
Journal of Information Hiding and Multimedia Signal Processing c©2012 ISSN 2073-4212

Ubiquitous International Volume 3, Number 2, April 2012

Number Theoretic SETUPs for RSA Like Factoring
Based Algorithms

Constantinos Patsakis

Department of Computer Engineering and Mathematics
Universitat Rovira i Virgili

UNESCO Chair in Data Privacy
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Abstract. For many years there was a very common misbelief that having embedded
mechanisms in hardware, constitute the optimal solution not only in the usage and the
performance for the encryption algorithms, but for their security as well. The idea that
lead to this common belief was that by this way an attacker could not tamper the encryp-
tion algorithms, specially regarding the asymmetric ones. M. Young and Yung introduced
kleptography, showing that there are more risks than the ones that are expected to be faced,
when using cryptographic systems.

This work summarizes the scope of kleptography and analyzes two new number theo-
retic SETUPs for factoring encryption algorithms, one based on Lagrange’s four square
theorem and one based on Coppersmith’s theorem. Both SETUPs target public key en-
cryption algorithms, whose key generation depends on the product of two primes, provid-
ing a robust and secure solution.
Keywords: RSA, ElGamal, Secretly Embedded Trapdoor with Universal Protection,
backdoor, public key cryptography, Coppersmith’s theorem, factoring, cryptovirology,
kleptography, four square theorem.

1. Introduction. Cryptography has been developing for centuries. One of its main ob-
jectives is to restrict access on some texts, data or knowledge, allowing only authorized
entities with proper credentials. Throughout these centuries we notice that there is con-
stant confrontation between the creators of the algorithms and the cryptanalyzers, the
ones who try to break the algorithms. The past decades, this confrontation lead us to
a certain point, where we can talk about provable security. We are now able to dis-
cuss freely about the properties of certain encryption algorithms, without the need to
hide their structure in order to make them more secure, getting us closer to Augustine
Kerckhoffs’s principle as well. According to this principle, the strength of an encryption
algorithm should rest only on the lack of key knowledge and not on the hidden properties
or structure of the algorithm. If this principle is violated, then when either properties
or structure is disclosed wholly or partially, the algorithm and the protected information
become insecure.

Up to the 70’s, all encryption algorithms belonged to the category of ciphers, that we
now call symmetric or private key, where the same key is being used both for the en-
cryption and the decryption. Rivest, Shamir and Adleman changed everything that we
thought about cryptography and its uses, marking a new era, with the introduction of
public or asymmetric key cryptography. The introduction of RSA and the wide use of
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number theory in cryptography lead to new applications and wider adoption of cryptog-
raphy, setting new security standards.
But what happens with Malory? In public key cryptography, people falsely believed

that if we have a mechanism that provides us with the private and the public key that meet
certain criteria and statistical properties, then we can use them to securely encrypt and
decrypt our data. But could Malory create these keys? Could this be made undetected?
Why should we trust the key creator and when should we trust him? What are the risks
of doing so?
The questions above were answered many years later. Anderson was one of the firsts

to study how one could tamper the key creation procedure [2]. Even though his scheme
wasn’t secure for Malory, as it was later shown by Kalinksi [20], the first cracks had been
made. Young and Yung, studied the aforementioned questions and they were lead to
the introduction of SETUPs proposing some algorithms that could be used. The new
attack scenario sets Malory in another place in the attack scheme. Malory becomes the
key generator and attacks those that use the tampered keys. We should note here a very
important difference between private and public key cryptography. In the case of private
key cryptography, each entity can create its own key without external help, since it is just
a bitstream of certain length that has to be memorized or securely stored. In public key
cryptography, things are quite different. The needed algebraic structure coupled with the
needed key size, make it impossible for someone to pick the key pair on his own. In the case
of RSA, it is impossible for someone to create primes of 300 decimal digits by hand and
most programming languages are not able to handle big integers, e.g. integers of 1024 bits
length. Therefore, special cryptographic libraries or encryption devices have to be used.
People used to believe and some still do, that if the key creation mechanism is imposed
to conform to certain standards, to produce keys with certain statistical properties and
this mechanism is not able to communicate with another entity, then the produced keys
are safe to be used. This scheme is shown in figure1.

Figure 1. The misbelieved model.

The attacker may provide a client with a cryptographic mechanism (API,
device etc). The misbelief is that since this mechanism cannot access the
Internet the attacker cannot launch an attack on the produced keys.

