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Abstract. Kernel learning is a popular research topic in pattern recognition and ma-
chine learning. Kernel selection is a crucial problem endured by kernel learning method
in the practical applications. Many methods of finding the optimal parameters have been
presented, but this kind of methods have no ability of changing the kernel structure, ac-
cordingly without changing the data distribution in kernel mapping space. In this paper,
we present a uniform framework of kernel optimization based on data-dependent kernel
from theory to applications to kernel principal analysis and locality preserving projection
for feature extraction. Some experiments are implemented to evaluate the performance
and feasibility of this framework.
Feature extraction, machine learning, kernel principal analysis, locality pre-
serving projection

1. Introduction. On current kernel learning methods, the performance of many linear
learning methods is improved because the data distribution in the nonlinear feature space
is easy to classification owing to kernel mapping. The geometrical structure of the data
in the kernel mapping space, which is totally determined by the kernel function, has sig-
nificant impact on the performance of these kernel learning methods. The discriminative
ability of the data in the feature space could be even worse if an inappropriate kernel is
used. Moreover, researchers optimized the parameters of kernel function to improve KDA
[1] [2], [3], but these methods only choosing the optimal parameter of kernel from a set of
discrete values which are created in advance. The geometry structure of data distribution
in the kernel space is not be changed only through the changing the parameters of kernel.
Xiong proposed a data-depend kernel for kernel optimization [4], and Amari presented
support vector machine classifier through modifying the kernel function [6]. In the pre-
vious works [2][5], authors present data-dependent kernel based KDA algorithm for face
recognition application. In recent research, learning based methods are used in many ar-
eas, such as object recognition [9],[10]. Face detection [11],[12]. Image analysis [13]. Some
algorithms using the kernel trick are developed in recent years, such as kernel principal
component analysis (KPCA), kernel discriminant analysis (KDA) and support vector ma-
chine (SVM). KPCA was originally developed by Scholkopf et al. in 1998, while KDA
was firstly proposed by Mika et al. in 1999. KDA has been applied in many real-world
applications owing to its excellent performance on feature extraction. Researchers have
developed a series of KDA algorithms (Juwei Lu[15], Baudat and Anouar [16], Liang and
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Shi [17],[18],[19], Yang [36],[21], J. Lu [20], Zheng [22], Huang [23], Wang [24] and Chen
[25], Yixiong Liang [26], Yu-jie Zheng [27], Dacheng Tao[28], Yong Xu [29], Kamel Saadi
[30], Dit-Yan Yeung [31], LinLin Shen [32], Bo Ma [33], Xiao-Hong Wu [34], Qingshan
Liu[35]).

As above discussion, kernel learning is an important research topic in the machine
learning area, and some theory and applications fruits are achieved and widely applied
in pattern recognition, data mining, computer vision, image and signal processing areas.
The nonlinear problems are solved with kernel function, and system performances such as
recognition accuracy, prediction accuracy are largely increased. However, kernel learning
method still endures a key problem, i.e., kernel function and its parameter selection.
Kernel function and its parameters have the direct influence on the data distribution in
the nonlinear feature space, and the inappropriate selection will influence the performance
of kernel learning. In this paper, we focus on two schemes: one is kernel optimization
algorithm and procedure, and the other is the framework of kernel learning algorithms. To
verify the effectiveness of the kernel optimization scheme proposed, the proposed kernel
optimization method is applied into popular kernel learning methods including kernel
principal component analysis, kernel discriminant analysis and kernel locality preserving
projection.

In the rest paper, firstly we have analyzed the trends in kernel learning algorithms and
presented the kernel learning methods including Sparse KPCA and KCLPP, and secondly
we present the theoretical derivation and algorithm procedure of kernel self-optimization
learning, and thirdly we have the applications on Sparse KPCA and KCLPP. Finally
the comprehensive experimental comparison and analysis are implemented to testify the
performance of kernel self-optimization on simulated data, UCI dataset, and ORL and
YALE databases.

