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Abstract. Information hiding has been an important research area for copyright protec-
tion in modern multimedia technologies. In this paper, a weight-based prediction scheme
is presented to enhance the performance of several reversible histogram-based data hid-
ing approaches. By computing the solution of the least-squares problem, we obtain the
optimal set of weights for the neighboring pixels to improve the prediction accuracy of
the target pixel across the whole image. The heights of the peak points in the histogram
can then be raised to increase the embedding capacity. Experiments of our proposed al-
gorithm have been conducted over several well-known test images. We will show that our
proposed method significantly improves the embedding capacity upon several methods and
still maintains the quality of stego-images.
Keywords: Histogram-based information hiding, weight-based prediction, optimal least-
squares solutions, embedding capacity.
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1. Introduction. Along with the advancement of multimedia technologies in the past
decades, storage of data by digital products or transmission of data over the Internet, in
the form of texts, images or videos, have brought about significant progress for modern
information technology. Nonetheless, the increasingly powerful software has also made it
easy to gain unrestricted access to the data in the storage media for further modifying
its content. As a result, data and copyright protection have been important subjects
in research and applications nowadays. On the other hand, during the process of data
transmission, it often occurs that confidential information needs to be encrypted in order
to avoid interception by attackers in communication networks. To solve these problems,
several information hiding methods have been proposed and studied for data protection
and secret information embedding, but these traditional data hiding techniques often
bring about permanent damage to the content of the host media, which is not acceptable
in some applications [1].
More recently, a significant amount of research to improve the effectiveness on informa-

tion hiding has been conducted. These developed techniques typically intend to strengthen
their effectiveness by increasing the amount of data being embedded while maintaining
good quality of reconstruction for the host media. According to Yang and Tsai [2], the
methodologies developed along this line of research for reversible data hiding can be clas-
sified into two main areas: (1) the difference-expansion-based approaches [3-11], and (2)
the histogram-based data hiding approaches [12-18].
Difference expansion is a popular technique for information embedding. Earlier work

developed by Tian [7] along this line of research was a high-capacity and low-distortion
reversible data hiding scheme based on difference expansion transform on pairs of pixels.
His algorithm attempted to embed bits of data into the difference of the pixels of pairs
that do not cause an overow or underow. In addition, a location map for which pairs being
embedded data is compressed and included in the payload. In order to improve Tians
method, Chang and Lu [8] then proposed to determine the degree of the difference expan-
sion for data embedding by the correlation between target pixels and their surrounding
pixels. They showed that their correlation-based method can improve both the embed-
ding ability and the computation efciency. On the other hand, Alattar [9] extended Tians
method by using a difference expansion of vectors, instead of pairs, to further increase the
hiding ability. However, these aforementioned methods have limited potential in practical
applications because location maps and other extra information are needed to restore the
original cover image, and they usually lack sufficient robustness [1].
In 2006, Ni et al. [12] presented a histogram-based data hiding technique. They pro-

posed to construct the histogram by pixel values and embed the information using the
vacancy between peak points and zero points. Ni et al.’s method guarantees that the
change of the intensity levels of pixels in the stego-images is no more than 1. As a re-
sult, the peak signal-to-noise ratio (PSNR) value of the stego-image is at least 48 dB.
Afterwards, Hong et al. [13], Yang et al. [2], and Lin et al. [18] presented a set of pre-
diction schemes to increase the embedding capacity by elevating the peak value of the
histogram. Overall, the histogram-based methods utilize the distribution characteristics
of the histogram to achieve the task of reversible data hiding. Because of the robust-
ness and low computational complexity, this type of data hiding methods has received
increasing interests [1].
In the three aforementioned prediction-based methods [1-2, 18], the neighboring pixels

are usually used to predict the intensity level of a target pixel. These methods employ
several heuristics to reduce the prediction errors locally without taking into account how
to minimize the errors globally over the whole image. Motivated by this observation, in
this paper we propose a new approach, called the weighted prediction, to compute the
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optimal weights of the neighboring pixels for the prediction of target pixels over the whole
image. We will show that this new weighted prediction method is able to improve the
three prediction-based methods by raising the embedding capacity effectively and still
yield satisfactory image quality.

The organization of this paper is as follows. In Section 2, we discuss the relevant
research work of the histogram-based data hiding approaches using prediction schemes.
Section 3 describes our proposed method. Section 4 then demonstrates the experimental
results, and conclusions are given in Sections 5.