However, all these depend on the direct communication of the encryption mechanism
with another entity. Young and Yung, studied the possibility of having a covert channel,
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leaking information to Malory. The attack scenario that they introduced is the following.
Malory creates a trapdoor in a key generator. Malory tricks Alice into using her key
generator to create public and private keys. Alice creates the key pair and publishes his
public key on the internet. Malory gets Alice public key and using the trapdoor finds
the private key. Malory can now decrypt every encrypted message that she intercepts
from Alice. The trapdoor creates a covert channel between Malory and the private key,
through Alice’s public key.

The scenario above indicates that Malory could be the manufacturer of the encryption
device, the developer of a cryptographic library or even an attacker that finds his way
through the key generator. This type of attacks were named by Young and Yung SETUP
(Secretly Embedded Trapdoor with Universal Protection). A simple model of a SETUP
can be seen in figure2.

Figure 2. The SETUP model.

The attacker provides a cryptographic mechanism to the client with an
embedded trapdoor. The client creates his public and private key pair w-
ith the provided mechanism, which acts as a black box to him. By gettin-
g the public key, the attacker is able to use it to exploit the embedded tr-
apdoor and gain access to client’s private key.

One of the main aspects that kleptography points out in cryptography, is the fact that
the security of an encryption device or application, does not only rest upon the used
algorithms or the safe implementation, but also on the trust to the manufacturer. The
reason for studying SETUPs is that by figuring out how such implementations work, it
might be possible to detect and recognize them, using reverse engineering techniques or
timing attacks.

In this work the main focus is on the creation of SETUPs for factoring based encryption
algorithms [26, 25], like RSA [28] or Rabin [27] or even less used algorithms, like Blum-
Goldwasser [4] and Goldwasser-Micali [15]. The structure of this work is as follows,
firstly the reader is introduced to some needed mathematical background. The following
paragraph gives a brief description of some public key encryption algorithms, followed by
a section on the previous work on SETUPs. The next two sections the proposed SETUPs
are being analyzed. The following section discusses some experimental results. Finally,
this work concludes pointing out some considerations and discusses some issues that arise
from this research.



Number Theoretic SETUPs for RSA Like Factoring Based Algorithms 194

2. Needed mathematical background. In order to analyze the SETUPs it is essential
to review some mathematical theorems and identities.
For the first SETUP, the main idea is based on Lagrange’s four square theorem [12, 18]

and [16].

Theorem 2.1. Every positive integer n can be written as a sum of the squares of four
integers.

Example 2.1. 15 = 32 + 22 + 12 + 12, 5413654687 = 730992 + 83782 + 12 + 12

A very central role will play the Euler’s identity, that is:

Theorem 2.2. For every x1, x2, x3, x4, y1, y2, y3, y4 we have:

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y22 + y23 + y24) = a2 + b2 + c2 + d2

where:

a = x1y1 + x2y2 + x3y3 + x4y4

b = x1y2 − x2y1 + x3y4 − x4y3

c = x1y3 − x3y1 + x4y2 − x2y4

d = x1y4 − x4y1 + x2y3 − x3y2

If n = 2s(2x+1) and with r4(n) we denote the number of representations of an integer
n as a sum of four squares, then

r4(n) =

{
8f(n) for s = 0

24f(2x+ 1) for s ̸= 0

where
f(x) =

∑
d|x

d

Now denoting by r3(n) the number of representations of an integer n as a sum of three
squares and by using a Hardy’s conjecture [17], proved by Bateman [3] and later improved
by Landau [21, 22], we have that:

Theorem 2.3. ∑
n≤x

r3(n) ∼=
4

3
πx

3
2

From the above theorem it can easily be proved that

Theorem 2.4.
r3(n) ∼= 2πn

1
2

The proof is quite straight forward. We will use the previous theorem and try to express
r3(n) as the difference of two sums. So, if we set F (x) =

∑
n≤x

r3(n) then obviously:

F (x+ 1)− F (x) =
∑

n≤x+1

r3(n)−
∑
n≤x

r3(n) = r3(x+ 1)

By replacing now F (x) and F (x+ 1) we have that
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F (x+ 1)− F (x) =
∑

n≤x+1

r3(n)−
∑
n≤x

r3(n)

≃ 4

3
π(x+ 1)

3
2 − 4

3
πx

3
2 =

4

3
π((x+ 1)

3
2 − x

3
2 )

=
4

3
π(

(x+ 1)
3
2 − x

3
2

(x+ 1)
3
2 + x

3
2

((x+ 1)
3
2 + x

3
2 ))