2. Theory.

2.1. Framework. We still employ the data-dependent kernel to improve the recogni-
tion accuracy, but owing to consider the computing problem the constraint optimization
equation of solving the adaptive parameter of data-dependent kernel function must be
different from the previous work [4] and changed through considering the computing
problem. Data-dependent kernel is defined as

k(x, y) = f(x)f(y)k0(x, y) (1)

where k0(x, y) is the basic kernel. Polynomial kernel and Gaussian kernel can be the basic
kernel. f(x) is the positive value of x, the data-dependent kernel with the different f(x)

have the different performance. f(x) is defined with f(x) =
∑

i∈SV aie
−δ∥x−x̃i∥2 , where x̃i

is the ith support vector, SV is the support vector, ai represents the contribution of x̃i,
δ is the free value.

SO

f(x) = a0 +

NXV∑
n=1

ane(x, x̃n) (2)

where δ is the free parameter, x̃i is the Expansion Vectors (XV s), NXV is the number of
expansion vectors, and an(n = 0, 1, 2, · · · , NXV s) are the corresponding Expansion Coeffi-
cients. According to the extended definition of data-dependent kernel function, supposed
the free parameter δ and expansion vector x̃n(n = 0, 1, 2, ..., NXVs), the geometry structure
of the data in the nonlinear mapping projection space is changeable with the changing of
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the expansion coefficient αn(n = 0, 1, 2, ..., NXVs). So we can adjust the geometry struc-
ture of data in the nonlinear mapping space through changing the expansion coefficient.
In order to optimize the kernel function through finding the optimal expansion coefficient,
consider the computation problem, we optimize the kernel function in the Empirical Fea-
ture Space to solve the objective function through maximizing discriminantion.

2.2. Optimization. In this section, we present a novel kernel optimization objection
function based two criterions, Fisher criterion and maximum margin criterion.

(1) Fisher criterion based objective function

Under the different expansion coefficient vector α, the geometry structure of data in
the empirical space causes the discriminative ability of samples. There are many meth-
ods of solving the above optimization equation. Supposed that α is an unit vector,
i.e., αTα = 1. ,the constrained equation is created to solve the optimal α as follows.

max JFisher(α)

subject to αTα− 1 = 0 (3)

where JFisher(α) is a function with its variable α as defined as follows

JFisher (α) = (αTETB0Eα)/(α
TETW0Eα) (4)

where ETB0E and ETW0E are constant matrix.
The objective function, Fisher criterion is to measure the class discriminative ability

of the samples in the empirical feature space. JFisher = tr(SΦ
B)/tr(S

Φ
W ) measures the

discriminative ability of samples in the empirical feature space, where JFisher measure
the linear discriminative ability, SΦ

B is the between class scatter matrix, SΦ
W is inter class

scatter matrix , and tr denotes the trace. Let k is the kernel matrix with its element
kij (i, j = 1, 2, ..., n) is calculated with xi and xj. The matrix Kpq, p, q = 1, 2, ..., L is the
np × nq matrix with p and q class. Then in the empirical feature space, we can obtain
tr(SΦ

B) = 1TnB1n and tr(SΦ
W ) = 1TnW1n, where B = diag( 1

n1
K11,

1
n2
K22, ...,

1
nL
KLL)− 1

n
K.

The class discriminative ability is defined as

JFisher = (1TnB1n)/(1
T
nW1n) (5)

According to the definition of the data-dependent kernel , let D = diag(f(x1),
f(x2), ..., f(xn)), the relation between the data-dependent kernel matrix K and the basic
kernel matrix K0 calculated with basic kernel function k0(x, y) is defined as

K = DK0D (6)

Then JFisher = (1TnDB0D1n)/(1
T
nDW0D1n), where ln is n dimensional unit vector,

according to the definition of data-dependent kernel, then D1n = Eα, where α =
[a0, a1, a2, ..., aNXV s

]T . On the solution of the objective function, we solve the objective
function as follows. The following method is a classic method. Let J1(α) = αTETB0Eα
and J2(α) = αTETW0Eα, then{ ∂J1(α)

α
= 2ETB0Eα

∂J2(α)
α

= 2ETW0Eα
(7)

Then ∂JFisher(α)
∂α

= 2
J2
2
(J2E

TB0E − J1E
TW0E)α, let

∂JFisher(α)
∂α

= 0, then
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J1E
TW0Eα = J2E

TB0Eα (8)

If
(
ETW0E

)−1
exists, then

JFisherα = (ETW0E)
−1(ETB0E)α (9)

JFisher is equal to the eigenvalue of (ETW0E)
−1(ETB0E), and the corresponding eigen-

vector is equal to expansion coefficients vector α. In many applications, the matrix
(ETW0E)

