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Abstract. Retrieval of texture images, especially those with different orientation and
scale changes, is a challenging and important problem in image analysis. This paper
adopts spiking cortical model (SCM) to explore geometrical invariant texture retrieval
schemes based on Discrete Cosine Transform (DCT) coefficients of pulse images. The
series of pulse images, outputs of SCM, have a robust talent for extracting edge, segment
and texture which are inherent in the original images, but they are large 2-dimensional
image data so that it is difficult to process further. Geometrical invariant features of
the original images can be extracted by characterizing the pulse images in DCT domain,
which is dramatically reduced the large data to a small 1-dimensional vector. Many ex-
periments and comparative studies are performed to show that the retrieval schemes are
novel and effective in extracting invariant features.
Keywords: Invariance; Spiking Cortical Model; Texture Retrieval; Discrete cosine
transform; Pulse Images.

1. Introduction. Textural information has become important for content-based image
characterization and retrieval problems, and content-based image retrieval (CBIR) has
become a popular research area in recent years due to the large amount of images in
various databases[1, 2]. The issue of extracting rotation and scale invariant image fea-
tures is a crucial part for any retrieval systems. Early approaches for texture retrieval
and classification are second-order statistical methods, and the most popular is gray level
co-occurrence matrix (GLCM) [3-5], which constructs matrices by computing the number
of occurrences of pixel pairs of given quantization levels of image at given displacement
and orientation values. Most popular texture extraction methods for retrieval are based
on wavelet-based approaches, such as Gabor filters [6, 7], wavelets [8-10] and sub-band de-
composition combined with hidden Markov model [11-13]. Texture analysis using wavelets
and neural networks is proposed in [14, 15]. Although the results show that wavelet meth-
ods can achieve high accuracy rates, most of them assume that the texture images have
the same orientation and scale. Since standard sub-band and wavelet decompositions are
sensitive to rotation and scale, when the number of texture classes involved is large, the
retrieval accuracy may drop significantly.

Besides traditional methods, pulse-coupled neural networks (PCNN) is used in texture
analysis, and the output pulse images of PCNN are converted to rotation and scale invari-
ant feature[16]. In [17], SCM is applied to invariant texture retrieval and introduce more
efficient statistical measures. In this paper, SCM is applied to invariant texture retrieval
on entire 112 Brodatz [18] textured images, and we explore methods of extraction features
directly from DCT coefficients. The series of pulse images of SCM can be regarded as
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sub-band of the original image, and present salient features such as edge, segment and
texture of original images. The condensation of pulse images information into a short
one-dimensional signature is a highly desirable operation. We extract robust invariant
texture feature by means of computing the standard deviation of magnitude of certain
DCT coefficients of the pulse images. The experimental results, based on different testing
data sets for images with different orientations and scales, indicate that the proposed
retrieval scheme is robust to geometrical changes, and the SCM has lower computational
complexity, and obtains very high accuracy rates comparing with common methods such
as Gabor, ICM and PCNN et al..

2. INVARIANT TEXTURE FEATURES. Feature extraction is a crucial step in
any image retrieval systems. The extracted image features should be significant, compact
and fast so that the signature is a simple and effective representation of the original
image. Especially, finding an effective image feature invariant to rotation and scale is of
paramount importance.
In 1990, Eckhorn et al. proposed a model based on the hypothesis that neuronal pulse

synchronizations can be defined as two types: stimulus-forced and stimulus-induced[19].
Stimulus-forced synchronizations are directly driven by stimulus transients and establish
fast but crude sketches of association in the visual cortex, while stimulus-induced syn-
chronizations are believed to be produced via process among local neural oscillations that
are mutually connected. The feeding and linking create the membrane potential. A single
feeding input of a neuron is connected to a spatially corresponding stimulus, and the
linking inputs of each neuron are connected to the output of neighboring neurons within
the same predetermined radius[19, 20]. Both feeding and linking are combined together
as neuron’s internal activity. Therefore, the SCM is described[17],

Uij(n) = fUij(n− 1) + Sij

∑
kj

WijklYij(n− 1) + Sij (1)

Θij(n) = gΘij(n− 1) + hY (n) (2)

Yij(n) =

{
1, ifUij(n) > Θij(n)

