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Adaptive Distributed Compressed Video Sensing
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Abstract. Compressed sensing is a state-of-the-art technology which can significantly
reduce the number of sampled data in sparse signal acquisition. This paper studies the dis-
tributed compressed sensing (DISCOS) of video signals. To this end, we propose adaptive
adjustments to the block-based (local) measurement rate, the frame-based (global) mea-
surement rate, and the sparse dictionary size, thus forming an adaptive DISCOS scheme
(aDISCOS). Two adjustments on measurement rates are based on the spatial and tem-
poral sparsity that is obtained through an analysis on the block-type and the inter-frame
motion, while the sparse dictionary size is adjusted according to the motion information.
All analyses are implemented at the decoder side and the analysis results are sent back
to the encoder via a feedback channel, yielding a low-complexity encoding (to meet the
equirement of a distributed coding scheme). Simulation results show that the proposed
aDISCOS achieves a superior rate-distortion performance as well as better visual quality,
when compared with the original DISCOS scheme.
Keywords: Compressed sensing, distributed compressed sensing, adaptive sampling,
sparse dictionary

1. Introduction. In the up-link communication of low-power video capturing (via mo-
bile cameras, wireless visual sensor networks, etc.) where the computing power is limited,
people usually would like to design a simple encoder but leave a big complex to the de-
coder side. For tasks like this, the distributed video coding (DVC) [1-2] has been proposed
with a combination of an independent encoder but a joint decoder applied to individual
video frames. According to this framework, many computation intensive operations such
as motion estimation and prediction have been shifted from encoder to decoder, thus of-
fering a good solution to the aforementioned scenario. However, like a conventional image
encoder, typical DVC encoders still need to do a large amount of computations such as
intra-prediction, transform, quantization, and entropy coding.
More recently, the theory of compressed sensing (CS) has initiated a tremendous wave

in the sparse signal processing community [3-6]. Owing to the sparseness − an intrin-
sic property in many signals in practice (including image and video signals), CS can
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sample and compress a sparse signal at a sub-Nyquist rate while still enabling a nearly
exact reconstruction, and based on the random measurement, it offers the better error-
resilience at the same time[7-8]. In practice, the CS sampling (for data acquisition) can
be implemented as simple as generating a (pseudo) random matrix and performing some
multiplications, thus fitting very well to the DVC scenario.

Given the fact that the two aforementioned theories share a common principle of main-
taining a low-complexity encoder, distributed compressed video sensing (DCVS) inte-
grating both DVC and CS characteristics has emerged as a new way to directly capture
CS-sampled video data via random projection while performing the CS reconstruction to-
gether with exploiting correlations among successive frames at a high-complexity decoder
[9-10]. In this scheme, video frames are classified into “key” frames and “CS” frames.
Each key frame is coded independently (by any conventional intra-frame coding scheme);
whereas each block in a CS frame is just CS-sampled at the encoder side and then re-
constructed at the decoder side with respect to the basis (dictionary) formed from a set
of spatially neighboring blocks of previously decoded neighboring key frames. We notice
that, in the DCVS scheme, acquisition of each block/frame is always implemented at a
fixed rate, without considering the diversified contents in various blocks within a frame
or inter-frame correlations among frames. To overcome this drawback, DCVS schemes
employing a dynamic measurement rate allocation have been proposed in [11-13]. Nev-
ertheless, they only apply varying CS sampling rates on different blocks or CS frames,
ignoring local or global information preserved by block-level and frame-level measurement,
respectively.

In this paper, we follow the idea proposed recently in [9] to implement an aDISCOS
scheme equipped with a feedback channel. Notice that such a feedback channel is usually
a common assumption in some DVC systems [1]. In our scheme, each source video frame
is compressed independently by a number of random sampling operations (each being a
simple and random linear projection) so as to keep the simplicity at the encoder side. On
the other hand, all analyses will be conducted at the decoder side, leading to a joint and
more complicated decoding to deliver a higher performance. Compared with the original
DISCOS work [9], our contributions in this paper are summarized as follows.

• The state-of-the-art DISCOS scheme employs a fixed measurement (or sampling) rate
in both block-level measurement and frame-level measurement for each CS-frame,
and the sparse dictionary also keeps a constant size, which ignores the diversified
contents in various blocks within a frame as well as temporal variations among
frames. In this paper, we propose to adjust adaptively the block-based (local) and
frame-based (global) measurement rates, as well as the sparse dictionary size in order
to produce a better coding performance.