2. Related Work. Ni et al. [12] first proposed a reversible data hiding method that
constructs the histogram for intensity levels of pixels of a host image to embed secret
information. The histogram is then used to identify pairs of zero and peak points, which
represent the values that none and most pixels assume in the cover image, respectively.
The space between a pair of peak and zero points can be shifted in order to generate free
space for embedding of the secret information.

Hong et al. [13] proposed a different scheme to construct the histogram using a differ-
ence image generated by the median edge detection predictor [19, 21]. The goal of this
treatment was to generate a more centralized histogram and raise the height of the peak
points to improve the embedding capacity upon the histogram-based method Ni et al.
[12] proposed.

Yang et al. [2] proposed a new scheme using column-based interleaving predictions
to enhance the performance of the histogram-based approach. In this scheme, the odd-
column pixels are predicted by pixels in even columns; then the even-column pixels are
predicted by pixels in odd columns, or vice versa. Yang et al. [2] also studied a chessboard
prediction method, which is an extension of the original interleaving prediction scheme.
Because the prediction errors can be reduced significantly, the heights of the peak points
can be raised further to increase the embedding capacity. In addition to the increase in
embedding capacity, Yang et al. [2] showed that their histogram-based approach can also
yield a better image quality, compared to several other histogram-based approaches.

Lin et al. [18] later proposed a 3-by-3 box filter scheme to improve the embedding
capacity for complex images upon the chessboard-based method. In smooth images, the
differences among the intensity levels of neighboring pixels may be small; thus averaging
the intensity levels of the four adjacent pixels by Yang et al.’s method would predict the
target pixel well. However, in complex images, more neighboring pixels may be required
for better prediction. Lin et al. [18] thus proposed to increase the number of the reference
pixels to eight by using the 33 box filter, and the prediction of the target pixel is then the
average of the eight surrounding pixels. Lin et al. [18] also proposed to improve Yang et
al.’s approach [2] by replacing the proposed floor function with the truncation function.
Since the prediction-error histogram using the truncation function has higher tendency to
center around zero than the floor function does, the embedding capacity can be further
increased.

Since Lin et al.’s method in [18] was written in Chinese and we intend to improve their
method, in the remaining of this subsection, we provide the description for the steps of
this algorithm.

2.1. Lin et al.’s algorithm. The order of the pixels to be predicted in this scheme is
divided into 4 stages, as show in Fig. 1, with the coordinate of each stage’s starting pixel,
(Tx, Ty), being (0, 0), (0, 1), (1, 0) and (1, 1), respectively.

In this study, all original images are composed of 512×512 pixels. Let Hi,j with {i, j ∈
0 ∼ 511} denote the intensity level of the pixel at column i and row j in the original
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Figure 1. Numerical orders of pixels to be predicted

image. Let Di,j denote the predictive error of Hi,j. Also let Si,j denote the set of all the
closest pixels surrounding Hi,j; i.e.,

Si,j = {Hx,y | x, y ∈ 0 ∼ 511, 0 < (i− x)2 + (j − y)2 ≤ 2}. (2.1)

Let Di,j denote the predictive error of Hi,j, calculated as follows:

Di,j = Int(Hi,j −
∑

h∈Si,j
h

|Si,j|
). (2.2)

Note that function Int in Eq. 2.2 is used to truncate the fractional portion of the
prediction errors. However, before using function Int, we will record the sign of the value
of the difference for the recovering step, which is described in the next subsection (i.e.,
Step 5 in Section 2.1.1).

s = sign(Hi,j − (

∑
h∈Si,j

h

|Si,j|
), (2.3)

sign(x) =


1, x > 0

0, x = 0.

−1, x < 0

(2.4)

2.1.1. Hiding phase.
Input: original image H and secret information I.

Step 1. Use Eqs. 2.1 and 2.2 to generate predictive error, Di,j’s, for (Tx, Ty) of the first
stage.

Step 2. Create histogram HS(x) with {x ∈ [−255, 255]} from all predictive errors Di,j’s
and select two pairs of peak and zero points, (P1,1, Z1,1) and (P1,2, Z1,2),

Step 3. Shift histogram as follows:

D′
i,j =

{
Di,j − 1, Z1,1 < Di,j ≤ P1,1 − 1;

Di,j + 1, P1,2 + 1 ≤ Di,j < Z1,2.
(2.5)

Step 4. Embed a secret bit if the predictive error D′
i,j is equal to P1,1 or P1,2 as follows:

(a) If the to-be-embedded bit is 0, D′
i,j is set to Di,j.

