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Abstract. In this paper, in order to investigate the retrieval of the shape of penetrable
objects(inclusions)imbedded in an homogeneous background medium based on observa-
tions of electromagnetic signal, we propose a level set approach to interpret electromag-
netic signal which derived from Maxwell’s equations. The parameter of the obstacle and
embedding materials are piecewise constant. First, a level set is given and we represent
parameter(conductivity)by using level set functions. So it is nature that regularization
functional is applied to the(smooth)level set function rather than to the discontinuous
function to be recovered. Second, we use the damped Gauss-Newton method for the it-
eration of the level set. Our iteration does not involve knowledge of the true solution.
Numerical experiments are presented which show that the derived method is able to re-
cover one or more objects with nontrivial shapes given noisy data. The method is also
robust with respect to the initial guess for the geometry of the parameter discontinuities.
Keywords: Signal Interpretation, Parameter Identification, Level Set, Regularization

1. Introduction. This paper is concerned with the partial differential equation:

∆u+ k2(x)u = q(x) in R2 (1)

Given the incident field, the direct problem is to determine the scattered field for the
known scatter coefficient, which has been well studied[1]. Our work is devoted to the nu-
merical solution of the inverse problem, i.e., determine the scatter shape from the electro-
magnetic signal. We shall specifically treat the case that parameter is piecewise constant.
This problem is a model problem for many real industrial applications including math-
ematical physics, atmospheric science, quantum mechanics, telemetry, non-destructive
testing and medical imaging, etc. The inverse scattering problem is a very difficulty prob-
lem, (1) it is usually strongly nonlinear because of the high contrast of the conductivity
values inside the plumes to the background medium; (2) the data in our application are
typically noisy and have only limited view; and (3) the number of the plumes is typically
unknown, and their shapes can have a complicated geometry.
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The desire to recover accurately the geometry of the coefficient discontinuities have
motivated a number of approaches in the literature [2-8]. One approach is to use a
regularization of the coefficient which respects the jumps and the geometry of the dis-
continuities. For example, in T.F. Chan and X.C. Tai’s work [9,10], the total variation
norm regularization technique is combined with the augmented Lagrangain technique of
[11] for this purpose. Other works are [12,13], etc. Another standard approach for the so-
lution of such problems consists in parameterizing the shape and applying regularization
methods directly to the parametrization (cf, e.g., [14-16]). This approach suffers from
the limitation that considerable a priori knowledge on the structure and topology of the
solution shape is required in order to obtain convergent approximations. In particular,
any parametrization does not allow a change in the number of components, hence a shape
can only be reconstructed if this number is known exactly. For the reasons described
above, alternative approaches to the solution of shape reconstruction problems have been
considered recently, such as the level set method.
The idea of using a level set representation as part of a solution scheme for inverse

problems involving obstacles was first suggested by Santosa[17]. In that paper, two linear
inverse problems, a deconvolution problem and the problem of reconstructing a diffrac-
tion screen, are solved by employing an optimization approach as well as a time evolution
approach using the level set technique for describing the shapes. Santosa also outlines
in that paper how the two presented methods can be generalized to nonlinear shape re-
covery problems. A related method was applied to a nonlinear shape recovery problem
by M.K.Ben et al in [18]. In that work, an inverse transmission problem in free space is
solved by a controled evolution of a level set function. This evolution is governed by a
Hamilton-Jacobi type equation, whose velocity function has to be determined properly in
order to minimize a given cost functional. In order to derive an appropriate Hamiltonian
for describing the evolution of the level set function, the velocity method for shape defor-
mation as described for example in Sokolowski and Zolésio [19] is adopted in that work.
Calculating the Fréchet derivative of the cost functional with respect to the shape, a ve-
locity function at the boundary of the shape is determined such that the corresponding
deformation of the shape results in a decreasing cost functional. The calculation of this
velocity function requires in each time step the solution of one forward and one adjoint
Helmholtz problem. The numerical Hamiltonian is then determined by extending this
velocity function to the whole computational domain, and combining it with the gradient
of the level set function describing the shapes. The resulting Hamilton-Jacobi type equa-
tion is solved numerically by employing a specific finite differences discretization scheme
which has been developed in its general form by Osher and Sethian [20] and which borrows
concepts from hyperbolic conservation laws.
In this paper,a level set approach is proposed for inverse scattering problem which

