n messages, {m1, m2, ..., mn}, and the receiver can obtain t of these
messages simultaneously in a secure manner. Any OTn

t protocol must satisfy the essential
requirements stated below [9]:
Requirement 1. Correctness: If both the sender and the receiver follow the OTn

t

protocol, then the receiver can obtain the desired t messages after executing the protocol
with the sender.
Requirement 2. Privacy of the receiver: The sender cannot determine which t
messages were selected by the receiver after conducting the OTn

t protocol with the receiver.
Requirement 3. Privacy of the sender: The receiver learns nothing other than these
t messages after conducting the OTn

t protocol with the sender.

2.2. Generalized Aryabhata remainder theorem. In this subsection, we review the
generalized Aryabhata remainder theorem (GART) and then give an example to show the
computational process of the GART.

The generalized Aryabhata remainder theorem (GART) [10] is a significant extension
of the Aryabhata remainder theorem (ART) [22] in which an extra modulus k is provided
during the computational process. Let n positive integers, a1, a2, ..., an, form a moduli
set, {a1, a2, ..., an}, where gcd(ai, aj) = 1 for i ̸= j, and assume that there are n positive
integers, y1, y2, ..., yn. A number Y can be represented as {y1, y2, ..., yn}, satisfying
Max{yi}1≤i≤n < k < Min{ai}1≤i≤n, where yi = ⌊Y/ai⌋modk for i = 1, 2, ..., n. According
to the GART, the number Y can be computed from the parameters, {y1, y2, ..., yn}, {a1,
a2, ..., an}, and k by the following iterative algorithm:
Input: ({y1, y2, ..., yn}, {a1, a2, ..., an}, k)
Output: X

1. A1 ← a1, Y1 ← y1 · a1.
2. for i = 2 to n do
3. Ai ← Ai−1 · ai.
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4. Yi ← k · Ai−1 · ((⌈(yi · ai − Yi−1)/k⌉ · (Ai−1)
−1)modai) + Yi−1, where (Ai−1)

−1modai
is the multiplicative inverse of Ai−1 modulo ai.

5. end for.
6. Return Yn.

After executing this algorithm, we can get the unique solution Yn in ZkAn , where An =∏n
i=1 ai. Example 2.1 illustrates the computation process of the GART.

Example 2.1. Find a positive integer Y = {y1, y2, y3} = {1, 2, 4} with the moduli set
{a1, a2, a3} = {7, 11, 13} and k = 5 by the GART.

According to the GART, the computational process consists of the three steps shown
below:
Step 1. A1 = a1 = 7, Y1 = y1 · a1 = 1 · 7 = 7.
Step 2.

A2 = A1 · a2 = 7 · 11 = 77.
Y2 = k · A1 · ((⌈(y2 · a2 − Y1)/k⌉ · (A1)

−1)moda2) + Y1

= 5 · 7((⌈(2 · 11− 7)/5⌉ · 7−1)mod11) + 7
= 5 · 7 · 2 + 7 = 77.

Step 3.
A3 = A2 · a3 = 77 · 13 = 1001.
Y3 = k · A2 · ((⌈(y3 · a3 − Y2)/k⌉ · (A2)

−1)moda3) + Y2

= 5 · 77((⌈(4 · 13− 77)/5⌉ · 77−1)mod13) + 77
= 5 · 77 · 5 + 77 = 2002.

Hence, Y3 is the solution in Z5005, and the validation of Y3 can be conducted as follows:
y1 = ⌊Y3/a1⌋modk = ⌊2002/7⌋mod5 = 1,
y2 = ⌊Y3/a2⌋modk = ⌊2002/11⌋mod5 = 2,
and y3 = ⌊Y3/a3⌋modk = ⌊2002/13⌋mod5 = 4.

3. Our Proposed Protocol. In this section, we describe the proposed OTn
t protocol

that is based on the GART. Our proposed protocol consists of two phases, i.e., the system
set-up phase and the message transfer phase.

