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Abstract. Zhao et al. [A new image secret sharing scheme to identify cheaters, Com-
puter Standards & Interfaces, vol.31, no.1, pp.252− 257, 2009] proposed a (t, n) thresh-
old image secret sharing scheme to identify cheaters. The scheme is based on Thien-
Lin scheme and the intractability of discrete logarithm. It allows honest participants to
identify cheaters, and each participant only needs to save her/his own secret shadow.
Unfortunately, their scheme has a serious feasibility problem, and is insecure for image
sharing. In this paper, the feasibility and security of the scheme are analyzed. It is proved
that the scheme may be infeasible with probability 1− 251!/(251n(251− n)!). This prob-
ability increases with larger value of n, and reaches 96.26% when n is equal to 40. We
also prove that the scheme is easy to crack when it is suffered from a brute force attack,
especially when t is a small integer. The main weaknesses of feasibility and security are
proved and shown by theoretical analysis and some experiments.
Keywords: Image secret sharing; verification; infeasible probability; brute force attack

1. Introduction. The effective and secure protections of secret information are primary
concerns in commercial, medical and military systems. Many image-protection techniques,
such as encryption [1-3] and steganography [4,5], have been proposed to increase the secu-
rity of secret images. However, a common weakness of these techniques is that the entire
secret image is maintained in a single information-carrier. For example, the secret image
cannot be recovered if the encrypted content is lost or modified during the transmission.
To solve this security problem, secret image sharing method might be one of the possible
solutions. It works by sharing a secret image among a set of participants. Only certain
subsets of participants can cooperate to reconstruct the secret image.

The concept of the (t, n) threshold secret sharing scheme was introduced independently
by Shamir [6] and Blakley [7] in 1979. The secret data is first encoded into n shares. In
the revealing process, any t (t ≤ n ) or more shares can be collected to reconstruct the
secret. However, any t − 1 or fewer shares can get no information about the secret. In
1994, Naor and Shamir [8] proposed (t, n) threshold visual cryptography for image secret
sharing, which is based on the human visual system. In a (t, n) threshold visual cryptog-
raphy scheme, a binary secret image is encrypted into n shares printed on transparencies.
Each transparency only has black pixels and transparent pixels. Superimposing any t
transparencies makes the secret image recognizable by human eyes. Many image secret
sharing schemes [9-11] have been proposed based on visual cryptography for different ap-
plication. However, in these schemes, these schemes have disadvantages of size expansion
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and low contrast of the revealed secret image. Thien and Lin [12] proposed a new image
secret sharing method. The essential idea is to use a (t−1) degree polynomial to construct
n shadow images. The scheme has the property of small size of shadow images. Many
researchers proposed secret sharing schemes based on polynomial [13-14]. Unfortunately,
these image secret sharing schemes do not have the property of verification. The schemes
face the problem of cheating by participants. There were some other image secret sharing
schemes for improving security and efficiency [15-17].
In [18], Zhao et al. proposed an image secret sharing scheme to identify cheaters,

called ZZDZ scheme. ZZDZ scheme is based on Thien-Lin scheme and the intractability
of discrete logarithm. It is claimed that the scheme can identify the cheaters no matter
if she/he is the original secret image holder or a participant. In ZZDZ scheme, each
participant chooses her/his own secret shadow, and there is no secret communication
between the holder and the participants. The generated shadow images are made public,
so the participants do not need to save shadow images. However, a secret sharing scheme
is feasible only when the infeasible probability is taken as feasibility benchmark. Also,
the scheme should resist most of the attacks. Based on these observations, the feasibility
and security of ZZDZ scheme should be further analyzed.
The feasibility and security analysis of ZZDZ scheme is conducted in this paper. The

rest of this paper is organized as follows: a brief review of ZZDZ scheme is given in
Section 2. In Section 3, we theoretically analyze the feasibility and security of ZZDZ
scheme. Some experiments are conducted to verify the theoretic results in Section 4.
Finally, a conclusion is drawn in Section 5.