derived from Maxwell’s equations.We assume that the known permittivity distribution
is positive but small everywhere, and that the conductivity distribution in the medium
has to be recovered. The case where the electrical conductivity is a piecewise constant
function is considered, with the possibility that the conductivity values are unknown. We
represent the conductivity by using level set functions and then use the damped Gauss-
Newton method for the iteration of the level set.
The paper is organized as follows: in section 2, we formulate the inverse electromagnetic

scattering problem and introduce the level set formulation of this problem.In section 3,we
introduce level set regularization and derive the basic shape reconstruction algorithm
using level sets.In section 4, numerical experiments are presented which demonstrate
the performance of the algorithm in different situations and indicate the validity of this
method. And finally, in sections, some conclusions and future directions are given.
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2. Inverse Scattering Model and Level Set.

2.1. Inverse scattering model. We consider the 2D Helmholtz equation

∆u+ k2(x)u = q(x) in R2 (2)

with complex wavenumber

k2(x) = ω2µ0ε0[ε(x) + i
σ(x)

ωε0
] (3)

Here, i2 = −1, ω denotes the angular frequency ω = 2πf , µ0 is the magnetic permeability
in free space µ0 = 4π×10−7Hm−1, ε0 is the dielectric permittivity in free space ε0 = 8.854×
10−12Fm−1, ε is the relative dielectric permittivity, and σ is the electric conductivity. The
form of (2.2) corresponds to time-harmonic line sources. The initial value k0 and the field
u generated by (2.1) satisfies the Sommerfeld radiation condition

lim
n→∞

√
r(
∂u

∂r
− ik0u) = 0 (4)

with r = |x|, where the limit is assumed to hold uniformly in all directions x/ |x|. With
this assumption, the problem (2.1)-(2.3) possesses a uniquely determined solution u in
R2.

Furthermore, we will consider in this paper only the case that the permittivity is positive
everywhere, ε > 0 in R2, and that it is small in some sense. Typical values in our
geophysical examples will be ε ≈ 80× 10−12Fm−1 or less.

We want to introduce some notation here which will be useful in the following. We
denote the wavenumber k2(x) in short form by

k2(x) = mε(x) + inσ(x), m = ω2µ0ε0, n = ωµ0. (5)

We only consider positive frequencies ω > 0 such that m,n > 0.
We assume that we are given p different source distributions qj, j = 1, · · · , p. For each

of these sources, data are gathered at the detector positions xd, d = 1, · · · , Dj, for various
frequencies fk, k = 1, · · · , K.

For a given source qj and a given frequency fk we collect a set of data b̃jk which is
described by

b̃jk = (ũjk(xj1), · · · , ũjk(xjd), · · · , ũjk(xjDj
))T ∈ Zj (6)

with Zj being the data space corresponding to a single experiment using one source and
one frequency only. In (2.5), the fields ũjk solve (2.1)-(2.3) with the correct conductivity
distribution, i.e.,

∆ũjk + [mkε(x) + inkσ(x)]ũjk = qj(x) in R2 (7)

with

mk = ω2
kµ0ε0, nk = ωkµ0, ωk = 2πfk (8)

More generally, we define for a given source qj the measurement operator Mj acting on
solutions u of (2.1) by

Mju = (u(xj1), · · · , u(xjd), · · · , u(xjDj
))T ∈ Zj (9)

With this notation, (2.5) is written as

b̃jk = Mjũjk, j = 1, · · · , p, k = 1, · · · , K. (10)
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We gather these data sets b̃j,k for all sources qi, j = 1, · · · , p, and all frequencies fk,
k = 1, · · · , K, and the aim is to recover from this collection of data sets

b̃ = (b̃1,1, · · · , b̃p,k)T , (11)

the unknown parameter distribution σ(x) in the domain of interest. In the 2D geometry
considered here, typical sources are time-harmonic line sources which can be modelled in
(2.1) by

qj = Jjδ(x− xj), j = 1, · · · , p, (12)

where xj denotes the 2D coordinates of the jth line source, j = 1, · · · , p, and the complex
number Jj is the strength of the source.