• The actual block-based and frame-based measurement rates are determined in our
paper by estimating spatial and temporal sparsity, which are obtained at the de-
coder through some analyses on block type and inter-frame motion, respectively.
The sparse dictionary size is also adjusted adaptively depending on the motion in-
formation.

2. The DISCOS framework. The DISCOS framework proposed in [9] is shown in
Figure. 1. A source video sequence is divided into several GOPs (group of pictures),
where a GOP consists of a key-frame followed by some CS-frames. Each key-frame is
intra-coded by a conventional video coding method (such as MPEG or H.26x). CS-frames
are compressively sampled by using two kinds of measurements, block-based (local) and
frame-based (global) ones, and all measured data are transmitted to the decoder. The
frame-based measurements is similar to the generic CS coding, i.e., each frame pt (of size
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Figure 1. The DISCOS framework in [9]

N×N, t denoting the time) is first vectorized as xt (with height N2) and then compressed
via a CS-sampling process as:

yt = Φxt (1)

where yt denotes the output measurement-vector of length Mt, Φ represents the Mt ×
N2 measurement (or sampling) matrix generated by the method of structurally random
matrices (SRMs) [14]. The measurement rate for xt is denoted as Rt =Mt/N

2.
The block-based measurements are also exploited to preserve local information that

helps the decoder construct more accurate side information (SI) in DISCOS. Each CS-
frame is first partitioned into non-overlapped blocks of size B × B. Then, each vectorized
block xi (where i stands for the block’s index) is sampled with the same CS operator as:

yi = ΦBxi (2)

where ΦB is the measurement matrix. The equivalent sampling operator Φ appeared in
Eq. (1) for the whole frame is a block-wise diagonal matrix composed by ΦB.
At the decoder side, an independent reconstruction by using the necessary video decod-

ing method is first carried out for all key-frames, while the reconstruction for CS-frames
are much more complicated. As shown in Figure.1, block-based prediction is first achieved:
each block in a frame is reconstructed via solving an l1 minimization problem as:

α̂i = argmin ∥αi∥1 s.t. yi = ΦBΨiαi (3)

where yi is obtained from (2), Ψi is a sparse basis matrix which can provide a sparse
representation for xi, i.e., xi = Ψi · αi. Instead of using a fixed linear transform (e.g.,
the block DCT), DISCOS uses a dictionary formed from a set of spatially neighboring
blocks of previously decoded neighboring key-frames as the sparsifying matrix Ψi. Block-
based prediction uses the sparsity adaptive matching pursuit (SAMP) [15] reconstruction
algorithm to solve the l1-minimization. Then, DISCOS employs a sparse recovery with SI
from its global measurements and its local block-based prediction to jointly reconstruct
a CS-frame: to substract the measurement vector of an original CS-frame from that of a
block-based prediction frame to form a new measurement vector of the prediction error.
Finally, the CS-frame is recovered by adding the prediction error to the prediction frame,
and the gradient projection for sparse reconstruction (GPSR) algorithm [16] is used.
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3. Adaptive distributed compressed video sensing (aDISCOS). Both block-based
measurements and frame-based measurements of each CS-frame employed a fixed mea-
surement rate in the DISCOS scheme [9]. Apparently, it has ignored the diversified
contents in various blocks (i.e., spatial sparsity) and inter-frame variations (i.e., temporal
sparsity) within a video sequence. According to the CS theory, the measurement rate
for a frame (or a block) can be made smaller when the temporal (or spatial) sparsity is
larger, and vice versa. In addition, each block in a CS frame is reconstructed in [9] with
respect to the dictionary formed from a set of spatially neighboring blocks of previously
decoded neighboring key-frames. It implies that the block-based prediction quality will
change with the different correlation between the preceding and following key-frames.
When motion is high (generally, the correlation is low), one needs a bigger-size dictionary
in order to exploit the correlation accurately. While in the case of low motion (high tem-
poral correlation), the dictionary should be set smaller in order to save the computational
complexity. Unfortunately, a fixed-size dictionary has been adopted in DISCOS, which ig-
nored the diversity of temporal correlation and therefore the reconstruction quality would
sacrifice to a certain extent.