−1(ETB0E) is not symmetrical or ETWE is singular. So the iteration method
is used to solve the optimal α, that is

α(n+1) = α(n) + ε(
1

J2
ETB0E − JFisher

J2
ETW0E)α

(n) (10)

ε is the learning rate, ε (n) = ε0(1− n
N
), where ε0 is the initialized learning rate, n and

N is the current iteration number and the total iteration number in advance respectively.
The initialized learning rate ε0 and the total iteration number N is set in advance

for the solution of the expansion coefficient. The initial learning rate ε0 influences the
convergence speed of the algorithm, and the total iteration number N determines the time
of solution. Only when the parameter ε0 and N are chosen appropriately we choose the
optimal expansion coefficient vector. So the solution of expansion coefficient is not unique,
which is determined by the selection of learning parameter. The iteration algorithm costs
much time.

(2) Maximum margin criterion (MMC) based objective function

Based on maximum margin criterion, let αTα = 1, the objective function of kernel
optimization is defined as

max αT (2S̃B − S̃T )α

subject to αTα− 1 = 0 (11)

It is easy to know that the optimal expansion coefficient vector α∗ is equal to the

eigenvector of 2S̃B−S̃T corresponding to the maximal eigenvalue. Where

{
S̃B = XBX

T
B

S̃T = XTX
T
T

and

{
XT = (Y0 − 1

m
Y01

T
m1m)E

XB = Y0M
TE

, where M =M1 −M2, and M1,M2 are defined as

M1 =



[
1√
m1

]
m1×m1

0m1×m2 · · · 0m1×mc

0m2×m1

[
1√
m2

]
m2×m2

· · · 0m2×mc

...
...

. . .
...

0mc×m1 0mc×m2 · · ·
[

1√
mc

]
mc×mc

 and

M2 =



c∑
j

√
mj

m
0 · · · 0

0

c∑
j

√
mj

m
...

...
. . .

...

0 0 · · ·

c∑
j

√
mj

m


· Y0 = K0P0Λ

−1/2
0 .
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Y0 = K0P0Λ
−1/2
0 ,K0 = P0Λ

T
0 P

T
0 , andK0 is the basic kernel matrix. The objective function

is based on maximum margin criterion, which is defined as

Dis =
1

2n

L∑
i=1

L∑
j=1

ninjd (ci, cj) (12)

where d(ci, cj) = d(mΦ
i ,m

Φ
j )− S(ci)− S(cj) denotes the margin between class i and class

j, and d(mΦ
i ,m

Φ
j ) denotes the distance between the centers of two classes of samples,

and S(ci) denotes the scatter matrix ci(i = 1, 2, ..., L) is defined as where tr(SΦ
i ) =

1
ni

ni∑
p=1

(Φ(xpi )−mΦ
i )

T
(Φ(xpi )−mΦ

i ), S
Φ
i is the scatter matrix of ith class. Then Dis =

tr(SΦ
B)− tr(SΦ

W ). It is easy to obtain Dis = tr(2SΦ
B −SΦ

T ). In the empirical feature space,
the sample set Y = KPΛ−1/2, wher K is the data-dependent kernel. P and Λ satisfies
K = PΛTP T , then

ST = (Y − 1

m
Y 1Tm1m)(Y − 1

m
Y 1Tm1m)

T (13)

where 1m = [1, 1, ..., 1]1×m, with D1n = Eα, then

trace(ST ) = αT ((Y0 −
1

m
Y01

T
m1m)E)

T ((Y0 −
1

m
Y01

T
m1m)E)α (14)

Let XT = (Y0 − 1
m
Y01

T
m1m)E, then

trace(S
T
) = αT (XT )

TXTα (15)

where Y0 = K0P0Λ
−1/2
0 , K0 = P0Λ

T
0 P

T
0 , and K0 is the basic kernel matrix. Similarly,

it easy to obtain SB = (
√
m1(u1 − u), ...,

√
mc(uc − u))(

√
m1(u1 − u), ...,

√
mc(uc − u))T ,

where 1c = [1, 1, ..., 1]1×c. Supposed that M =M1 −M2, and

M1 =



[
1√
m1

]
m1×m1

0m1×m2 · · · 0m1×mc

0m2×m1

[
1√
m2

]
m2×m2

· · · 0m2×mc

...
...

. . .
...