2.2. Parameter involving level set represented functions. Here we define the level
set ϕ as a signed distance function by

ϕ(x) =

{
distance(x,Γ), x ∈ interior of Γ,
−distance(x,Γ), x ∈ exterior of Γ,

(13)

where is a closed curve in Ω. Then it is clear that Γ is the zero level set of the function
ϕ. A basic observation that enables the efficient computation of distance functions on
grids is that the signed distance function ϕ is a viscosity solution of |∇ϕ| = 1 in Ω. This
offers the possibility to compute the signed distance function as the large time limit t → 0
of the corresponding evolution equation

∂ϕ

∂t
− sign(ϕ)(|∇ϕ| − 1) = 0, (14)

where ϕ is the starting level set function. This equation is the Hamilton-Jacobi equation
and can be solved numerically using methods as discussed above. Several schemes for this
task have been introduced, differing in particular in the way the signed distance function
is approximated. A finite element method for solving the re-distancing equation has been
introduced in many literature. Usually it suffices to compute few time steps, since the
convergence towards the signed distance function is very fast locally around the zero level
set and the form of the level set function away from the zero level set is not important.
Once the level set function is defined, we can use it to represent general piecewise

constant functions as follows. For example, assuming that σ(x) equals σ1 inside Γ and
equals σ2 outside Γ(If the function σ has many pieces, please refer to[10]), it is easy to
see that σ can be represented as

σ = σ1H(ϕ) + σ2(1−H(ϕ)), (15)

where the Heaviside function H(ϕ) is defined by

H(ϕ) =

{
1, ϕ > 0,
0, ϕ ≤ 0.

(16)

In order to identify the inductivity σ, we just need to identify the level set function ϕ
and the piecewise constant values σ1,2.

3. Level set regularization and shape reconstruction algorithm.
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3.1. Level set regularization. We can rewrite the Helmholtz equations (2.1)-(2.3) as

F (σ) = b. (17)

It is well-known that the inverse problem of Helmholtz equations are highly ill-posed.
In practice for the available noisy data typically there is no unique solution, i.e., there
are many models σ(x) which yield the electrical field E close to b within the noise level.
Moreover, such models σ may vary wildly and depend discontinuously on the data. A
direct application is least squares method, which is to solve the optimization problem

min
σ

1

2
∥F (σ)− b∥2, (18)

using the least squares norm of the data fitting term, but it typically runs into trouble.
In a Tikhonov-type regularization, therefore, one approximately solves the optimization
problem

min
σ

1

2
∥F (σ)− b∥2 + βR(σ), (19)

where R(σ) is a regularization term, and β > 0 is the regularization parameter whose
choice has been the subject of many papers. However, the least squares functional is
wellknown to be unsuitable if a priori information contains discontinuities. Total variation
regularization has been proposed and successfully applied to denoising and to mildly
illposed problems. A lots of literatures have discussed and developed further the use of
modified total variation (TV), or (occasionally slightly better) Huber switching between
TV and least squares. But we also demonstrated that these methods may fail when applied
to highly ill-posed problems such as those considered in this article. Let us assume in
this article that σ may only take on one of two known values, σ1 and σ2. The problem
becomes that of shape optimization, and a level set approach is applied. Following(2.14)
and (2.15), we know sigma can be represented by level set ϕ. Then the regularization
can be applied on the level set ϕ, so (3.3) can be rewrited as follows

min
ϕ

1

2
∥F (σ(ϕ))− b∥2 + βR(ϕ). (20)

Selecting the regularization functional R is one focus of the present paper. The regu-
larization should capture the idea that ϕ is smooth, but it should not be too flat near its
0-level, so that the interface will not change significantly upon a minor perturbation in ϕ.
We give the form

R(ϕ) = R̂(|∇ϕ|) + αRTV (∇σ) (21)

with RTV a suitably modified version of

RTV =

∫
Ω

|∇σ(ϕ)| dx. (22)

A well-used choice for R̂ is the discretized form of

R̂ =
1

2

∫
Ω

∣∣∇ϕ2
∣∣ dx. (23)

It has been suggested by various authors to add to this regularization operator R̂ a term
whose gradient depends on curvature. In particular, the (modified) total variation term
RTV penalizes the length of the level set interface. Note that we cannot have just RTV

by itself as regularizer, because it depends explicitly only on the interface and therefore
does not remove the level set null-space. The motivation for adding a term RTV to R̂ is to
penalize fragmentation of the recovered shape. Another reason is to regularize the inverse
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problem itself, rather than just the level set formulation with its large null-space. But
both R̂ and RTV have a drawback in that they admit very flat functions ϕ which may hover
around the 0-level (that determines the interface). The usual technique for preventing
flatness of the level set is to periodically restart the iterative procedure to evolve the level
set function re-initializing ϕ to be approximately a signed distance function(see 3.2 for
details).
Then formulation (3.3) can be generalized as follows: denoting the sensitivity matrix