To determine appropriate block-based and frame-based measurement rates for each CS-
frame as well as a suitable sparse dictionary size for each block, one needs to carry out
some analyses on the spatial and temporal sparsity. Nevertheless, one must note that
these analyses should not be done at the encoder side: (1) in a practical CS scenario,
raw video data not available because each original video frame stands only in the real
world and (2) it would otherwise defeat the purpose of maintaining a low-complexity at
the encoder side. To this end, this paper proposes to do such analyses at the decoder
side. Especially, block classification and inter-frame motion analysis are performed to
respectively estimate the spatial and temporal sparsity.

Figure 2. Our proposed aDISCOS scheme.

Now, let’s present our proposed aDISCOS scheme. As shown in Figure. 2, it consists of
an encoder with low-complexity and a decoder with high-complexity. When compared to
the original DISCOS scheme, a major change happens at the CS-sampling as well as the
decoding process of each CS-frame. In particular, the latter change makes the decoder
in the current framework even more complicated, resulting in some delays if applied to a
limited-power decoder.
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Figure 3. Block classification employed in our work: four indicative areas
(with different marks) are fixed for all blocks.

3.1. Block-level processing.

A. Block classification. Generally, spatial sparsity of a video frame is highly correlated
to the block style; thus a block classification model based on the DCT coefficients
proposed in [17] is employed in our work. Here, a CS-frame is divided into 8×8 blocks
and each block is DCT-transformed. Each block of DCT coefficients is divided into
four indicative areas as shown in Figure. 3, where the absolute sums of the DCT
values in these four areas are denoted as DC, L (low frequency), E (edge), and H
(high frequency), respectively. Then, each block is assigned to the PLAIN, EDGE,
or TEXTURE class according to relations between the values of L, E, and H, and
some pre-determined thresholds, see [17] for the details.

B. Dynamic bit-allocation for blocks. As depicted in Figure. 2, each CS-frame goes
through adaptive block-based measurements by estimating block type of each block.
Based on the assumption that two successive frames in a video should be similar, the
styles of each corresponding pair of blocks in the two frames should also be similar.
Therefore, after reconstructing key-frames, we perform the block classification on
them, and exploit the block type in key-frames to estimate the block co-located
in the preceding and following frames which will be immediately encoded at the
encoder. Then, we take advantage of a feedback channel to send the classification
result back to the encoder. According to the estimated block type, bits are allocated
dynamically to various blocks, which follow the ordering: “TEXTURE” (less sparse)
> “EDGE” > “PLAIN” (more sparse).

3.2. Frame-level processing.

A. Motion analysis. In order to assess temporal sparsity within neighboring key-frames,
we proposed to perform an inter-frame motion analysis. Here, the conventional
block matching motion estimation is first applied to the current key-frame p and
the referenced key-frame pref (i.e., preceding key-frame), and motion vectors (MVs)
of all blocks can be obtained, e.g., (∆xi,∆yi) is the MV of block i. Then, we extract
the maximum absolute value component, i.e., Vimax = max(|∆xi|, |∆yi|). Given
an integer T (T=7 in our experiments), we count how many blocks meet imax
Vimax > T−denoted as n. Based on n, one can determine the motion state of the
current key-frame p:

motionstate =

{
1 if n ≥ K
0 if n < K

(4)

where the threshold K will be determined by experiments and related to the move-
ment existed in source video sequence . When the motion state is 1, it means
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that the motion of the current key-frame is high and thus the correlation with its
preceding key-frame is low.

B. Dynamic bit-allocation for blocks. At the decoder side, the inter-frame motion anal-
ysis is performed using the reconstructed neighboring key-frames, and the resulted
motion state will be sent back to the encoder side via a feedback channel, as shown
in Figure. 2. According to the motion state, the bit-allocation for frames will have
dynamic characteristics as follows: if the motion state of the current key-frame is 1,
it means that a potential scene change exists - denoted as the large-motion GOP.
In such a scenario, all CS-frames need to be sampled at a higher measurement rate.
In addition, experiments tell us that: global sampling at low rates often lacks of
the effectiveness. As a result, when a CS-frame in a GOP without large changes is
sampled at a lower rate, frame-based measurement will be ignored completely, thus
only keeping the block-based measurements, in order to reduce the computational
burden.

3.3. Adaptive sparse dictionary. Through motion analysis on the reconstructed neigh-
boring key-frames at decoder, the maximum absolute value component Vimax of each block
in key-frames will be obtained. Then, V is calculated as:

V =

 2
Vimax

T

if
if
if

Vimax ≤ 1
1 < Vimax ≤ T
Vimax > T

(5)

Based on V of each block in the current key-frame, one can adaptively adjust the sparse
dictionary size used for the recovery of co-located blocks in CS-frames from the previous
GOP. The generation of adaptive sparse dictionary is depicted in Figure. 4. Obviously,
V controls the search window size and the sparsifying matrix ψi is an adaptive dictionary
combined by vectorized blocks in neighboring key-frames. Experimental results demon-
strated that our adaptive sparse dictionary scheme is powerful than the fixed dictionary
to some extent and reduces the computational complexity.