2. Review of ZZDZ scheme. In this section, we briefly review ZZDZ scheme. In
ZZDZ scheme, The original secret image holder H divides the original secret image P
into n shadow images P1, P2, . . . , Pn, then assign these n shadow images to n participants
M1,M2, . . . ,Mn. The scheme contains three phases: Initialization phase, Construction
phase and Reconstruction & Verification phase.

2.1. Initialization phase. 1) H chooses two prime numbers p and q, and computes
N = p.q. Both p and q should satisfy the properties as the two primes used in RSA
cryptosystem which can prevent anybody factor N efficiently.
2) H chooses an integer g ∈ [N1/2, N ], such that g is relatively prime to p and q.

Publishes {g,N} .
3) Each participant Mi ∈ M randomly chooses her/his own secret shadow si ∈ [2, N ],

and computes Ri = gsimodN . Then Mi provides Ri to H. H must ensure that Ri ̸= Rj,
where i ̸= j. Once Ri = Rj, H should demand Mi to choose new si. Finally, publishes
Ri.

2.2. Construction phase. 1) H randomly chooses an integer s0 ∈ [2, N ] such that s0
is prime to (p− 1) and (q − 1). Then H computes f and makes s0 × f = 1 mod φ(N),
where φ(N) is the Euler phi-function.
2) H computes R0 = gs0 mod N and Ii = Rs0

i mod N . Publishes {R0, f}.
3) Divide the secret image P into several sections. Each section contains t pixels, and

each pixel of the secret image belongs to one and only one section.
4) For the section j, H constructs (t− 1) degree polynomial as follows:

hj(x) = (b0 + b1x+ . . .+ bt−1x
t−1) mod 251 (1)

Here b0, b1, . . . , bt−1 are the t pixels of the section j.
5) H evaluates yij = hj(Ii), i = 1, 2, . . . , n. Assigns these n values y1j, y2j, . . . , ynj to n

shadow images P1, P2, . . . , Pn as the j-th pixel respectively.



On the feasibility and security of image secret sharing scheme to identify cheaters 227

6)H repeats steps 4) and 5), until all sections of secret image P are processed. Publishes
n shadow images P1, P2, . . . , Pn.

2.3. Reconstruction & Verification phase. Without loss of generality, the members
of M

′
= M1,M2, . . . ,Mt can reconstruct the secret image P .

1) Each participant Mi ∈ M
′
computes her/his sub-secret I

′
i = Rsi

0 mod N , where si
is the secret shadow of Mi.

2) Verify I
′
i provided by Mi: if I

′f
i = Ri mod N , then I

′
i is true; otherwise I

′
i is false

and Mi may be a cheater.
3) Reconstruct the secret image P: with the knowledge of t pairs of (I

′
i , yij) and the

Lagrange interpolating polynomial, a (t−1) degree polynomial can be uniquely determined
as follows:

hj(x) =
t∑

i=1

yij

t∏
k=1,k ̸=i

x− I
′

k

I
′
i − I

′
k

mod 251

= (b0 + b1x+ . . .+ bt−1x
t−1) mod 251

(2)

The coefficients b0, b1, · · · , bt−1 are the corresponding t pixel values of section j in P .
4) Repeat step 3), until all sections of secret image P are reconstructed.

3. Performance analysis.

3.1. Preliminary knowledge. Before the feasibility and security analysis, we introduce
some elementary concepts in number theory.

Definition 3.1. [19] Let m > 0 . We write a ≡ b (mod m) if m|a− b and we say that a
is congruent to b modulo m. Here m is said to be the modulus of the congruence.

It is easy to prove that congruence is an equivalence relation.

Definition 3.2. [19] Let m > 0 be given. For each integer a we define

[a] = {x : x ≡ a(modm)}

In other words, [a] is the set of all integers that are congruent to a modulo m. We call
[a] the residue class of a modulo m. (For more information, please see Chapter 19 in [19])
In elementary algebra, the binomial theorem describes the algebraic expansion of powers
of a binomial. According to the theorem, it is possible to expand any power of (x + y)
into a sum of the form:

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk

Where
(
n
k

)
= n!/(k!(n− k)!) denotes the corresponding binomial coefficient.