0, otherwise

}
(3)

where each neuron is denoted with indices (i, j), and one of its neighboring neurons is
denoted with indices (k, l). Neuron receives input signals, and each neuron is connected to
its neighbors such that the output signal of a neuron modulates the activity of its neighbors
via linking synapses W . The pulse is able to fed back to modulate the threshold Θ via a
leaky integrator, raising the threshold by magnitude h that decreases with time constant
g. During iterations when a neuron’s internal activity U exceeds its dynamic threshold
Θ, pulse is generated. The SCM neuron model is shown in Fig.1.
SCM generates series of pulse images which bring out different features of original

image, such as texture, edge and segment features. For an input image S, a series of pulse
images Y (1), Y (2), . . . , Y (n) are outputted when SCM is iterated for n times, and the
series of pulse images can be computed to a unique feature. The feature is invariant to
large changes in rotation and scale of the original image[16, 17, 20] and has very strong
capability to resist noise[16].
We explore DCT domain as a succeeding procedure. The DCT has the property that

most of the visually significant information about the image is concentrated in just a
few DCT coefficients, which inspires us to characterize the pulse images in DCT domain.
The pulse images are subdivided into 8×8 pixel blocks for which information is available
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in DCT domain. DC coefficient c(1, 1) represents the energy information. The rest of
the c(u, v) coefficients apart from c(1, 1) are called the AC coefficients, and upper left
coefficients represents frequency band characteristic; upper rows, left columns and diago-
nal coefficients represent spatial characteristic including horizontal, vertical and diagonal
patterns, respectively. The AC coefficients contain information about intensity changes
within a DCT block along different orientations at different scales. Therefore, geometrical
invariant texture retrieval has to extract the comprehensive characteristics of the DCT
coefficients. In this paper, we select some DCT coefficients as shown in Fig.2, and such a
feature vector:

F = [c11, c12, c13, c14, c15, c21, c22, c23, c24, c31, c32, c33, c34, c41, c42, c43, c44, c51] (4)

We extract feature by means of computing the standard deviation of magnitude of DCT
coefficients. After a pulse image is transformed into DCT domain matrix, each 8×8 block
has a vector F as (4), and we combine F s together to compute the standard deviation.
Therefore, for an original image, the N pulse images can be concentrated by DCT into a
1×N feature vector.

3. EXPERIMENTAL RESULTS. We adopt the system as shown in Fig. 3. In order
to demonstrate the effectiveness of the proposed invariant feature in texture retrieval,
a large number of experiments are performed with the complete set of all 112 Brodatz
textured images [16]. The experiments are carried out to calculate retrieval rates using
different models and different methods for images with joint rotation and scale changes.
After a number of tests, we select the parameter values: internal activity initialization is
set to 0 and dynamic threshold initialization to 1; f , g, and h are set to 0.2, 0.9, and 20
respectively; SCM is iterated 37 times, so the size of feature sequence is 1×37.

In the first step, we crop texture images to a standard size of 128×128 and compute
image signature for each images as standard database, which is performed offline. The
second step is performed online, which provides user to query for image retrieval. The
query image is typically different from the target image, so the retrieval methods must
allow for some distortions, and we resize image by nearest neighbor interpolation then
change its orientation by bilinear interpolation in this paper. We process query images
to standard size of 128×128 with different orientations (0◦ to 90◦ with 30◦ intervals) and
different scales (0.8, 1 and1.2), we compare similarity by Euclidean distance between the
query image and each image in the database using their signature so that the top matched
images can be retrieved.

The results of invariance performance for different models and different features are
summarized in Tab. 1. SCM is compared with Gabor filter [6, 7], ICM and PCNN [16].
The results of SCM generally excel Gabor and PCNN whichever kind of signature is
selected, and DCT domain features are generally better than others whichever model is
selected.

Similar to experiments above, firstly, we crop images to standard size of 128 × 128 with
different orientations (0◦ to 90◦ with 10◦ intervals) when all are scaled up to 1.2. Secondly,
we process images to standard size of 128 × 128 with different scales (0.6 to 1.5 with 0.1
intervals) when all are rotated 60 degrees. Fig.4 and Fig.5 show two graphs illustrating
joint rotation and scale invariant retrieval results to demonstrate the capability of SCM
methods. As can be seen, generally the retrieval rates decrease in turn for the following
four methods: SCM, ICM, PCNN, Gabor and GLCM.