3.1. Notations. First, we list the notations used throughout our protocol:

• Alice: the sender
• Bob: the receiver
• N : N = p · q, where p and q are two large prime numbers
• (e,N): the public key of Alice and gcd(e, ϕ(N)) = 1
• d: the private key of Alice and ed ≡ (e, 1(modϕ(N))
• mi: the message preserved by Alice for i = 1, 2, ..., n, where the values of mi are
positive integers
• ai: a positive integer for i = 1, 2, ..., n, which satisfies gcd(ai, aj) = 1 for i ̸= j
• k: a positive integer that satisfies Max{mi}1≤i≤n < k < Min{ai}1≤i≤n

• IDi: the identity of the message mi for i = 1, 2, ..., n
• ci: the value revealed by Alice on the bulletin board that enables Bob to obtain the
desired messages, where i = 1, 2, ..., n
• msj : the message required by Bob with the corresponding pair (IDsj , csj) for j =
1, 2, ..., t, where msj ∈ {m1, m2, ..., mn}

In the next two subsections, we provide a detailed description of our proposed OTn
t

protocol.
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3.2. The system set-up phase. In this phase, Bob sends a request for retrieving the
demanded messages to Alice, and Alice generates and publishes the information that will
be used in the message transfer phase on the bulletin board.

Step 1. Bob requests a t-message service from Alice.
Step 2. For all messages {m1, m2, ..., mn}, Alice selects a positive integer k that

satisfies k > Max{mi}1≤i≤n. Then, Alice generates n positive integers, a1, a2, ..., an,
subject to the conditions that gcd(ai, aj) = 1 for i ̸= j and Max{mi}1≤i≤n < k <
Min{ai}1≤i≤n.

Step 3. Let Y denote an integer. Alice constructs the congruence system below:
⌊Y/a1⌋ ≡ m1(modk),
⌊Y/a2⌋ ≡ m2(modk),

...
⌊Y/an⌋ ≡ mn(modk).

Then, Alice uses k, ai, and mi for i = 1, 2, ..., n to calculate the number Y according to
the GART that is described in Section 2.2.

Step 4. Alice uses her public key (e,N) to compute ci for i = 1, 2, ..., n by the following
equations:

c1 = ae1(modN),
c2 = ae2(modN),

...
cn = aen(modN).

Step 5. Alice makes Y , k, and {(IDi, ci)}1≤i≤n known publicly on the bulletin board.

3.3. The message transfer phase. After obtaining the public information on the bul-
letin board, Bob interacts with Alice and retrieves his demanded messages by the following
method:

Step 1. Since Bob wants to retrieve t out of n messages, he must pick t pairs of
(IDsj , csj) for j = 1, 2, ..., t on the bulletin board.

Step 2. Bob selects t random numbers, r1, r2, ..., rt, and employs Alice’s public key
(e,N) to compute:

g1 = re1 · cs1(modN),
g2 = re2 · cs2(modN),

...
gt = ret · cst(modN).

and then transmits {g1, g2, ..., gt} to Alice.
Step 3.After obtaining {g1, g2, ..., gt} sent by Bob, Alice calculates

w1 = gd1(modN),
w2 = gd2(modN),

...
wt = gdt (modN).

by using her private key d, and then delivers {w1, w2, ..., wt} to Bob.
Step 4. Upon getting {w1, w2, ..., wt} sent by Alice, Bob generates

a′1 = r−1
1 · w1(modN),

a′2 = r−1
2 · w2(modN),

...
a′t = r−1

t · wt(modN).
Step 5. Bob uses Y , k, and {a′1, a′2, ..., a′t} to recover the t desired messages, {ms1 ,

ms2 , ..., mst}, as follows:
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ms1 = ⌊Y/a′1⌋(modk),
ms2 = ⌊Y/a′2⌋(modk),

...
mst = ⌊Y/a′t⌋(modk).

FIGURE 1 illustrates how our protocol performs.

Figure 1. Flowchart of our proposed t-out-of-n OT protocol

4. Discussion. In this section, we prove that our proposed OTn
t protocol meets the

essential requirements of a general t-out-of-n protocol, provide the BAN analysis, and
compare our protocol with Lee and Chang’s protocol.