3.2. Feasibility analysis. Although Zhao et al. proved the feasibility of generation and
verification process in [18], they did not analyze the feasibility of the polynomial-based
secret sharing scheme, which is not the same as Shamirs scheme. It is claimed in [18] that
ZZDZ scheme is a(t, n) threshold scheme, which means any t participants can cooperate
to reconstruct the secret image. However, its not always true. There is a situation where
t participants cannot get the secret image. In this subsection, the feasibility of ZZDZ
scheme is further discussed.

Proposition 3.1. For any integer a ∈ {0, 1, . . . , N−1}, c = amod 251.then hj(a) = hj(c)
in Equation(1) with any section j.
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Proof: For any integer a ∈ {0, 1, . . . , N − 1},let c = amod 251.So a can be written
in the form of a = 251k + c,where k is an integer and c ∈ {0, 1, . . . , 250}.By binomial
theorem,ap = (251k + c)p =

∑p
l=0

(
p
l

)
(251k)p−lcl,for any p ∈ {1, 2, . . . , t− 1}. thus

bpa
pmod 251 = (

p∑
l=0

(
p

l

)
bp(251k)

p−lcl)mod 251

= (

p−1∑
l=0

(
p

l

)
bp(251k)

p−lcl + bpc
p)mod 251

= bpc
pmod 251

Therefore,

hj(a) = (b0 + b1a+ · · ·+ bt−1a
t−1)mod251

= b0mod251 + b1amod251 + · · ·+ bt−1a
t−1mod251

= b0mod251 + b1cmod251 + · · ·+ bt−1c
t−1mod251

= (b0 + b1c+ · · ·+ bt−1c
t−1)mod251 = hj(c)

Proposition 3.2. For any integer a, b ∈ {0, 1, . . . , N − 1}, if a ≡ b(mod 251),then the
two shadow images generated with a and b by Equation(1) respectively, are identical.

Proof:For any section j, let c = amod 251. By Proposition 3.1,hj(a) = hj(c). Since
a ≡ b(mod 251) ,b mod 251 is also equal to c. Also by Proposition 3.1, hj(b) = hj(c).
Therefore,hj(a) = hj(b).Because hj(a) and hj(b) are assigned to two shadow images as
the jth pixel respectively, the two shadow images have the same value of the jth pixel.
Since for each section j,hj(a) = hj(b), two shadow images generated with a and b by
Equation (1) are identical.

Actually, in ZZDZ scheme,Ii = Rs0
i mod N ,i = 1, 2, . . . , n.So Ii ∈ {0, 1, . . . , N − 1}.

Suppose Ii ≡ Ij(mod 251),that is, Ii and Ij both belong to residue class [c] modulo 251,
where c = amod 251. By Proposition 3.2, two generated shadow images with Ii and Ij are
identical. So in the reconstruction phase, the participants Mi and Mj can be treated as
one participant. Therefore, if both Mi and Mj belong to a group with t participants, this
group is infeasible to reconstruct the original secret image. Proposition 3.3 shows more
theoretic analysis.

Proposition 3.3. Let M
′
= {M1,M2, . . . ,Mt} be a subset of all participants, and a, b ∈

{1, 2, . . . , t}. If both the computed sub-secrets I
′
a and I

′

b belong to the residue class [c]
modulo 251, where c = I

′
a mod 251, then the probability of correctly reconstructing the

original secret image is (1/251)L×W/t at most, where L × W is the size of the secret
image.

Proof:With the correct secret shadows, the computed sub-secret I
′
i is equal to Ii(proved

in [18]). Without loss of generality, let us inspect how hj(x)(for section j of the secret
image) can be revealed. From Equation (1), to solve the t coefficients b0 ∼ bt−1, we need t
equations. Since the members of participants M

′
= {M1,M2, . . . ,Mt} cooperate to reveal

the secret image, with the knowledge of t pairs of (I
′
i , hj(I

′
i), we can construct t equations

in the form of:

(b0 + b1I
′

i + · · ·+ bt−1I
′t−1
i )mod 251 = hjI

′

i
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Because the computed sub-secrets I
′
a and I

