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Abstract. Anomaly detection is attractive for the analysis of hyperpectral imagery.
This paper describes an expanded anomaly detection algorithm for small targets in hy-
perspectral imagery. As a variant of the well known multivariate anomaly detector called
RX algorithm, the approach called the dimension reduction RX algorithm (DRRX) is
proposed. The analytical fusion strategy is incorporated into the RX algorithm to lead to
the DRRX algprithm. Experimental results are presented for the proposed DRRX and the
classical constant false alarm rate (CFAR) RX algorithm for detecting small anomalies
in hyperspectral imagery. The results show that the proposed DRRX algorithm outper-
forms the classical RX for detecting small targets in hyperspectral imagery.
Keywords: Hyperspectral imagery; anomaly detection; analytical fusion; RX algorithm

1. Introduction. Hyperspectral imaging sensors provide image data containing both
spatial and spectral information, and the information of hyperspectral imagery is used to
perform target detection and recognition tasks [1]. In recent years, many target detec-
tion techniques in hyperspectral imagery have been widely investigated and have proven
valuable in many applications including search-and-rescue operations, border surveillance,
and mine detection. Anomaly detection methods with no a priori knowledge represent a
current field of scientific research for the hyperspectral imagery and pattern recognition
communities [2]. From a practical point of view, these methods could be useful tools for
image analysts working with hyperspectral imagery. An anomaly detector enables one to
detect targets whose signatures are spectrally distinct from their surroundings. In general,
such anomalous targets are relatively small compared to the image background and only
occur in the image with low probabilities. A constant false alarm rate (CFAR) detector
was developed by Reed and Yu and called RX algorithm, which has shown success in
anomaly detection for multispectral and hyperspectral images [3, 4]. Many scholars have
studied this algorithm and several variants of the RX algorithm have been presented, such
as NRXD, MRXD and CRXD [5], dual-window-RX [6], regularized-RX [7], kernel-RX [8],
regularized-kernel-RX [9] and wavelet-RX [10]. However, the above proposed algorithms
based on RX may have good performance for some certain scenarios.

It should be noted that the classical RX algorithm is computational cost, which needs
to estimate the inversion of background covariance matrix. The covariance matrix is
estimated from a small number of very high-dimensional data samples, therefore, its
inverse is often unstable. In addition, the hyperspectral image with too many bands will
cause Hough effect. In order to improve the RX algorithm, dimension reduction is critical.
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Some dimension reduction methods have been proposed [11, 12, 13, 14]. It is noted that
image fusion is a relatively new research field at the leading edge of data fusion technology.
Image fusion can combine multiple images of the same scene to generate a new composite
image with better quality. The fused images can provide a better interpretation of the
scene than each of the single sensor image can do. Data fusion technique has been used to
sharpen the hyperspectral images [15]. However, the fusion strategy in [15] may not meet
the needs of target detection, which is sensitive to the image fusion techniques. Depending
on the application and fusion method, research in the imagery fusion can be classified
in two broad categories:image based representational fusion and video based analytical
fusion [16]. Image based representational fusion, which has long history, mainly uses multi-
resolution techniques to obtain best representation of the data. The pyramid approaches
and the wavelet-based method have popularity in this area. However, the analytical
fusion for specific issues are very recent. This type of fusion methodology is required
to enhance the capabilities of automatic detection and tracking system for surveillance
purpose. Cvejic N has shown that the averaging technique outperforms the Laplacian
Pyramid and the Discrete Wavelet Transform in the application of target tracking by
fusing the visible and infrared image at pixel-level fusion in [17]. This results demonstrated
that the approaches which are used in the representational fusion applications can not
be immediately employed in the analytical fusion area. The distance between the target
and background pixel distributions is large in the analytical fusion, which befits target
detection. The interested reader is refered to [18] about the analytical fusion. According
to the above discussion, the analytical fusion approach will be investigated for detecting
targets from hyperspectral images in this paper.
The rest of this paper is organized as follows. In section 2, the weighted average

algorithm for analytical fusion is investigated. In section 3, we introduce the RX algorithm
and integrate the weighted average method with RX to lead to an anomaly detector,
which is called DRRX. Section 4 presented the simulation results of RX and DRRX to
demonstrate the effectiveness of the proposed algorithm. Conclusions are finally drawn
in Section 5.