4.1. Analysis of the essential requirements. We show that our proposed OTn
t pro-

tocol achieves the essential requirements of a general t-out-of-n protocol below:
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Requirement 1. Correctness: After Alice and Bob conduct the OTn
t protocol, Bob

can obtain the t demanded messages, msj ∈ {m1, m2, ..., mn}, for j = 1, 2, ..., t, where
{m1, m2, ..., mn} are the messages preserved by Alice.

Assume that Alice and Bob cannot cheat each other. During the message transfer
phase, Bob picks t pairs of (IDsj , csj) for j = 1, 2, ..., t on the bulletin board, where
csj = aesj(modN). Then, Bob computes gj = rej ·csj(modN) for j = 1, 2, ..., t and transmits

gj to Alice. Alice calculates wj = gdj (modN) for j = 1, 2, ..., t and delivers wj to Bob.
Bob computes:

a′j = r−1
j · wjmodN = r−1

j · (gdjmodN)modN

= r−1
j · ((rej · csjmodN)dmodN)modN

= r−1
j · ((rej · (aesjmodN))dmodN)modN

= (r−1
j · (rj · asj)ed)modN = asjmodN .

Consider that in the system set-up phase, Alice establishes the congruence system
msj ≡ ⌊Y/asj⌋(modk) for j = 1, 2, ..., t, and then conveys Y that is computed by the
GART to Bob. Since a′j is equal to asj , Bob can use Y , k, and a′j to recover the messages
that he wanted as shown below:

⌊Y/a′1⌋(modk) = ⌊Y/as1⌋(modk) = ms1 ,
⌊Y/a′2⌋(modk) = ⌊Y/as2⌋(modk) = ms2 ,

...
⌊Y/a′t⌋(modk) = ⌊Y/ast⌋(modk) = mst .

Therefore, the proposed protocol achieves this requirement.
Requirement 2. Privacy of the receiver: After Alice and Bob conduct the OTn

t

protocol, Alice does not know that Bob acquired {ms1 , ms2 , ..., mst} among n messages.
If Alice wants to know which messages were chosen by Bob, she must first obtain asj ,

and then she can obtain msj = ⌊Y/asj⌋(modk) for j = 1, 2, ..., t. However, Alice’s plan
will fail according to our protocol. After selecting t pairs of (IDsj , csj) for j = 1, 2, ..., t
on the bulletin board, Bob randomly chooses t random numbers r1, r2, ..., rt and utilizes
Alice’s public key (e,N) to compute gj = rej · csj(modN) for j = 1, 2, ..., t. Then, Alice

can obtain gj from Bob and calculate wj = gdj (modN) for j = 1, 2, ..., t.
Because

wj = gdjmodN = (rej · csjmodN)dmodN

= (rej · (aesjmodN)modN)dmodN
= rj · asjmodN .

Alice cannot extract asj from the combination of rj and asj . As a result, the second
requirement is met by our proposed protocol.
Requirement 3. Privacy of the sender: After Alice and Bob conduct the OTn

t

protocol, Bob cannot get any messages other than his required messages, {ms1 , ms2 , ...,
mst}.

We assume that both Alice and Bob are honest. If Bob attempts to acquire the other
n − t messages, he must first obtain a′j = r−1

j · wj(modN) for t + 1 ≤ j ≤ n and then
compute msj by using msj = ⌊Y/a′j⌋(modk) for t+ 1 ≤ j ≤ n. However, in our protocol,

Alice uses her private key d to compute wj = gdjmodN for j = 1, 2, ..., t. As a result,
without knowing Alice’s private key d, it is impossible for Bob to calculate wj, where
t + 1 ≤ j ≤ n. Hence, Bob is unable to get other n − t messages and our protocol can
guarantee Alice’s privacy.

4.2. BAN analysis. This subsection uses BAN logic [4] to verify our OTn
t protocol.

According to the analytical procedures of BAN logic, each round of the protocol must be
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transformed into the idealized form. Next, we briefly describe basic notations of BAN
logic as follows:

P
K←→ Q: P and Q may communicate with each other using the shared key K. The key

K will never be discovered by any principal except P or Q.