Figure 4. The generation of adaptive sparse dictionary for a block i in a
CS-frame, it assumes that the block can be predicted using a linear combi-
nation of (vectorized) neighboring blocks in preceding and following key-
frames.

4. Simulation results. We choose the DISCOS method proposed in [9] as the compar-
ison benchmark. However, we modify the block size to 8×8. Notice that it usually leads
to a better performance if a larger block size is used (e.g., 32×32 is used in [9]). For
all experimental results presented below, we tried to maintain all selections as simple as
possible so as to focus on solely demonstrating the effectiveness of adopting a dynamic
bit-allocation strategy. The test signals are the first 100 frames of three CIF (frame size:
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352×288, luminance only) video sequences: Foreman, CoastGuard and News, with GOP
size=4.
Since there is no difference on each key-frame between the existing DISCOS method

and our scheme, the following comparison focuses on the non-key frames.

• We implement our proposed aDISCOS scheme first, in which different measurement
rate (MR) and variable sparse dictionary size are employed. We book-keep the total
rate consumed in sampling each CS-frame, including block-based and frame-based
measurement rate. We take average over all CS-frames to obtain an

• According to the obtained EMR, we then implement the DISCOS scheme proposed
in [9] (i.e., each CS-frame is applied both local block-based and global frame-based
measurements at a fixed rate exactly equal to EMR/2) to facilitate a fair comparison.

Figure 5. Comparison of our aDISCOS and fixed-rate DISCOS with only
block-based measurements.

Figure 6. Original frames and their block classification maps for the first
frame of three test video sequence (“white” for PLAIN, “black” for TEX-
TURE, and “grey” for EDGE).

Figure. 5 shows the comparison of our aDISCOS and the fixed-rate DISCOS [9] with
only block-based measurements at five quality levels. The numerical values on the x-axis
denote the MR while those on the y-axis represent the average reconstruction quality
(PSNR in dB) of CS-frames. From the curve, we can find that our adaptive block-based
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method yields a significant improvement for Foreman, Coast-Guard and News (1.15 dB,
0.56 dB, and 2.14 dB on average, respectively) due to the consideration of the spatial
sparsity. Here, the block types of the first two CS-frames in a GOP follow that of the
preceding key-frame; while the third CS-frame follows the next key-frame. The block-type
maps for the first frame of three test video sequences are presented in Figure. 6.

Figure 7. Comparison between our aDISCOS and the fixed-rate DISCOS.

Figure.7 shows the performance comparison between our aDISCOS (which considers
both spatial and temporal sparsity) and the fixed-rate DISCOS [9] scheme for the same
test sequences. On average, our proposed scheme achieves an improvement of about
4.72 dB, 2.91 dB, and 3.38 dB in PSNR over DISCOS with a fixed measurement rate,
respectively.

To have some visual comparisons, we show in Figure. 8 some reconstructed frames
for Foreman at EMR=0.134, where one CS-frame is from a GOP with low motion and
the other is from a large-motion GOP, from which one can perceive a very noticeable
improvement by using our aDISCOS method.

Figure 8. Reconstructed frames by (1) aDISCOS and (2) DISCOS at the
same EMR= 0.134, and (a) is from a GOP with low motion, (b) is from a
GOP with large motion.

5. Conclusions. We introduced in this paper an adaptive distributed compressed sensing
(aDISCOS) scheme for video signals in which both local block-based and global frame-
based measurement rates as well as the sparse dictionary size can be adjusted adaptively.
One unique feature is that our analyses on the spatial and temporal sparsity are carried out
at the decoder side, and the analyses results are sent back to the CS encoder. Therefore,
the nature of maintaining a low-complexity encoding is well preserved, which makes it
very suitable for low-power mobile video capturing, such as mobile camera and wireless
sensor networks. Experimental results demonstrated that the proposed aDISCOS clearly
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outperforms the existing DISCOS scheme with a fixed measurement rate. Nevertheless,
the measurement rates are chosen manually in this work, and our future works are to
come up with some rules to automatically determine these numbers or formulate an
optimization.
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