2. Weighted Average Algorithm. In the image fusion applications, weighted average
algorithm (WAA) is one of fundamental approaches. WAA has very high popularity
because it can be performed in spatial and transform domain. In practical applications,
the weighted average algorithm in spatial domain is the simplest image fusion method.
It takes the weighted average of the source images pixel by pixel. The WAA can be
presented as

IMGo(i, j) =
L∑
i=1

wl · IMGi(i, j),
L∑
i=1

wl = 1 (1)

where IMGl and IMGo refer to the pixel values of the source image and fusion image at
the location (i, j) respectively. wl denotes the weight for each source image l.
This approach has been performed in many applications [19]. However, the critical

technique of weighted average algorithm is the choice of weighted average coefficients.
The weighted average algorithm should have the ability to determine the weights for the
source images adaptively. According to the pixel in different bands, the weighted average
coefficient is often represented as

wl =
IMGl(i, j)∑L
i=1 IMGi(i, j)

(2)
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A special case is to make the weights equal, that means taking the average of the source
images pixel by pixel. (i.e., wl=1/L, l = 1, 2, . . . , L). But this operation may lose sig-
nificant information. In addition, correlation between different bands can be taken into
account to determine the weights. For instance, when the two images fusion case is con-
cerned, source of image should be specified nearly equal weights. When the low correlation
between the source images appears, source image with significant features will be assigned
a larger weight than the other. Actually, the calculation of correlation coefficients is com-
putational cost. The weighted average algorithm includes several advantages. It is simple
and intuitive. It can improve the reliability of detection via fusing complementary data.
It has been proved that this approach has good performance in the analytical fusion for
target detection and tracking.

3. Anomaly Detectors. In most applications, a priori knowledge about the desired
target is unknown. In such cases, detectors should be designed to search anomalous
spectra from the local background. This problem is typically formulated as a binary
hypothesis test. The two hypotheses are background only or background plus target.
The anomaly detectors are adaptive and designed using generalized likelihood ratio test
(GLRT) approach. That means the unknown parameters (for example signal intensity
and background covariance matrix) can be estimated from the acquired data. Different
statistical models used for the background lead to different anomaly detection algorithms.
The benchmark anomaly detection algorithm is RX algorithm.

3.1. RX Algorithm. The RX algorithm is an adaptive constant false alarm rate (CFAR)
detector, which is derived from GLRT and a Gaussian multivariate distribution model.
This algorithm can be mathematically expressed as

δRX(r) = (r − µ)TΣ−1(r − µ)
≥ η H1

< η H0
(3)

where r is the spectral pixel vector, µ represents the mean spectral vector within the
background (the mean of each spectral band), Σ is the estimated background covariance
matrix, and η is the threshold, which can be obtained according to the desired false alarm
probability. H0 means the sense is background noise only, and H1 shows background
noise and target in the sense. RX detector cues all targets in the scene that exhibit
any significant spectral difference with respect to the local background. Its very simple
to implement and has been widely used to solve the anomaly detection in multispectral
and hyperspectral imaging. Although many variants of the RX algorithm have been
presented, one limitation of RX algorithm should be highlighted: the estimation and
inversion of large covariance matrices is a time-consuming process.

3.2. Dimension Reduction RX Algorithm. In order to reduce computational cost of
the RX algorithm, efficient detection techniques are necessary. In this section, the analyt-
ical fusion method is explored to be incorporated into the RX algorithm. As mentioned
previously, the weighted average algorithm has good performance in target detection ap-
plications. The RX has expensive computation for the hyperspectral images with high
dimensionality. Thus the weighted average algorithm is first utilized to fuse the hyperspec-
tral images. This operation is essentially dimension reduction, which fused hyperspectrla
imagery into multi-band images (i.e.several bands). Then the multi-band images are pro-
cessed by the RX algorithm to detect desired targets. There is no doubt that the proposed
fusion algorithm can reduce computational cost of the RX algorithm, and make the RX
algorithm perform more efficiently. Concretely the detection procedure of this novel and
efficient algorithm is introduced in the following descriptions.
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We assume that the acquired hyperspectral imagery with L bands will be processed.
Generally speaking, the wavelength ranges from near infrared to far infrared according
to the atmospheric window. For example, we divided the acquired hyperspectral imagery
into three parts. Part one is the near infrared scope with Ln bands, part two presents
the mid-infrared range with Lm bands, and part three shows the far infrared area with
Lf bands. Obviously the summation of Ln, Lm, and Lf is L. Then the imagery of every
part is fused into one band image using the weighted average algorithm. This operation
assures that hundreds of bands hyperspectral imagery can be reduced into three bands
multispectral imagery. This fusion stage can be expressed by the WAA.