′

b both belong to the residue class [c] modulo
251, by Proposition 3.2, we have:

hj(I
′

a) = (b0 + b1I
′

a + · · ·+ bt−1I
′t−1
a )mod 251

= (b0 + b1c+ · · ·+ bt−1c
t−1)mod 251

= (b0 + b1I
′

b + · · ·+ bt−1I
′t−1
b )mod 251

= hj(I
′

b)

Then, the two equations generated with pairs (I
′
a, hj(I

′
a)) and (I

′
a, hj(I

′

b)) are identical.
Therefore, there are actually t − 1 equations constructed. With these t − 1 equations
to solve the t coefficients in Equation (1) for section j, there are at least 251 possible
solutions with equal probability. The probability of guessing the right solution is 1/251
at most. Since there are L×W/t sections, the probability of correctly reconstructing the
secret image is at most (1/251)L×W/t.

For example, suppose the secret image has 256 × 256 pixels, the members of partic-
ipants M

′
= {M1,M2, . . . ,Mt} will cooperate to reconstruct the secret image. If there

are two participants whose sub-secrets belong to a same residue class modulo 251, the
probability of obtaining the correct image is just (1/251)256×256/t. Since (1/251)256×256/t is
a very small number, the members of participants M

′
= {M1,M2, . . . ,Mt} have almost no

chance to obtain the correct secret image. Indeed, if there are r(2 ≤ r ≤ t) participants
whose sub-secrets belong to a same residue class modulo 251, the probability of correctly
reconstructing the secret image is (1/251)(r−1)L×W/t .

By Proposition 3.3 ,a (t, n) threshold ZZDZ scheme is feasible only when all computed
sub-secrets belong to different residue classes modulo 251. So the feasible choices of sub-
secrets are P (251, n) = 251!/(251 − n)!. Therefore, the infeasible probability of ZZDZ
scheme is Pinv = 1 − 251!/(251n(251 − n)!). The bigger n adopted in the scheme, the
bigger infeasible probability has the scheme. Table 1 shows the infeasible probability
with different n in ZZDZ scheme. As shown in Table 1, the infeasible probability reaches
96.26% when n is 40.

Table 1. The infeasible probability with different n in the ZZDZ scheme

n 2 3 5 10 20 30 40
Infeasible probability 0.40% 1.19% 3.93% 16.61% 54.04% 83.56% 96.26%

3.3. Security analysis. With secret protection in mind, a secret sharing scheme should
resist most of the cryptanalytic attacks, and the key space should be large enough to
make brute force attacks infeasible. In ZZDZ scheme, the generated shadow images are
made public. Therefore, the security relies on the protection of n secret shadows held by
n participants. Any t of the n participants with their secret shadows can reconstruct the
secret image. Since si ∈ [2, N ],the possible combinations of any t secret shadows is (N −
1)t. However, the possible solutions to reveal secret image can be reduced significantly.
In Proposition 3.4, we show that ZZDZ scheme can be cracked within limited solutions
by a brute force attack.

Proposition 3.4. By a brute force attack,a (t, n) threshold ZZDZ scheme can be cracked,
within P (251, t) = 251!/(251− t)! possible solutions.

Proof: In the reconstruction phase, the participants provided their sub-secrets by
computing I

′
i = Rsi

0 mod N . Without loss of generality, the members of participants
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M1,M2, . . . ,Mt should reconstruct the secret image. With t pairs of (I
′
i , hj(I

i
i )), we can

construct t equations to solve t coefficients b0 ∼ bt−1 in Equation (1) for section j of the
secret image. Let ci = I

′
i mod 251, by Proposition 3.1, we have

hj(I
′

i) = (b0 + b1I
′

i + · · ·+ bt−1I
′t−1
i )mod 251

= (b0 + b1ci + · · ·+ bt−1c
t−1
i )mod 251

= hj(ci)

Therefore, we can construct equations with pairs of (ci, hj(ci)) instead of (I
′
i , hj(I

′
i)) Since

ci ∈ 0, 1, . . . , 250, without I
′
i , the possible choice of ci for participants Mi is 251. By

Proposition 3.3, the scheme is feasible only when all sub-secrets belong to different residue
classes modulo 251. So the possible combinations of t pairs of (ci, yi) are P (251, t) =
251!/(251 − t)! Therefore, the scheme can be cracked by a brute-force attack within
251!/(251− t)! possible solutions.
Actually,251!/(251−t)! is not big enough as a key space for secret protection, especially

when t is a small integer. ZZDZ scheme can be cracked simply by a brute-force attack
within limited CPU time.