In the following experiments DCT domain feature is employed in PCNN, ICM and SCM
methods. We explore that the three methods are used in invariant texture classification.
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For these experiments, we prepare three different testing data sets from the Brodatz
texture album. The relevant images for each query are defined as the other images with
rotated and resized of original image form single region, and following [4] we evaluate the
performance in terms of the average rate of retrieving relevant images as a function of the
number of top retrieved images. The three testing data sets are created as follow:
For data set 1 of texture images with joint rotation and scale changes, we extract each

image to size of 128×128 with different orientations (0◦, 30◦, 60◦, and 90◦) and different
scales (0.6, 0.8, 1, 1.2 and 1.4). In this way, a data set of 2240 (112×4×5) texture images
was created for the experiments.
For data set 2 of texture images with joint rotation and scale changes, we extract each

image to size of 128×128 with different orientations (5◦ to 90◦ with 5◦ intervals) when all
are scaled up to 1.2. In this way, a data set of 2016 (112×18) texture images was created
for the experiments.
For data set 3 of texture images with joint rotation and scale changes, we extract each

image to size of 128×128 with different scales (0.55 to 1.5 with 0.05 intervals) when all are
rotated 60 degrees. In this way, a data set of 2240 (112×20) texture images was created
for the experiments.
In order to further explain the performance, we adopt average precision and recall of

the retrieval as the evaluation measures. Precision is defined as the ratio of the number
of retrieved relevant images to the total number of relevant images in the whole dataset.
Recall is defined as the ratio of the number of retrieved relevant images to the number of
retrieved images. The experimental results are summarized in Tab. 2 and Fig.6 to Fig.
11, which demonstrates that the proposed methods using SCM with DCT outperform in
invariant texture classification. From the Tab. 2 the following conclusions can be reached:
Generally the SCM is of higher accuracy than PCNN and Gabor for texture classification.

4. CONCLUSION. We address the problem of rotation and scale invariance in texture
retrieval and propose an effective DCT feature based on pulse images of SCM. The series
pulse images carry abundant information about its original image, which makes it possible
to apply to feature extraction. Therefore, we mainly use pulse images in invariant texture
retrieval on entire 112 Brodatz textured images. The experimental results, based on
different testing data sets for images with different orientations and scales, indicate that
the proposed retrieval scheme using SCM is quite robust to geometrical changes and
outperforms the two classic methods: Gabor filtering and the standard PCNN signature
methods. The proposed schemes using pulse images of SCM are of both scale and rotation
invariance. Thus, the founded SCM is a useful model for image processing and the
proposed texture retrieval methods is of scale and rotation invariance. The overall retrieval
accuracy of 87.5 percent for joint rotation and scale invariance is achieved with a short
vector of only 37 salient features, demonstrating that the proposed method are effective
joint rotation and scale invariant feature and classification accuracy over 74 percent.
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Table 1. comparison retrieval rates of different methods, image size is
128×128, rotation angles(r), scales(s)

Table 2. Comparison results of SCM with Gabor filter and PCNN



Spiking Cortical Model for Rotation and Scale Invariant Texture Retrieval 161

Figure 1. The structural model illustrating SCM

Figure 2. Partitioning of the 8×8 DCT coefficient block into two groups
for feature extraction

Figure 3. Diagram for texture retrieval
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Figure 4. Performance of different retrieval methods using SCM, ICM,
PCNN, GLCM and Gabor filter, which are subjected to different orienta-
tions when all are scaled up to 1.2

Figure 5. Performance of different retrieval methods using SCM, ICM,
PCNN, GLCM, and Gabor filter, which are subjected to different scales
when all are rotated 60 degrees
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Figure 6. Average retrieval precision-recall for data set 1 using SCM with
different features

Figure 7. Average retrieval precision-recall for data set 2 using SCM with
different features
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Figure 8. Average retrieval precision-recall for data set 3 using SCM with
different features

Figure 9. Average retrieval precision-recall for data set 1 using SCM,
ICM, PCNN, GLCM, and Gabor filter
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Figure 10. Average retrieval precision-recall for data set 2 using SCM,
ICM, PCNN, GLCM, and Gabor filter

Figure 11. Average retrieval precision-recall for data set 3 using SCM,
ICM, PCNN, GLCM, and Gabor filter