IMGn(i, j) =
L∑
i=1

wln · IMGln(i, j),
L∑
i=1

wln = 1

IMGm(i, j) =
L∑
i=1

wlm · IMGlm(i, j),
L∑
i=1

wlm = 1 (4)

IMGf (i, j) =
L∑
i=1

wlf · IMGlf (i, j),
L∑
i=1

wlf = 1

where wln , wlm , wlf can be calculated by the equation (2). It is desirable to interpret
why we divide the bands into three parts according to the wavelength. The emissivity of
material varies slowly in adjacent bands, that is, the spectral characteristics of materials
are considered to be approximate in continuous bands. In the demarcations of wavelength
range, the intensity of target and background may be mutational. Therefore the assigned
weights in different wavelengths accords with the essential fundamentals. It can be easily
extended into only one kind of wavelength ranges (such as near infrared), which are
divided into several parts. The idea behind this operation is dimension reduction. If
the spectral characteristics of target are known or partial known, the accuracy of divided
wavelength ranges will be higher. Furthermore the detection performance will be better.
The criterion for divide the bands will be introduced later.
It is assumed that the raw hyperspectral images with L bands are divided into P parts

according to the criterion. The images in each part are fused by using the WAA, i.e. the
raw hyperspectral images are reduced to multispectral imgaes with P bands. We have
R(i, j)=[IMG1(i, j), IMG2(i, j), . . . , IMGP (i, j)]

T and µ = [µ1, µ2, . . . , µP ]
T . µp is the

mean of the pth fused image. The dimension reduction RX algorithm can be given by

δDRRX(R) = (R− µ)TΣ−1(R− µ)
≥ λ H1

< λ H0
(5)

where λ is the detection threshold, the denotation DRRX means dimension reduction
RX. The dimension of the background covariance matrix becomes low after the analytical
fusion stage. So the computational cost is reduced. However, its obvious that there are L2

( L is all the bands) parameters need to be calculated in the conventional RX algorithm.
If the symmetry of the background covariance matrix is considered, at least L(L + 1)/2
parameters will be calculated. To speed up the calculation of RX algorithm further, the
variant of the background covariance matrix is presented.
We process the multispectral imagery with P bands after the analytical fusion. The

background covariance matrix Σ is commonly estimated using maximum likelihood esti-
mator (MLE). Thus we have Σ = (XXT )/N . X is the matrix of residual clutter noise-only
processes, N is a scale presents the pixel samples. We denote M = XXT , thus Σ = M/N .
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Actually, the matrix M can be expressed as

M =


R11(X) R12(X) · · · R1P (X)
R21(X) R22(X) · · · R2P (X)
· · · · · · · · · · · · · · · · · · · · ·
RP1(X) RP2(X) . . . RPP (X)

 (6)

It should be noted that the matrix M has two important characteristics. (1) Rij =
Rji,(i, j) ∈ [1, P ]; (2) Rii > Rij,(i ̸= j). Thus the matrix M is symmetrical and diagonally
dominant. According to our research, the source images have strong correlation in the
same wavelength range, and weak correlation in the different wavelength range. Thus M
can be approximated by M1 without diminishing the detection performance.

M ≈ M1 =


R11(X) 0 · · · 0
0 R22(X) · · · 0
· · · · · · · · · · · ·
0 0 . . . RPP (X)

 (7)

Then the background covariance matrix Σ can be expressed by M1. We have Σ ≈ Σdd =
(M1/N), where dd denotes the diagonally dominant matrix. In the matrix Σdd, only P
parameters need to be calculated, which can further reduce the computational cost. Thus
the final DRRX algorithm can be obtained by equation (8), where γ is the detection
threshold.

δDRRX(R) = (R− µ)TΣ−1
dd (R− µ)

≥ γ H1

< γ H0
(8)

The procedures of DRRX algorithm can be outlined as follows via the above analysis.
Step 1: Acquire the real hyperspectral images. If it’s difficult to obtain the real data
completely, the simulation data based on the partial real data can be used.
Step 2: Divide the hyperspectral images into P parts. To make sure that the images lies
in each part have high spectral similarity, while the images from different part have low
spectral similarity.
Step 3: The analytical fusion approach based on the weighted average algorithm is
employed to fuse the images in each part. The raw hyperspectral images with hundreds
of bands can be reduced to multispectral images with P bands.
Step 4: Preprocessing the fused images by means of the whitening procedure.
Step 5: Run the DRRX algorithm, which is presented as equation (8).
Step 6: Output the detection results.