(b) If the to-be-embedded bit is 1, D′
i,j is set according to the following equation:

D′
i,j =

{
Di,j − 1, Di,j = P1,1;

Di,j + 1, Di,j = P1,2.
(2.6)
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Step 5. Convert the predictive errors with the inserted secret information to pixel values,
where the conversion formula is as follows:

H ′
i,j =

Int(D′
i,j +

∑
h∈Si,j

h

|Si,j | ), if s ≤ 0;

Int(D′
i,j +

∑
h∈Si,j

h

|Si,j | ) + 1, otherwise.
(2.7)

Step 6. Repeat Steps 1-5 for the corresponding starting point (Tx, Ty) of all the other
stages to insert the remaining secret information.

Step 7. Output stego-image H ′ and four pairs of peak and zero points

2.1.2. Extracting phase.
Input: stego-image H ′, four pairs of peak and zero points.

Step 1. Use Eqs. 2.1 and 2.2 to generate prediction errors in the reverse order of the
hiding phase. Use fourth pair of peak and zero points and Eq. 2.8 to extract
information I4, and use Eq. 2.9 to recover the predictive error values. Let I4,n is
the n-th bit in I4.

I4,n =

{
0, if Di,j = P4,1 or Di,j = P4,2,

1, if Di,j = P4,1 − 1 or Di,j = P4,2 + 1.
(2.8)

D′
i.j =

{
Di,j + 1, Z4,1 < Di,j ≤ P4,1 − 1;

Di,j − 1, P4,2 + 1 ≤ Di,j < Z4,2.
(2.9)

Step 2. Use Eq. 2.7 to reconstruct the pixel values for the fourth stage.
Step 3. For all the remaining stages, repeat steps 1-3 to extract the inserted secret infor-

mation I3,I2 and I1 and then the corresponding pixels will be recovered to the
original values.

Step 4. Output original image H and secret information I = I1||I2||I3||I4.

3. Our method. The goal of prediction is to introduce a centralized histogram con-
structed by the differences between the actual and predicted values of pixels the more
centralized the histogram is, the more embedding capacity the image delivers. In this
study, we propose to improve the aforementioned prediction-based data hiding methods
by computing the optimal weights of the neighboring pixels for the prediction of the target
pixel. In contrast to the methods proposed by Hong et al. [13], Yang et al. [2], Lin et
al. [18] that did not consider minimizing the overall prediction errors over all the pixels
simultaneously, we hereby propose to compute the optimal weights of the neighboring
pixels in terms of the least-squared prediction errors across the whole image.

Consider the following example:
In Lin et al. [18], the prediction scheme used the average of the intensity levels of the

eight surrounding pixels as the predicted intensity level of the target pixel (the outermost
pixels are not being predicted because the number of the neighboring pixels is less than 8).
Now we generate a n×8 matrix A with each row representing the eight surrounding pixels
used to predict the target, and a n × 1 column vector B with each element representing
the target pixel to be predicted. Then solving the equation,

Ax = B, (3.1)

the least-squared solution x can be regarded as the weighting vector used for the pre-
diction of the pixels in B. For instance, the example in Fig. 2 can be expressed as
follows:
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Figure 2. Example image


20 29 43 22 53 24 40 68
29 43 71 32 90 40 68 114
43 71 120 53 152 68 114 147
...

...
...

...
...

...
...

...

x =


32
53
90
...

 (3.2)

where x = [x1 x2 x3 x4 x5 x6 x7 x8]
T .

The optimal solution x then guarantees all prediction errors to be zero. Furthermore,
for Fig. 2, all the 16 to-be-predicted pixels are embeddable. Thus the embedding capacity
is 16 bits, yet the capacity in same figure is only 8 bits by the 3-by-3 box filter method
(see Fig. 3 below). As a result, the improvement of the embedding capacity is significant
by our proposed method.

