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Abstract. Recently, Boyen at PKC 2010 proposed a lattice-based signature scheme in
the standard model. In this paper, we show that his signature scheme does not satisfy
strong unforgeability. In other words, an adversary can produce a new signature for a
message M after seeing a signature of the message M. Then we present an improved
scheme and prove that the improved scheme satisfies strong unforgeability. Furthermore,
the improved signature scheme is as efficient as Boyen’s signature scheme.
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1. Introduction. Digital signature is the cornerstone of e-commerce, e-government and
so on. A digital signature scheme is said to be strongly unforgeable if (1) it is existen-
tially unforgeable under a chosen-message attack, and (2) any adversary cannot generate
a different signature for a massage which has been signed [1]. Strongly unforgeable sig-
natures are very useful and can be used to construct group signatures [2] as well as
chosen-ciphertext secure encryption systems [3, 4].

Lattice-based signature schemes are enjoying great popularity in signature field due to
the operations involved in lattices are very simple, the security of these schemes is based
on the worst-case hardness of lattice problems and lattice-based cryptography is hard even
for quantum computers [5,6]. In 2008, Gentry, Peikert and Vaikuntanathan [7] introduced
a family of trapdoor functions based on small integer solution (SIS) problem and then
designed a lattice-based signature scheme using these functions. The signature scheme is
proven to be strongly unforgeable in the random oracle model. In 2010, Cash et al. [8]
proposed a new signature scheme from lattices which is secure in the standard model but
is not strongly unforgeable. By revising Cash et al.’s scheme, Rückert [9] constructed the
first strongly unforgeable lattice-based signature scheme in the standard model. Later on,
strongly unforgeable lattice-based signature schemes received great attentions and several
new strongly unforgeable lattice-based signature schemes are proposed. For example, Tian
et al. in [10] constructed a strongly unforgeable lattice-based ring signature scheme in
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the standard model and in [11, 12] constructed two hierarchical identity-based signature
schemes from lattices that are strongly unforgeable in the standard model and in the
random oracle model, respectively.
In this paper we analyze a novel lattice-based signature scheme in the standard model

presented by Boyen [13]. The scheme is more efficient than other lattice-based signature
schemes in the standard model (e.g. [8, 9]). However, we show that the scheme does not
meet strong unforgeability. Namely, an adversary A can produce a new message-signature
pair (M , s′) after seeing a valid message-signature pair (M , s). We then based on Rückert’s
construction present an improved scheme and prove that the improved scheme satisfies
strong unforgeability. The performance of our improved scheme is almost the same as
that of Boyen’s scheme.
The rest of this paper is organized as follows. Section 2 introduces some useful defini-

tions and results used throughout this work. In Section 3, we review and analyze Boyen’s
signature scheme. The improved scheme and its analysis will be provided in Section 4.
Finally, Section 5 concludes this paper.

2. Preliminaries. In this section, we first give some definitions and then recall how to
sample lattice points with short length and how to delegate a short basis. They will be
used as building blocks of this paper.
Definition 1. Let q be a positive integer and A ∈ Zn×m

q be a matrix, define a mdimen-
sional full-rank integer lattice as:

Λ⊥(A) = {e ∈ Zm : Ae = 0(mod q).

Definition 2. Given a positive integer q, a matrix A ∈ Zn×m
q and a real β, the SIS

problem (q,m, β)-SIS is finding a vector e ∈ Λ⊥(A) such that ∥e∥ ≤ β.
For some parameters the SIS problem is hard [5,14]. Security of our improved signature

scheme will rest on the hardness assumption of the SIS problem.
Definition 3. For any σ > 0, define the Gaussian function on Rm centered at c with
parameter σ as:

ρσ,c(x) = exp(−π∥x− c∥2/σ2).

The discrete Gaussian distribution over lattice Λ with center c and parameter σ is
defined as:

∀x, DΛ,σ,c = ρσ,c(x)/ρσ,c(Λ).

2.1. Trapdoor functions. Here we will review the trapdoor functions introduced by
Gentry, Peikert and Vaikuntanathan [7]. Let Dn = {e ∈ Zm : ∥e∥ ≤ σ

√
m} be domain

and Rn = Zn
q be range, the trapdoor functions determined by A are

fA(x) = Ax(mod q).

where A ∈ Zn×m
q is a uniformly random matrix.