In the procedures of DRRX algorithm, dividing the bands in step 2 is difficult to
implement. This operation should be based on the real spectral characteristics which are
unknown. A rule for bands divided is proposed based on spectral correlation coefficients
in the paper. The P − 1 larger gradients can be found by estimating the two adjacent
bands over the entire wavelength. The spectral correlation coefficient can be defined as

C(A,B) =

∑I
i=1

∑J
j=1 (A− Ā)(B − B̄)√∑I

i=1

∑J
j=1 (A− Ā)

2∑I
i=1

∑J
j=1 (B − B̄)

2
(9)

where A and B are the source images at adjacent wavelength. The image size is I × J
pixels. Ā and B̄ are the global mean of A and B respectively. C(A,B) is the spectral
correlation coefficient. Its noted that partial priori or full priori of the spectral can make
the detection performance better. In step 4, the whitening procedure is to suppress the
clutter background and make the residual noise to be Gaussian White noise with zero
mean.
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4. Simulation Results Analysis. In this section, we conducted a comparative analysis
between RX algorithm and DRRX algorithm to demonstrate their relative performance
using a series of computer simulation. Firstly, we presented the detection performance of
RX algorithm in theory. In figure 1, the curves of the probability of detection versus the
generalized signal to noise ratio (GSNR), which is defined in [3], for a fixed false alarm
probability PFA=10−5 and various values of N and J are shown. N is the samples and J
is the available bands. The curves show that for a fixed N , the CFAR detector has a lower
detection probability if more bands are used to provide the same GSNR. This is because
the number of unknown parameters in the background covariance matrix M increases as
J gets larger. Thus we can deduce that the analytical fusion algorithm, which reduces
the bands of images, can improve the detection performance of the RX algorithm.

 

Figure 1. PD versus GSNR for N = 49, PFA=10−5.

We designed the simulation hyperspectral data based on the real data from Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). The simulation data has 30 bands im-
agery, whose first band and third band are shown in figure 2. Images of this scene range
from near infrared to long-wave infrared. The image size is 120×120 pixels. Twelve small
targets with different GSNR are embedded into the images.

 

(a) Band 1

 

(b) Band 3

Figure 2. Hyperspectral imagery: (a) Band 1. (b) Band 3.

The spectral correlation coefficient between band 1 and band 3 is 0.97. This result
demonstrates that the assumption about approximate spectral characteristics of materials
in continuous bands is correct. According to the criterion for dividing bands, we have
P = 4 in the paper. The detection results for RX and DRRX are presented in figure 3.
In order to compare the detection performance of DRRX with that of RX, the curves

of receiver operating characteristic (ROC) are presented in figure 4, where PD is the
probability of detection, Pfa denotes the probability of false alarm. PD can be defined
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(a) RX

 

(b) DRRX

Figure 3. Detection results of RX and DRRX: (a) RX result. (b) DRRX result.

 

Figure 4. Comparative of ROC curves of DRRX and RX.

as PD=Nd/Nt, and Pfa=Nf/Nb [20]. Nd is the detected pixels from target; Nt denotes
all the pixels of the targets; Nf is the false alarms; Nb refers to the pixels of background.
The ROC curves show that the performance of DRRX and that of RX are almost the
same when the probability of false alarm is lower. That is because RX and DRRX
both use the local multivariate Gaussian model and less interfere affects the performance.
Meanwhile, the ROC curves demonstrate that the performance of DRRX is better than
that of RX when the probability of false alarm increases. That’s because the analytical
fusion approach as a smoothing filter has reduced a part of clutter noise.

Finally we performed the RX algorithm and DRRX algorithm in DSP 6000. The time
consuming of RX is 17434996815 clock cycles. And DRRX is 15492814777 clock cycles.
This experiment demonstrates the effectiveness of DRRX, which can be performed in
real-time process.

5. Conclusions. Anomaly detection is very important for hyperspectral imagery anal-
ysis. However, there is no one method that is good in all situations for all cases. In
this paper we have introduced a novel approach of anomaly detection for hyperspectral
imagery called dimension reduction RX (DRRX). DRRX algorithm is established by em-
ploying the analytical fusion approach and RX algorithm. We have demonstrated that the
proposed DRRX algorithm outperforms the RX algorithm. Actually, the anomaly detec-
tion based on local Gaussian model has another limitation, which is often inadequate for
the representation of the background distribution, especially in non-homogeneous condi-
tions. This property may lead to excessive false alarms in applications. Thus the anomaly
detection algorithms and analytical fusion methods should be further exploited.
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