Figure 3. Predicted example image

More specifically, suppose the original images are composed of 512 × 512 pixels. Let
Si,j with {i, j ∈ 0 ∼ 511} denote the intensity level of the pixel at column i and row j in
the original image. Since the outermost pixels are not used for prediction, let Ri,j denote
the set of all the closest pixels around Si,j that are used for prediction; i.e.,

Ri,j = {Si,j|x, y ∈ 1 ∼ 510, 0 < (i− x)2 + (j − y)2 ≤ 2}. (3.3)
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Use all the Ri,j’s and target pixels Si.j’s, one can generate an n × 8 matrix A and an
n×1 matrix B, respectively. Let x denote the vector of weights to be used for prediction.
Assuming the prediction error is zero for each pixel, then the following equation holds:

Ax = B, (3.4)

In general, one cannot expect to find a vector x for which Ax equals B. Instead, in this
overdetermined system one can look for a vector x such that Ax is closest to B.

Let r(x) denote the residual:

r(x) = B − Ax. (3.5)

A vector x̂ with the minimum r(x) is said to be optimal to the system Ax = B.
Then x̂ will be the least squares solution to the system Ax = B if and only if

r(x̂) ∈ N(AT ) (Theorem 5.3.1[22])

or, equivalently,

0 = AT r(x̂) = AT × (B − Ax). (3.6)

To solve the least squares problem Ax = B, one must solve the normal equations:

ATAx̂ = ATB. (3.7)

Then the unique solution of the normal equations is:

x̂ = (ATA)−1ATB. (3.8)

The solution x̂ can then serve as the optimal weights for computing the prediction of
the intensity level for each pixel Ni,j by the following formula:

Ni,j = Ri,jx̂. (3.9)

Therefore, the prediction error Di,j of Si,j is:

Di,j = Int(Si,j −
∑

h∈Ni,j
h

|Ni,j|
). (3.10)

Note that function Int in Eq. 3.10 is used to truncate the fractional portion of the
prediction errors.

To further understand the characteristics of this optimal weight-based scheme, we pro-
vide the following theorem. Let Am×n be an m× n matrix, xn×1 be an n× 1 matrix, and
Bm×1 be anm×1 matrix. We then define the rows of Am×n as the matrices A1, A2, · · · , Am.
We further let Ar×n be the submatrix of Am×n and Br×1 be the submatrix of Bm×1 for
r ≤ m, respectively.

Theorem 3.1. Let x̂ be the least-square solution to Am×nxn×1 = Bm×1 and x̂′ be the
least-square solution to Ar×nxn×1 = Br×1, where r ≤ m. We then have

||Ar×nx̂′ −Br×1|| ≤ ||Am×nx̂−Bm×1||.

Proof. We assume that ||Ar×nx̂′ −Br×1|| > ||Am×nx̂−Bm×1||.
We then have
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√
(A1x̂′ − b1)2 + (A2x̂′ − b2)2 + · · ·+ (Arx̂′ − br)2 >√

(A1x̂− b1)2 + (A2x̂− b2)2 + · · ·+ (Arx̂− br)2 + · · ·+ (Amx̂− bm)2,

where Br×1 =


b1
b2
...
br

 and Bm×1 =


b1
b2
...
bm

.
Because (Ar+1x̂− br+1)

2 + · · ·+ (Amx̂− bm)
2 ≥ 0, we get√

(A1x̂′ − b1)2 + (A2x̂′ − b2)2 + · · ·+ (Arx̂′ − br)2 >√
(A1x̂− b1)2 + (A2x̂− b2)2 + · · ·+ (Arx̂− br)2.

But, we know that x̂′ is the least-square solution to Ar×nxn×1 = Br×1. This implies
that √

(A1x̂′ − b1)2 + (A2x̂′ − b2)2 + · · ·+ (Arx̂′ − br)2 ≤√
(A1x̂− b1)2 + (A2x̂− b2)2 + · · ·+ (Arx̂− br)2.

That contradicts our assumption. We thus prove that ||Ar×nx̂′ − Br×1|| ≤ ||Am×nx̂ −
Bm×1|| for r ≤ m.
This theorem indicates that the least-square error increases as the size of the image

increases.
In the following subsections, we describe the embedding and extracting phases of our

algorithm. Let I denote the secret information to-be embedded and In denote the n-th
bit of I.

3.1. Embedding Phase.
Input: original image S and secret information I. Output: stego-image S ′, four sets of
weights W1 to W4, four pairs of peak and zero points: (P1,1, Z1,1), (P1,2, Z1,2), (P2,1, Z2,1),
(P2,2, Z2,2), (P3,1, Z3,1), (P3,2, Z3,2), (P4,1, Z4,1) and (P4,2, Z4,2).