4. Experimental results. In this section, the weakness mentioned in Section 3 is shown
by conducting the following experiments.

Experiment 1: To demonstrate the property of Proposition 3.3, a counter experiment
is shown by a(2, 3)-threshold ZZDZ scheme. For simplicity, let p = 89, q = 103, then
N = pq = 9167 . Let g = 269 . Choose integer s0 = 1723 , then f = 547 which makes
s0 × f = 1 mod φ(N) . Three secret shadows si(i = 1, 2, 3) and the computed values Ri,
Ii and Ii mod 251 are shown in Table 2.

Table 2. Three secret shadows si and the computed values Ri, Ii, and Ii
mod 251

i 1 2 3
si 1347 1625 1823
Ri 4838 701 7999
Ii 7836 5075 1604

Ii mod 251 55 55 98

In Fig. 1, a) shows the original secret image with 256 × 256 pixels; b)-d) are three
shadow images generated by different secret shadows. As shown in Table 1, both I1 mod
251 and I2 mod 251 are equal to 55. The generated shadow image 1 and shadow image 2
are identical. Therefore, with the cooperation of participants 1 and 2, there is no sufficient
information to reconstruct the secret image. This experimental result is guaranteed by
Proposition 3.2.

Since the security of the scheme is based on RSA cryptosystem, the secret shadows
should be typically 1024-2048 bits long. However, because the weaknesses mentioned
above do not dependent on the length of the secret shadows, this experiment only take
small value of N .

Experiment 2: To demonstrate the weakness of the security, we attack ZZDZ scheme
by a brute-force attack. The experiment is done on the platform environment as: lenovo
ThinkPad T61 with Intel Core2Duo 2.40GHz CPU, OS of Windows XP, 2.0Gbytes RAM,
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Figure 1. The experiment of image Lena. a) shows the original secret
image with 256 × 256 pixels; b)-d) are three shadow images generated by
secret shadow s1 = 1347, s2 = 1625 and s3 = 1823, respectively.

and MATLAB 6.5.1 programming in use. In this experiment, shadow images 1 and 3 in
Fig. 1 are chosen to reconstruct the secret image. With the correct secret shadows s1 and
s3 , the secret image can be reconstructed in 0.094 second. Under a brute force attack by
testing all possible combinations of I

′
1 and I

′
3 in the range of {0, 1, . . . , 250} , the expected

time to crack the scheme successfully is about 14 minutes. In another experiment of (3, 5)
threshold ZZDZ scheme on Lena image with 256× 256 pixels, a brute force attack would
be expected to reconstruct the secret image successfully in 440 hours.

Since the original secret is a natural image, it is easy to recognize the correct secret
image by the correlations of adjacent pixels in the reconstructed images. If the chosen
sub-secrets are not correct, the reconstructed image is like noise and meaningless, then
the correlation coefficient of adjacent pixels is near to zero. In the correctly reconstructed
image, the correlation coefficient is near to one.

Actually, the bigger t adopted in the scheme, the longer time needed to crack the scheme
with a brute force attack. However, the scheme is not secure enough, especially when the
threshold of the scheme is a small integer.

5. Conclusions. In this paper, we give a detailed analysis about the feasibility and se-
curity of ZZDZ scheme. It is proved that ZZDZ scheme may be infeasible with probability
1− 251!/(251n(251− n)!). This probability increases with the big value of n, and reaches
96.26% when n is equal to 40. We also prove that the scheme cannot resist a brute force
attack, especially when the threshold is a small integer. A (2, 3) threshold scheme can be
cracked within 14 minutes in our experiment on the image Lena with 256 × 256 pixels.
Theoretical analysis and experimental results prove these weaknesses. Therefore, ZZDZ
scheme is insecure for secret sharing. A secure image secret sharing scheme to detect
dishonest participant is still a challenge work in future.
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