0mc×m1 0mc×m2 · · ·
[

1√
mc

]
mc×mc

 and

M2 =



c∑
j

√
mj

m
0 · · · 0

0

c∑
j

√
mj

m
...

...
. . .

...

0 0 · · ·

c∑
j

√
mj

m


.

So trace(SB) = αT (Y0M
TE)T (Y0M

TE)α, with XB = Y0M
TE, then{

trace(SB) = αTXT
BXBα

trace(S
T
) = αT (XT )

TXTα
(16)

Let S̃B = XBX
T
B and S̃T = XTX

T
T , then
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D̃is(α) = trace(αT (2S̃B − S̃T )α) (17)

So, maximize D̃is(α) is equal to obtain the objective function in (11). Solving the
objective function in (29) through calculating the eigenvector and eigenvalue of matrix
2S̃B−S̃T as P T S̃BP = Λ and P T S̃TP = I, where P = ϕθ−1/2ψ, θ and ϕ are the eigenvalue
and eigenvector of S̃T respectively. ψ is the eigenvalue matrix of θ−1/2ϕT S̃Bϕθ

−1/2. So the
column vector of P is the eigenvalue matrix of 2S̃B − S̃T corresponding to the eigenvalue
2Λ− I.

(3) Discussion

Differences between two kernel optimization methods of Fisher criterion and maximum
margin criterion are shown as follows. Fisher criterion method use iteration method
to solve the solution, while maximum margin criterion method is to find the optimal
solution with the eigenvalue equation. Fisher criterion method cost much more time than
maximum margin criterion method. Moreover, Fisher criterion method needs to choose
the relative parameters in advance, while maximum margin criterion method needs not
to choose the parameters in advance.

3. Applications.

3.1. Application to Sparse KPCA. In this section, we apply kernel optimization
method to Sparse KPCA [7]. Sparse KPCA is formulated with the viewpoint of least
squares support vector machine. Sparse KPCA endures two problems, one is that all
training samples need to be stored for the computing the kernel matrix during kernel
learning, and the second is that the kernel and its parameter have the heavy influence on
performance of kernel learning. We apply the kernel function k′(x, y) into Sparse KPCA
as follows.

y = BTVzx (18)

where g(zi, x) = k′(zi, x)− 1
N

N∑
q=1

k′(zi, xq), Vzx =
[
g(z1, x) g(z2, x) ... g(zNz , x)

]T
. So

y =
Nz∑
i=1

βz
i

[
ϕ(zi)

T (
ϕ(x)− uϕ

)]
(19)

Let βz =
[
βz
1 βz

2 · · · βz
Nz

]T
. For we choose m eigenvector α corresponding to m

largest eigenvalue. Let P =
[ (

βz
T
)
1

(
βz

T
)
2

· · ·
(
βz

T
)
m

]T
, the feature can be ob-

tained as follows.

z = PKzx (20)

As above discussion from the theoretical viewpoints, kernel-optimized Sparse KPCA
chooses adaptively a few of samples from the training sample set but a little influence on
recognition performance, which saves much space of storing training samples on comput-
ing the kernel matrix with the lower time consuming. So in the practical applications,
kernel-optimized Sparse KPCA solves the limitation from KPCA owing to its high store
space and time consuming its ability on feature extraction. So from the theory view-
point, this application of kernel-optimized learning is adaptive to the applications with
the demand of the strict computation efficiency but not strict on recognition.
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3.2. Application to KLPP. Kernel CLPPmethod is presented in our previous work[10].

The kernel LPP are shown as follows. With the constraint
(
ZΦ

)T
DΦZΦ = 1, i.e.,

αTKDΦKα = 1, the objective function is defined follows.
min
α
αTKLΦKα

SubjecttoαTKDΦKα = 1 (21)

where LΦ = DΦ − SΦ. We apply the kernel optimization method into Kernel CLPP.
With kernel optimization method, we obtain the optimal β∗ of optimized data-dependent
kernel. With this optimized kernel, the objective function of KLPP is defined as

min
α
αTK(β∗)LΦK(β∗)α

SubjecttoαTK(β∗)DΦK(β∗)α = 1 (22)

where the optimal projection α is the main projection vector to construct the projection
matrix. Supposed that r1, r2, ..., rm are K’s orthonormal eigenvector corresponding to m
largest nonzero eigenvalue λ1, λ2, ..., λm. i.e., K = PΛP T with QR decomposition, where
P = [r1, r2, ..., rm] and Λ = diag (λ1, λ2, ..., λm). The solution of the above constrained
optimization problem is equal to the eigenvector corresponding to the largest eigenvalue.