Step 1. Use Eq. 3.2 to Eq. 3.10 to calculate the optimal set of weight W1 and generate
predictive errors, Di,j’s, for (Tx, Ty) of the first stage.

Step 2. Create histogram HS(x) with {x ∈ [−255, 255]} from all predictive errors Di,j’s.
Step 3. Identify two pairs of peak and zero points, (P1,1, Z1,1) and (P1,2, Z1,2), as follows:

(a) Select two highest peak points, P1,1 and P1,2, from HS(x), where P1,2 < P1,2.
(b) Select a zero point Z1,1 from HS(x) with {x ∈ [−255, P1,1 − 1]}; select a zero

point Z1,2 from HS(x) with {x ∈ [P1,2 + 1, 255]}.
Step 4. Shift the histogram as follows:

D′
i,j =

{
Di,j − 1, Z1,1 < Di,j ≤ P1,1 − 1;

Di,j + 1, P1,2 + 1 ≤ Di,j < Z1,2.
(3.11)

Step 5. Embed a secret bit if the predictive error D′
i,j is equal to P1,1 or P1,2 as follows:

(a) If the to-be-embedded bit is 0, D′
i,j is set to Di,j.

(b) If the to-be-embedded bit is 1, D′
i,j is set according to the following equation:

D′
i,j =

{
Di,j − 1, Di,j = P1,1;

Di,j + 1, Di,j = P1,2.
(3.12)
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Step 6. Convert the predictive errors with the inserted secret information to pixel values
using the conversion equations below:

S ′
i,j =

Int(D′
i,j +

∑
h∈Si,j

h

|Si,j | ), if D′
i,j ≤ 0 or D′

i,j is integer;

Int(D′
i,j +

∑
h∈Si,j

h

|Si,j | ) + 1, otherwise.
(3.13)

Step 7. Repeat Steps 1-7 for the corresponding starting point (Tx, Ty) of all the other
stages to insert the remaining secret information.

Step 8. Output stego-image S ′, four sets of weight W1 to W4, and four pairs of peak and
zero points (P1,1, Z1,1), (P1,2, Z1,2), (P2,1, Z2,1), (P2,2, Z2,2), (P3,1, Z3,1), (P3,2, Z3,2),
(P4,1, Z4,1) and (P4,2, Z4,2).

3.2. Extracting Phase.
Input: stego-image S ′, four sets of weight W1 to W4, four pairs of peak and zero points:
(P1,1, Z1,1), (P1,2, Z1,2), (P2,1, Z2,1), (P2,2, Z2,2), (P3,1, Z3,1), (P3,2, Z3,2), (P4,1, Z4,1) and
(P4,2, Z4,2). Output: original image S, secret information I.

Step 1. Use W4 and Eq. 3.10 to generate predictive errors in the reverse order of the
hiding phase. Use (P4,1, Z4,1), (P4,2, Z4,2) and Eq. 3.14 to extract information I4,
and use Eq. 3.15 to recover the prediction errors. Let I4,n denote the n-th bit in
I4.

I4,n =

{
0, if Di,j = P4,1 or Di,j = P4,2;

1, if Di,j = P4,1 − 1 or Di,j = P4,2 + 1.
(3.14)

D′
i,j =

{
D(i, j) + 1, Z4,1 < Di,j ≤ P4,1 − 1;

Di,j − 1, P4,2 + 1 ≤ Di,j < Z4,2.
(3.15)

Step 2. Use Eq. 3.13 to reconstruct the pixel values for the fourth stage.
Step 3. For all the remaining stages, repeat steps 1-3 to extract the inserted secret infor-

mation I3, I2 and I1 and reconstruct the corresponding pixels.
Step 4. Output original image S and secret information I = I1||I2||I3||I4.