P
X⇔ Q: The formula X is a secret known only to P and Q. Only P and Q may use X

to prove their identities to one another.
K7−→ P : P has K as a public key. The matching secret key (denoted as K−1) will never
be discovered by any principal except P .
{X}K : This represents the formula X encrypted under the key K.
⟨X⟩Y : This represents the formula X combined with the formula Y .
In our protocol, two messages are used to protect the secrecy of our message transfer

phase. These messages are shown in FIGURE 1. Here, we present Alice denoted as A
and Bob denoted as B. Then, we idealize the protocol as follows:
Message 1. B → A : gj = rej · csj(modN) for j = 1, 2, ..., t.

Message 2. A→ B : wj = gdj (modN) for j = 1, 2, ..., t.
Before analyzing our protocol, we first make the following assumptions:

A.1 B believes
e7→ A.

A.2 B believes (A controls csj).
A.3 B believes fresh (rj).
A.4 B believes (A controls N).
A.5 A believes (B controls fresh (rj)).
A.6 A believes csj .
A.7 A believes N .
A.8 A believes

e7→ A.
A.9 B believes (A controls e−1 = d).
Then, we analyze the idealized form of our proposed protocol using the above assump-

tions and rules of BAN logic. Details of the logic proof are presented as follows.
A receives Message 1. The rule shows that

A sees {gj = rej · csj(modN) for j = 1, 2, ..., t}. (Statement 1)
We break conjunctions and produce

A sees B said rej · csj . (Statement 2)
and
A sees B said N . (Statement 3)
By A 7 and Statement 3, we apply the nonce-verification rule to deduce

A believesN . (Statement 4)
By A 6 and Statement 2, we apply the message-meaning rule to derive

A believesB said rej . (Statement 5)
By A 8 and Statement 5, the message-meaning rule applies and yields

A believes B said rj. (Statement 6)
By A 5 and Statement 6, we apply the nonce-verification rule to deduce

A believes rj. (Statement 7)
Then, B receives Message 2. The annotation rule yields that

B sees {wj = gdjmodN for j = 1, 2, ..., t}. (Statement 8)
We break conjunctions and produce as follows:

B sees A said gdj . (Statement 9)
and
B seesA saidN . (Statement 10)
By A 4 and Statement 10, we apply the nonce-verification rule to obtain

B believesN . (Statement 11)
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By A 9 and Statement 9, we apply the message-meaning rule to deduce
B believesA said gj. (Statement 12)

By Message 1, the message-meaning rule applies and yields
B believes A said rej ·csj . (Statement 13)

By A 2 and Statement 13, we apply the message-meaning rule to derive
B believesA said rej . (Statement 14)

By A 1 and Statement 14, the message-meaning rule applies and yields
B believesA said rj. (Statement 15)

By A 3 and Statement 15, we apply the nonce-verification rule to deduce
B believes rj. (Statement 16)

Based on Statement 7 and Statement 16, we prove our proposed protocol can protect
the secrecy of our message transfer phase.

4.3. Comparison. In this subsection, we compare the efficiency of our protocol and
Lee and Chang’s protocol. Before the comparison, we consider the generalized Chinese
remainder theorem (GCRT) that was used in Lee and Chang’s method.

The GCRT can be described as follows. Let n positive integers, a1, a2, ..., an, form
a moduli set, {a1, a2, ..., an}, where gcd(ai, aj) = 1 for i ̸= j. Assume that there
are n positive integers, y1, y2, ..., yn, and an additional modulus, k, which satisfies
Max{yi}1≤i≤n < k < Min{ai}1≤i≤n. A congruence system can be constructed as shown
below:

⌊Y/a1⌋ ≡ y1(modk),
⌊Y/a2⌋ ≡ y2(modk),

...
⌊Y/an⌋ ≡ yn(modk).

Therefore, the unique solution Y of this congruence system that satisfies 0 ≤ Y <
k
∏n

i=1 ai can be computed by the following equation: Y =
∑n

i=1 a
′
i · a

′′
i · bi(modkA),

where A =
∏n

i=1 ai, a
′
i = k · A/ai, a

′
i · a

′′
i ≡ k(modk · ai), and bi = ⌈yi · ai/k⌉.