J = ∂F
∂σ

, the necessary conditions for the optimization problem (3.3) can be written as
the steady state equations for the time-dependent problem

M(σ)∂σ
∂t

= −[JT (F (σ)− b) + βR′(σ)], σ(0) = σ0, (24)

where t > 0 is the artificial time variable and the preconditioner M is positive definite.
Then (3.4) now generalizes into

M(ϕ)∂ϕ
∂t

= −[ĴT (F (ϕ)− b) + βR′(ϕ)], ϕ(0) = ϕ0, (25)

where we set

F̂ (ϕ) = F (σ(ϕ)), Ĵ(ϕ) =
∂F

∂ϕ
. (26)

Let us write

g(ϕ) = ĴT (ϕ)(F (ϕ)− b) (27)

and

H = ĴT Ĵ (28)

Then damped Gauss-Newton method defines the updates for ϕ by the equation

(H(ϕ) + βR′′(ϕ))δϕ = −γg(ϕ), (29)

where β is to be chosen, and 0 < γ ≤ 1 is a damping parameter determined by line search.

3.2. The shape reconstruction algorithm and implementation details. Algo-
rithm. Choose initial values ϕ0. Set k = 0.

• (Update ϕ). Select a fixed regularization β > 0 and 0 < γ ≤ 1. Iterate ϕk by

ϕk+1 = ϕk − γ(H(ϕk) + βR′′(ϕk))
−1ĴT (ϕk)(F̂ (ϕk)− b). (30)

• (Re-initialization of ϕk). If necessary, find ϕ̂k by re-initializing the level set functions
ϕk , i.e. a Hamilton-Jacobi sub-step

∂ϕ

∂t
− sign(ϕ)(|∇ϕ| − 1) = 0 (31)

is required during iteration. Then let ϕk+1 = ϕ̂k.
• Go to the next iteration for k.

Where the re-initialization step can be regarded as a projection step which projects a
function to a distance function with the zero level set being kept. The cost to re-initialize a
level set function to a distance function is rather cheap and we could do the re-initialization
at each time step. However, there has the disadvantage if we re-initialize too often. The
scheme is a first order explicit scheme. It is known that the first order scheme is adding
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a certain amount of diffusion to the obtained solution. If we re-initialize too often, the
added diffusion is too much and we may not be able to recover geometries with sharp
corners. In our simulations, we re-initialize a level set function when the level set function
undergoes a sufficient amount of change. The criteria we have used is that the L2-norm
of a level set function has changed more than a given percentage. However, if the level
set function is not re-initialized for an intensive long period, for example, a fixed number
of iterations, we re-initialize it any way.

When we apply a damped Gauss-Newton method for the solution of (3.4), we must
calculate the sensitivity matrix ∂F

∂σ
. With the level set method we need to compute the

derivatives

∂F

∂σi

=

∫
Ω

∂F

∂σ

∂σ

∂σi

dx,
∂F

∂ϕ
=

∂F

∂σ

∂σ

∂ϕ
dx (32)

So it is necessary to compute ∂σ
∂σi

and ∂σ
∂ϕ
. Let us consider a simple case where we only

have one level set function and the piecewise constant function ϕ(x) is represented as in
(2.14). Then it is easy to see that

∂F

∂σ1

=

∫
Ω

∂F

∂σ
H(ϕ)dx,

∂F

∂σ2

=

∫
Ω

∂F

∂σ
(1−H(ϕ))dx, (33)

∂F

∂ϕ
= (σ1 − σ2)δ(ϕ)

∂F

∂σ
. (34)

In the above, δ denotes the Dirac function. If we define Ω1 = {x|x ∈ Ω, ϕ > 0},Ω2 =
{x|x ∈ Ω, ϕ ≤ 0}, then it is easy to see that

∂F

∂σ1

=

∫
Ω1

∂F

∂σ
dx,

∂F

∂σ2

=

∫
Ω2

∂F

∂σ
dx. (35)

4. Numerical experiments. Select regularization parameter β = 10−4 in our numer-
ical experiments, we use a finite-differences frequency domain (FDFD) code written in
MATLAB for solving (2.1)-(2.3). The code uses appropriately designed perfectly matched
layers (PML) to avoid reflections at the artificial computational boundaries [21, 22]. The
physical domain is partitioned into 100 × 100 elementary cells (pixels) in the following
numerical examples. Each of these grid cells has a physical size of approximately 0.15 ×
0.15m2, such that the total computational domain in the examples covers an area of 15
× 15m2.