Sampling from f−1
A (y) for any y ∈ Rn without a trapdoor is as hard as solving some

lattice problems in the worst-case. A short basis TA for Λ⊥(A) is a trapdoor of the
function fA. According to [7], we can get a vector v ∈ Dn with overwhelming probability
using TA. Here we briefly review the sampling algorithm:

• TrapGen(1n): Let q ≥ 2 and m ≥ 5n log q, the probabilistic polynomial-time
algorithm TrapGen(1n) outputs a matrixA ∈ Zn×m

q statistically close to uniform and

a basis TA for Λ⊥(A) with overwhelming probability such that
∥∥∥ ∼
TA

∥∥∥ ≤ O(
√
n log q),

where
∼
TA denotes the Gram-Schmidt orthogonalization of TA.
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• SampleDom(1n, σ): The algorithm samples an x from distribution DZm,σ,0 such
that x ∈ Dn with overwhelming probability.
• SamplePre(A, TA, σ, y): On input y ∈ Rn, the algorithm samples a vetoer e ∈ Dn

such that Ae = y(mod q). In order to do this, we first choose an arbitrary c ∈ Zm

such that Ac = y(mod q) and next sample an x from distribution DΛ⊥(A),σ,−c using
SampleDom(1n, σ). Finally, output e = x + c.

2.2. Basis Delegation. Recently, Cash et al. [8] introduce an effective way to delegate
a short basis for Λ⊥(A) into one for Λ⊥(A||B), where A||B is a new matrix whose rows
are the junction of each row of matrices A and B. The result is described below.
Lemma 2.1. For q ≥ 2, m ≥ 5n log q, let TA be an arbitrary basis of Λ⊥(A) and let
B ∈ Zn×m′

q be arbitrary, there is a polynomial-time algorithm ExtBasis(TA, A
′ = A||B)

outputs a basis TA′ of Λ⊥(A′) such that
∥∥∥ ∼
TA′

∥∥∥ =
∥∥∥ ∼
TA

∥∥∥.
3. Analysis of Boyen’s signature scheme. In this section we briefly review the lat-
ticebased signature scheme proposed by Boyen and show the scheme is not strongly un-
forgeable.

3.1. Boyen’s signature scheme. Let a massage M be an l-bit string indexed from 1
to l. The Boyen’s signature scheme is described in the following.

• KeyGen(1n): Given a security parameter n, runTrapGen(1n) to generate a matrix
A ∈ Zn×m

q with a short basis TA for Λ⊥(A). Choose l + 1 independent matrices
C0,C1, . . . ,Cl ∈ Zn×m

q . Output the verification key VK = (A,C0,C1, . . . ,Cl) ∈
(Zn×m

q )l+2.

• Sign(TA, M):On input the signing key TA and a massage M ∈ {0, 1}l, one does
the following:
1. Let CM = C0 + (−1)M [1]C1 + · · ·+ (−1)M [l]Cl.
2. Define A′ = (A||CM) ∈ Zn×2m

q .

3. Run ExtBasis(TA,A
′) to generate a short basis TA′ for Λ⊥(A′).

4. Compute d ← SamplePre(A′, TA′ , σ, 0).
5. Output the signature d.

• Verify(VK, d, M):Given the verification key VK, a signature d ∈ Z2m and a
massage M ∈ {0, 1}l, output “Accept” if and only if 0 ≤ ∥d∥ ≤ σ

√
2m and

(A||CM)d = 0(mod q); output “Reject”, otherwise.

3.2. An attack on Boyen’s signature scheme. It is clear that, for any integer k ̸= 1,
the vector v = k · d is a new solution of the linear system (A||CM)x = 0(mod q).
If there exists an integer k0 such that 0 ≤ ∥k0 · d∥ ≤ σ

√
2m, then, for each k such that

0 < |k| ≤ |k0|, v = k ·d is a valid signature of M . In particular, −d is a different signature
of M since −d ̸= d, 0 < ∥−d∥ = ∥d∥ ≤ σ

√
2m and (A||CM)(−d) = 0(mod q). Thus,

anyone can easily forge a new signature for M after seeing the message-signature pair (M ,
d). It implies that Boyen’s signature scheme does not satisfy strong unforgeability. (Here
we would like to stress that Boyen did not prove the signature scheme to be strongly
unforgeable.)