Notice that the GCRT and the GART both use n positive co-prime integers, a1, a2,
..., an, n positive integers, y1, y2, ..., yn, and an integer k satisfying Max{yi}1≤i≤n <
k < Min{ai}1≤i≤n, to construct a congruence system of the integer Y . The difference
between the GCRT and the GART lies only in the approach used to compute Y . In the
GCRT, a modular operation with a large number, kA, must be computed to obtain the
unique solution Y , which is a time-consuming operation. Unlike the GCRT, the GART
decomposes this time-consuming operation into several iterations, each of which computes
a modular operation with a smaller number, thus making it more efficient than the GCRT
[10, 22].

In the OTn
t protocol, {y1, y2, ..., yn} = {m1, m2, ..., mn} are the messages possessed by

the sender, Alice. Now, we show that our protocol is more efficient than Lee and Chang’s
protocol. Since both protocols have the same communication cost due to their enabling
the receiver to obtain t messages simultaneously in one protocol run instead of repeating
an OTn

t protocol t times, we only concentrate on the comparison of their computation
cost. Let Texp denote the time required to execute one modulo exponential operation.
Although the computation cost of the receiver of our protocol is tTexp, the same as Lee
and Chang’s protocol, where t is the number of messages that Bob requires to obtain,
we demonstrate that our method requires less computation cost for the sender. Since the
method that is used to generate the number Y in the system set-up phase dominates the
computation cost of the sender, we now compare the time complexity of the GCRT and
the GART.
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In the system set-up phase, our protocol replaces the GCRT with the GART to compute
the number Y . In the following, we determined that the GART has lower time complexity
than that of the GCRT. According to the GCRT, Y =

∑n
i=1 a

′
i · a

′′
i · bi(modkA), where

A =
∏n

i=1 ai, a
′
i = k·A/ai, a

′
i·a

′′
i ≡ k(modk·ai), and bi = ⌈yi·ai/k⌉. Here, k·A and a

′
i·a

′′
i can

be pre-computed. Hence, there are 2n multiplications, n divisions, (n-1) additions, and
one modular operation. Assuming that ai is allocated h digits, the multiplication/division
and addition of two moduli require h2 and h bit operations, respectively. Moreover, an
h-bit modular operation requires h2 bit operations. Therefore, the computation cost of
the GCRT is about 2n ·h2+n ·h2+(n−1) ·h+((n+1) ·h)2 bit operations, where (n+1) ·h
is the number of digits in kA. Thus, the time complexity of the GCRT is O(n2h2).
According to the GART, Yi = k ·Ai−1 · ((⌈(mi · ai − Yi−1)/k⌉ · (Ai−1)

−1)modai) + Yi−1,
where A1 = a1, Y1 = m1 · a1, and Ai = Ai−1 · ai. The equation above must execute (n-1)
rounds.
Here, k ·Ai−1 ·((Ai−1)

−1modai) can be pre-computed. So, there are two multiplications,
one subtraction, one division, one addition, and one modular operation in every round.
Assume that k is allocated h digits and that the division and subtraction of two moduli
require h2 and h bit operations, respectively. As a result, after performing (n-1) rounds,
the computation cost of the GART is about (n−1) · (2h2+h+h2+h+h2) bit operations.
Therefore, the time complexity is O(nh2). This analysis shows that the GART requires
lower time complexity than that of the GCRT, which implies that our proposed protocol
can decrease the sender’s computation cost.

5. Conclusions. In this paper, we proposed a secure and efficient OTn
t protocol based

on the generalized Aryabhata remainder theorem (GART). Our protocol meets the essen-
tial requirements of a general OTn

t protocol, i.e., correctness, privacy of the receiver, and
privacy of the sender. We also determined that our protocol reduces the sender’s compu-
tation cost due to the low time complexity of the GART that is used in our method. In
addition, a BAN analysis was given to prove that our protocol can protect the secrecy of
the message transfer phase.
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