4. Results. On UCI dataset, we evaluate the feasibility and performance of kernel opti-
mization using Sparse KPCA. In the experiments, we use the sparse analysis to determine
some key training samples as the final sample for kernel learning. In our previous work
[11], we have concluded the good recognition performance be achieved only using the less
size of key training samples. For a higher performance, kernel optimization is introduced
to the recognition performance, which is shown in Table 1. With same size of training
samples, the kernel optimization based SKPCA performs better than KPCA. It is mean-
ingful to achieve a higher performance but little size of training samples, which saves the
saving space of training samples and time consuming for the applications with a large size
of training samples. SKPCA saves much space of storing training samples on computing
the kernel matrix with the lower time consuming, but achieves the similar recognition ac-
curacy compared with KPCA. Kernel optimization based SKPCA algorithm achieves the
higher recognition accuracy than SKPCA owing to its kernel optimization combined with
SKPCA, which is adaptive to the applications with the demand of the strict computation
efficiency but not strict on recognition.
The second set of experiments are implemented on real databases, including ORL and

Yale databases. ORL face database is composed of 400 grayscale images with 10 images
for each of 40 individuals with the variations in across pose and facial expression. Yale face
database contains 165 grayscale images of 15 individuals, and these images are taken under
different lighting condition (left-light, center-light, and right-light), and different facial
expression (normal, happy, sad, sleepy, surprised, and wink), and with/without glasses.
Since in the practical application, the face detection is the first step for recognition. We
sized the image to pixels for ORL and for Yale to simulate the face detection in the real
system. Secondly, some remarks on the experiment setting should be emphasized after the
description of two databases in our experiments. For two databases, we randomly choose
5 images as the training images and the rest as test ones and use the average result of 10
times of experiments as the final recognition accuracy. to evaluate the performance.
On ORL and Yale database, we implement kernel-optimized learning version of KDA

and KCLPP compared with the traditional LPP [8] together with PCA, KDA, CLPP[8]
and KCLPP [8]. We use Fisher classifier for classification and implement the algorithms
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Table 1. Performance of kernel optimization on UCI database (%)

Figure 1. Example face images of face databases used in our experiments.

form many times and the averaged recognition rate is considered as the recognition accu-
racy. As shown in Table 2, the averaged recognition rate of LPP, CLPP, KCLPP and the
proposed kernel-optimized KCLPP are 93.80%, 94.80%, 96.50% and 98.00% respectively.
Kernel-optimized KCLPP achieves the highest recognition accuracy through using kernel
self-optimization because the data structure has changed according to the input data. On
the Yale database, the performances are shown in Table 3.

As results shown in Table 2 and Table 3, kernel-optimized learning methods can obtain
the higher recognition accuracy compared with their traditional kernel learning meth-
ods. Choosing of kernel function and its parameter is a key impact factor on recognition
performance on kernel learning. The adaptively parameter choosing of data-dependent
kernel function can improve the recognition performance of kernel learning under the same
condition of the same number of training and test samples. Under the condition of the
limited training samples stored in the databases, kernel-optimized learning methods are
applied to increase the recognition accuracy with the same training samples compared
with the traditional kernel learning. Besides the excellent recognition performance, the
efficiency of kernel-optimized learning algorithms is still one problem worth to discuss.
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Table 2. Recognition Accuracy on ORL Sub-Databases (%)

Table 3. Recognition Accuracy on YALE Sub-Databases (%)

Kernel-optimized learning methods cost much computing time on calculating the projec-
tion matrix. But in many applications, in order to achieve a higher computing recognition
performance but less consideration of time consuming. In many practical applications,
such as face recognition, it does not cause significantly increasing of the response time.
So, kernel optimization is an effective way of improving recognition performance of kernel
learning in the practical applications.

5. Conclusions. We present one kernel optimization method for kernel-based learning
to solve the kernel function and its parameter selection problem, and this method has
the same important practical meaning for the improving of kernel-based system. This
paper presents a kernel optimization method with data dependent kernel based on Fisher
criterion and maximum margin criterion, and then applies this method into other kernel
learning methods.
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