Figure 4. Test images - (a)Airplane, (b)Baboon, (c)Barbara, (d)Boat,
(e)Girl, (f)Goldhill, (g)Lena, (h)Peppers, (i)Sailboat
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4. Experimental results. In this section, we demonstrate the effectiveness of our pro-
posed method by comparing with the three methods by Hong et al. [13], Yang et al. [2]
and Lin et al. [18]. We use nine well-known 512×512 grayscale images as the cover images
Airplane, Baboon, Barbara, Boat, Girl, Goldhill, Lena, Peppers and Sailboat, as shown
in Fig. 4. To illustrate the effect of image size on the weighted prediction scheme, we
consider five cases - 32×32, 64×64, 128×128, 256×256 and 512×512. The experimental
results for these methods are displayed in Table 1 to Table 5.
The results in these tables can be summarized as follows: (1) the PSNR’s by the 3-by-3

grid and weighted prediction methods are similar to or better than those by the chess
board and Hong’s methods; (2) in terms of the payload, the 3-by-3 grid and weighted
prediction methods generally outperform the other two methods. In order to further
compare the difference among these methods, Figs. 5(a)-(i) display the corresponding
payloads for the images of various sizes of 2n × 2n.

Table 1. Results of 32× 32 images

32× 32
Hong Chess Board 3-by-3 Grid Weight

Payload PSNR Payload PSNR Payload PSNR Payload PSNR
(bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB)

Airplane 0.10 48.64 0.11 51.87 0.12 51.94 0.13 52.18
Baboon 0.06 48.54 0.11 49.72 0.11 50.03 0.15 49.60
Barbara 0.08 48.57 0.08 49.93 0.08 51.02 0.14 50.58
Boat 0.13 48.70 0.13 50.64 0.12 51.61 0.21 50.30
Girl 0.14 48.73 0.17 50.74 0.17 51.31 0.19 50.89

Goldhill 0.10 48.65 0.09 50.37 0.09 49.97 0.17 50.03
Lena 0.11 48.67 0.10 50.25 0.10 51.58 0.18 50.30

Peppers 0.08 48.59 0.09 50.64 0.08 52.11 0.14 50.15
Sailboat 0.06 48.54 0.06 51.90 0.06 52.71 0.08 52.88
Average 0.10 48.62 0.10 50.67 0.10 51.36 0.15 50.77

Table 2. Results of 64× 64 images

64× 64
Hong Chess Board 3-by-3 Grid Weight

Payload PSNR Payload PSNR Payload PSNR Payload PSNR
(bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB)

Airplane 0.12 48.55 0.14 49.45 0.18 49.80 0.20 49.73
Baboon 0.07 48.44 0.09 48.90 0.11 48.89 0.13 49.06
Barbara 0.14 48.60 0.14 48.92 0.15 48.95 0.26 49.29
Boat 0.18 48.72 0.22 49.14 0.23 49.34 0.28 49.35
Girl 0.21 48.79 0.28 49.40 0.32 49.63 0.35 49.59

Goldhill 0.13 48.58 0.12 48.77 0.15 48.96 0.22 49.11
Lena 0.17 48.70 0.19 49.10 0.22 49.25 0.32 49.57

Peppers 0.15 48.64 0.17 49.21 0.18 49.22 0.27 49.37
Sailboat 0.09 48.49 0.09 49.07 0.10 49.31 0.12 49.26
Average 0.14 48.61 0.16 49.11 0.18 49.26 0.24 49.37
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Table 3. Results of 128× 128 images

128× 128
Hong Chess Board 3-by-3 Grid Weight

Payload PSNR Payload PSNR Payload PSNR Payload PSNR
(bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB)

Airplane 0.15 48.54 0.19 48.79 0.27 49.00 0.26 48.98
Baboon 0.07 48.37 0.09 48.64 0.11 48.63 0.12 48.67
Barbara 0.17 48.60 0.21 48.77 0.26 48.90 0.33 49.09
Boat 0.21 48.69 0.27 48.95 0.33 49.10 0.36 49.21
Girl 0.24 48.76 0.38 49.26 0.44 49.49 0.44 49.47

Goldhill 0.15 48.54 0.15 48.64 0.18 48.73 0.25 48.89
Lena 0.20 48.65 0.26 48.91 0.33 49.10 0.41 49.34

Peppers 0.19 48.63 0.25 48.87 0.31 49.05 0.36 49.23
Sailboat 0.07 48.38 0.10 48.66 0.15 48.67 0.14 48.72
Average 0.16 48.57 0.21 48.83 0.26 48.96 0.30 49.07

Table 4. Results of 256× 256 images

256× 256
Hong Chess Board 3-by-3 Grid Weight

Payload PSNR Payload PSNR Payload PSNR Payload PSNR
(bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB)