4. Our improved signature scheme. In this section, based on Rückert’s construction
[9], we propose an improved signature scheme of Boyen’s cheme and prove the improved
scheme is strongly unforgeable in the standard model. We also compare the performance
of our improved scheme with those of the schemes in [8] and [13].
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Table 1. Performance comparison of several lattice-based signature schemes.

4.1. Construction. Our improved signature scheme is described as follows.

• KeyGen(1n): Given a security parameter n, runTrapGen(1n) to generate a matrix
A ∈ Zn×m

q with a short basis TA for Λ⊥(A). Choose l + 1 independent matrices
C0,C1, . . . ,Cl ∈ Zn×m

q and a random vector y ∈ Rn\{0}. Output the verification
key VK = (A,y,C0,C1, . . . ,Cl).
• Sign(TA, M):On input the signing key TA and a massage M ∈ {0, 1}l, the signer
does the following:
1. Let CM = C0 + (−1)M [1]C1 + · · ·+ (−1)M [l]Cl.
2. Define A′ = (A||CM) ∈ Zn×2m

q .

3. Run ExtBasis(TA,A
′) to generate a short basis TA′ for Λ⊥(A′).

4. Compute s ← SamplePre(A′, TA′ , σ, y).
• Verify(VK, s, M):Given the verification key VK, a signature s and a massage M ∈
{0, 1}l, output “Accept” if and only if 0 ≤ ∥s∥ ≤ σ

√
2m and (A||CM)s = y(mod q);

output “Reject”, otherwise.

4.2. Analysis. Now we analyze the performance and security of our improved scheme
successively.
Performance Comparisons. To make a more comprehensive conclusion, we make a com-
parison between our scheme and some related lattice-based signature schemes. Table I
shows the details. Obviously, the performance of our improved scheme is almost the same
as that of Boyen’s scheme [13] and better than that of the scheme proposed in [8].
The following theorem reveals that our improved scheme is strongly unforgeable in the

standard model.

Theorem 4.1.(Strong unforgeability) For a prime modulus q and a polynomial function
β = poly(n), if there is an adversary A that outputs a forgery, with probability ϵ and
making Q ≤ q/2 adaptive chosen-message queries, then there is an algorithm B that
solves the (q, m, β)-SIS problem with probability ϵ′ > (1 +Q/q)ϵ(6q)−1.

Proof. Suppose there exists such an adversary A, we show that an algorithm B is able to
be constructed to solve the SIS problem.

• Setup. For a matrix A ∈ Zn×m
q , B picks a random matrix B ∈ Zn×m

q with a short
basis TB, l + 1 short random matrices R0,R1, . . . ,Rl ∈ Zn×m

q , l uniformly random
scalars h1, h2, . . . , hl ∈ Zq and a short vector x. The algorithm B selects a massage
M∗ such that hM∗ = 0 (mod q) and sets y = (A||ARM∗)x (mod q) (The hM∗

and RM∗ are defined below). Output the verification key VK = (A,y,C0 = AR0+
B(mod q),C1 = AR1 + h1B(mod q), . . . ,Cl = AR1 + h1B(mod q)).
• Signature queries. B answers signature queries from A on any message M(M ̸=
M∗) as follows:

1. Set RM = R0 +
∑

l
i=1(−1)

M [i]Ri.

2. Set hM = 1 +
∑

l
i=1(−1)

M [i]hi.
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3. B aborts the algorithm if hM = 0 (mod q)
4. Let FM = (A||ARM + hMB) ∈ Zn×2m

q

5. Find a short vector d ∈ Z2m such that FMd = y(mod q) using the trapdoor
TB. B can find the vector d as follows: First of all, B selects a vector d1 ∈ Dn.
Then, he computes d2 ← SamplePre(hMB,TB, σ,y−Ad1). The vector dT =
[dT

1 − (RMd2)
T ||dT

2 ] meets FMd = y(mod q).
6. Output the signature d.

If M = M∗, B outputs x.
• Output. Finally, A outputs a forgery sT = [sT1 ||sT2 ] on message M ′. B computes
hM ′ and restarts the simulation process if hM ′ ̸= 0.