We apply time-harmonic dipole sources of the form (2.11) with frequencies of f =
30MHz and wavelength is 2m. The data in our numerical examples are generated by
running the FDFD forward modelling code on the correct permittivity and conductivity
distributions. Therefore, to make sure that the situations we model in our experiments
are as realistic as possible, we have tested the forward modelling code thoroughly, and
add 5% noise to the observed data.

4.1. Example 1. We first test a simple problem. The exact coefficient ϕ(x) is separated
by an elliptic. The background medium in this example consists of a homogeneous con-
ductivity distribution ϕ2 = 20 out of the circle. Inside the object, the conductivity is
ϕ1 = 5 having a contrast to the background distribution.We start with an initial guess
for ϕ with the location of the discontinuities being a big circle. we have 51 sources and
51 receivers given which on the surface of domain. Each source position is at the same



206 L. Ding, and J. Cao

time a receiver position and vice versa. The distance of two adjacent sources or receivers
from each other is two pixels or 30 cm. The exact coefficient ϕ(x) is given in Fig.1. The
exact observed data are shown in Fig.2. The zero level set for the computed solution at
different iterations are shown in Fig.3.

Figure 1. (a)The exact level set is a elliptic. The conductivity in the
background is ε = 20, and in the object ε = 5. (b) Exact ϕ(x).

4.2. Example 2. In our second numerical example, we try to identify a more complicated
geometry for the location of discontinuities, and add 5% noise on observed data. The
background conductivity distribution in this example is 20. Embedded in this background
are two circle as shown in Fig.4 and the conductivity inside these inclusions is ϕ = 5. We
have 64 sources and 64 receivers surround the domain of interest. Each source position is
at the same time a receiver position and vice versa. The distance of two adjacent sources
or receivers from each other is four pixels or 55 cm. The area enclosed by these sources
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and receivers has a size of 10 × 10m2. We start with an initial guess for ϕ with the location
of discontinuities specified as a circle as shown, Algorithm is able to qutomatically split
it into two circle. Fig.5. shows the evolution of levelset.

Figure 2. The exact observed data.

4.3. Example 3. In this numerical example, we add 10% noise on the observed data.
Embedded in this background is a ring as shown in Fig.6.We assume that we have 74
sources and receivers equidistantly distributed over two boreholes. The distance of the
boreholes from each other is 10 m, and the distance of two adjacent sources or receivers is
55 cm. The area between the two boreholes has to be monitored given the gathered data.
Other conditions in this example are same as example 2. Fig.7. shows the evolution of
levelset.

4.4. Example 4. In the final numerical example, we try to identify a non-trivial geome-
try. Other conditions is same as Example 3. The computed solution at different iterations
is shown in Fig.8. The error

∥∥σ − σk
∥∥
L2(Ω)

is shown in Fig.9

5. Conclusion. We have presented a stable and efficient interpretation method of elec-
tromagnetic signal for inverse scattering problem which uses level sets. We have shown
that this method is able to recover one or more objects with nontrivial shapes given noisy
observed data. It is a widely and fast convergent method even if the initial guess value is
far away from the true coefficient.

But we can’t consider that every simulation is perfect. There are some shortcomings.
In the final picture of Fig.7, we can see that the iterative solution is not very well. If we
moved the ring all in the initial guess level set, the iterative solution can only characterize
the bigger circle of ring, but it can’t characterize the smaller circle in the ring. So we
can conclude that though the level set method is widely convergent, but there is also
important relation with initial value. We will consider it in the future.The main ideas of
the reconstruction method presented here are not restricted to a 2D geometry. Therefore,
we believe that it is possible to extend the method to a more realistic 3D situation.
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Figure 3. The zero level set for the computed solution at different iterations.

All that is needed for this is an efficient forward solver for the 3D system of Maxwell’s
equations.
We mention that the FDFD routine, which has been employed in the inverse scattering

problem, can be replaced by any other more efficient Helmholtz solver which has been
tested to work reliably in the given situation.
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