Airplane 0.18 48.58 0.23 48.76 0.34 49.04 0.31 48.96
Baboon 0.06 48.30 0.08 48.35 0.10 48.47 0.11 48.54
Barbara 0.17 48.56 0.22 48.71 0.30 48.93 0.32 48.99
Boat 0.22 48.68 0.29 48.88 0.38 49.15 0.38 49.13
Girl 0.24 48.73 0.37 49.11 0.46 49.43 0.46 49.41

Goldhill 0.16 48.52 0.18 48.61 0.22 48.72 0.28 48.87
Lena 0.21 48.64 0.28 48.86 0.38 49.15 0.41 49.22

Peppers 0.20 48.62 0.28 48.87 0.37 49.10 0.36 49.08
Sailboat 0.12 48.43 0.15 48.56 0.21 48.69 0.22 48.73
Average 0.17 48.56 0.23 48.75 0.31 48.97 0.32 48.99

Table 5. Results of 512× 512 images

512× 512
Hong Chess Board 3-by-3 Grid Weight

Payload PSNR Payload PSNR Payload PSNR Payload PSNR
(bpp) (dB) (bpp) (dB) (bpp) (dB) (bpp) (dB)

Airplane 0.26 48.74 0.34 48.97 0.46 49.30 0.45 49.27
Baboon 0.07 48.30 0.05 48.36 0.07 48.32 0.08 48.35
Barbara 0.15 48.47 0.19 48.61 0.27 48.79 0.33 48.96
Boat 0.17 48.54 0.23 48.71 0.32 48.92 0.32 48.92
Girl 0.24 48.70 0.35 49.00 0.43 49.31 0.45 49.34

Goldhill 0.14 48.46 0.18 48.58 0.23 48.71 0.25 48.75
Lena 0.18 48.55 0.25 48.75 0.34 48.98 0.34 48.99

Peppers 0.13 48.43 0.18 48.58 0.29 48.84 0.27 48.79
Sailboat 0.11 48.40 0.16 48.52 0.26 48.77 0.22 48.68
Average 0.16 48.51 0.21 48.67 0.30 48.88 0.30 48.89
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Figure 5. Relationship of payload and image size

As can be seen again, the 3-by-3 grid and weighted prediction methods generally out-
perform the other two methods over the night images and various image sizes. It is also
noticeable that, for most of the image sizes with n ≤ 8, the performance of the weighted
prediction method is either similar to or better than that of the 3-by-3 grid method. To
further understand the difference between the 3-by-3 grid and weight-based methods, Figs.
6(a)-(d) provide an illustration on the histograms of the differences of adjacent pixels for
Girl, Airplane, Goldhill and Baboon of 27 × 27 pixels (i.e., n = 7 in Fig. 5). Typically
the smoother the images, the more centralized the differences of adjacent pixels [23]. As
such, we can consider Girl and Airplane as smooth images, and Goldhill and Baboon as
complex ones. For these images, Figs. 5(e) and (a) show the payloads by the 3-by-3 grid
and weighted prediction methods for Girl and Airplane are similar, respectively. How-
ever, for complex images Goldhill and Baboon, Figs. 5(f) and (b) show that our proposed
weighted prediction method obviously outperform the 3-by-3 grid prediction method. For
the same reason, over most of the image sizes, Babara, Boat, Lena, and Peppers can be
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regarded as complex images, and the weighted prediction method thus outperforms the
3-by-3 grid method, as well.

Figure 6. Histogram of images by our proposed method

In addition, as Theorem 1 in Section 3 points out, the least-square error increases as
the size of the image increases, which may in turn impede the performance of our optimal
weight-based prediction method. We thus notice that the results for large n (e.g., n = 9)
in complex images such as Goldhill and Lena, the payload performance of the optimal
eight-based method over the 3-by-3 grid method degrades. However, for the even more
complex image Baboon, our method can still outperform the 3-by-3 grid method for large
n. To sum up, the weighted prediction method is a superior data-hiding scheme over the
3-by-3 grid method, and is certainly a much better option over the other two popular
methods.

5. Conclusions. In this paper, we present a novel weight-based prediction method to
improve several existing reversible data hiding methods. Using the solution of the least-
squares problem, we obtain the optimal set of weights for the neighboring pixels to improve
the prediction accuracy of the target and thus increase the payload capacity.
The effectiveness of this approach has been demonstrated using several well-known test

images. The empirical results showed that our proposed method significantly improves
the embedding capacity over these existing methods and still maintains the quality of
stego-images.
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