If hM ′ = 0, then we have (A||ARM ′)s = y (mod q). It is clear that B gets a solution
e = s1 +RM ′s2 − x1 −RM∗x2 of the (q,m, β)-SIS problem since

Ae = A(s1 +RM ′s2 − x1 −RM∗x2)

= (A||ARM ′)s− (A||ARM∗)x

= y − y

= 0 (mod q)

where xT = [xT
1 ||xT

2 ] is a signature of the massage M∗.
The above simulation process works well no matter whether M ′ is a fresh message or

not. We now need to compute the probability of e ̸= 0. Similar to [13], Prob[e ̸= 0] ≥ 2/3.
Therefore, the total success probability of the algorithm B is ϵ′ = ϵQ(2q)−1(1 − Q/q +
1/q)(q−1 +Q−1)Prob[e ̸= 0] > (1 +Q/q)ϵ(6q)−1. This completes the proof.

5. Conclusions. In this paper, we have shown that Boyen’s lattice-based signature
scheme does not satisfy strong unforgeability. Then, we have proposed an improved
lattice-based signature scheme which is strongly unforgeable in the stranded model. A
formal proof on the security of the improved scheme and a performance analysis have also
been provided.

Acknowledgement. This work is supported by the National Grand Fundamental Re-
search 973 Program of China (No. 2011CB302905), the National Natural Science Foun-
dation of China (Nos. 61202407, 61173188, 61173187), the Fundamental Research Funds
for the Central Universities (No. WK01100s00033), the Natural Science Foundation of
Anhui Province of China (No. 11040606M141), and the Special Foundation for Young
Scientists of Anhui Province of China (No. 2012SQRL015).

REFERENCES

[1] S. Goldwasser, S. Micali, and R. L. Rivest, A digital signature scheme secure against adaptive
chosenmessage attacks, Journal of SIAM Journal on Computing, vol. 17, no. 2, pp. 281-308, 1988.

[2] D. Boneh, X. Boyen, and H. Shacham, Short group signatures, Proc. of the 24th Annual International
Cryptology Conference, vol. 4. no. 4, pp. 345-370, 1998.

[3] R. Canetti, S. Halevi, and J. Katz, Chosen-ciphertext security from identity-based encryption, Proc.
of the 23th International Conference on the Theory and Applications of Cryptographic Techniques,
LNCS 3027, springer, pp. 207-222, 2004.

[4] T. T. Tsai, Y. M. Tseng, and T. Y. Wu, A fully secure revocable ID-based encryption in the standard
model, Journal of Informatica, vol. 23, no. 3, pp. 487-505, 2012.

[5] M. Ajtai, Generating hard instances of the short basis problem, Proc. of the 26th International
Colloquium on Automata, Languages and Programming, pp. 1-9, 1999.

[6] O. Regev, Lattice-based cryptography, Proc. of the 26th annual international conference on Advances
in Cryptology, pp. 131-141, 2006.



46 Y. Xu, M. M. Tian, L. S. Huang, W. Yang, and X. C. Shen

[7] C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic
constructions, Proc. of the 40th annual ACM symposium on Theory of computing, pp. 197-206, 2008.

[8] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, Bonsai trees, or how to delegate a lattice basis, Proc.
of the 29th Annual international conference on Theory and Applications of Cryptographic Techniques,
pp. 523-552, 2010.

[9] M. Rückert, Strongly unforgeable signatures and hierarchical identity-based signatures from lattices
without random oracles, Proc. of the Third international conference on Post-Quantum Cryptography,
pp. 182-200, 2010.

[10] M. Tian, L. Huang, and W. Yang, Efficient lattice-based ring signature scheme, Chinese Journal of
Computers, vol. 35, no. 4, pp. 712-718, 2012.

[11] M. Tian, L. Huang, and W. Yang, A new hierarchical identity-based signature scheme from lattices
in the standard model, International Journal of Network Security, vol. 14, no. 6, pp. 310-315, 2012.

[12] M. Tian, L. Huang, and W. Yang, Efficient hierarchical identity-based signatures from lattices,
International Journal of Electronic Security and Digital Forensics, vol. 5, no. 1, pp. 1-10, 2013.

[13] X. Boyen, Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and
more, Proc. of the 13th international conference on Practice and Theory in Public Key Cryptography,
pp. 499-517, 2010.

[14] J. Alwen, and C. Peikert, Generating shorter bases for hard random lattices, Journal of Theory of
Computing Systems, vol. 48, no. 3, pp. 535-553, 2011.