=
4

3
π
(x+ 1)3 − x3

(x+ 1)
3
2 + x

3
2

=
4

3
π
x3 + 3x2 + 3x+ 1− x3

(x+ 1)
3
2 + x

3
2

=
4

3
π
3x2 + 3x+ 1

(x+ 1)
3
2 + x

3
2

If x is big enough, then we have that

3x2 + 3x+ 1 ∼= 3(x+ 1)2

thus
(x+ 1)

3
2 + x

3
2 ∼= 2(x+ 1)

3
2

So,

F (x+ 1)− F (x) ∼=
4

3
π
3(x+ 1)2

2(x+ 1)
3
2

= 2π(x+ 1)
1
2 = r3(x+ 1)

Finally, we have that

r3(n) ∼= 2πn
1
2

The reader may find more results regarding sums of squares of integers in [24].
Coppersmith’s theorem [9] have been widely used in cryptography and cryptanalysis

and will enable us to extract the private key from the public one, in the second SETUP.
The theorem is the following.

Theorem 2.5. Let N be an integer and f ∈ Z[x] a monic polynomial of degree d. Set

X = N
1
d
−ϵ for some ϵ ≥ 0. Given N and f, one can efficiently find all integers x0, with

|x0| < X, satisfying
f(x0) ≡ 0 mod N

The running time is dominated by the time it takes the LLL algorithm on a lattice of
dimension O(w) with w = min(1

ϵ
, logN).

Coppermith later generalized it to the following [8] theorem for the case of two variables:

Theorem 2.6. Let p(x, y) be an irreducible polynomial in two variables over Z, of max-
imum degree δ in each variable separately. Let X and Y be upper bounds on the desired
integer solution (x0, y0), and let

W = maxi,j|pij|X iY j

If XY < W 2/(3δ), then in time polynomial in (logW, 2δ), one can find all integer pairs
(x0, y0) such that p(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .
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Several attacks on public key cryptography have been based on these two theorems
like [6, 5, 7, 23], as these theorems allow the attacker to launch an attack from partial
knowledge of key bits.

3. Public key encryption algorithms. In this section there’s a review of two public
key encryption algorithms, more precisely, RSA and ElGamal. The security of the first
algorithm depends greatly on the lack of efficient integer factorization algorithms, yet to
be more precise the security of RSA is based on the so called RSA problem. Given an
integer c, a big integer n, which is a product of two primes and an integer e, co-prime to
ϕ(n), there is no deterministic polynomial time algorithm to compute the solution x to
the following equation

c = xe mod n

Some results on this subject can be found in [10, 1, 19].
The second algorithm, ElGamal, bases its security in the lack of efficient algorithms

for the calculation of discrete logarithm over finite fields. A more formal definition of
the problem is the following: given a prime p and a, b ∈ Z∗

p, there is no deterministic
polynomial time algorithm to compute the solution x of the following equation

b = ax mod p

The aim of this review is to clarify the place that the trapdoor is set for the proposed
SETUPs.
The most widely used public key algorithm is RSA [28]. It was developed by Rivest,

Shamir and Adleman in 1978 and remains secure to many attacks that have been de-
veloped against it. The algorithm has a very clear number theoretic outline and can be
described with elementary number theory. RSA, as every public key algorithm has three
different stages, initialization, encryption and decryption. During the initialization stage,
each entity creates a pair of public and private keys. The procedure is the following

1. Create two large prime numbers p and q.
2. Calculate values n = pq and ϕ(n) = (p− 1)(q − 1).
3. Select a random number e co-prime to ϕ(n). In most applications this is set as

216 + 1.
4. Calculate d, the inverse of e mod ϕ(n), that is ed mod ϕ(n) ≡ 1.

Then the public key is the pair (e, n) and is published, while d is the private key. The
encryption and decryption processes are very similar. If Alice wants to send Bob message
m, then all Alice has to do is find Bob’s public key (e, n) and send him the message c,
where

c ≡ me mod n

To decrypt the message c, Bob uses his private key d and calculates

cd mod n

Since the order of multiplication group modn is ϕ(n) and

ed mod ϕ(n) ≡ 1

we have that:

cd mod n ≡ (me)dmod n ≡ med mod n ≡ m1 mod n ≡ m

ElGamal is a public key encryption algorithm, developed by Taher El Gamal [13] in
1985 and its security is based on the difficulty of calculating discrete logarithm over finite
fields. In the initialization of the algorithm, we first pick a big random prime p and set G
the cyclic multiplicative group (Z∗

p,×) and a generator g of this group. We pick a random
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x ∈ {2, 3, ..., p− 1} and calculate h = gxmod p. The private key is x, while the public key
is the triple (p, g, h). The encryption process is the following. If entity B wants to send
message m to entity A, then it obtains A’s public key and picks a random r ∈ (Z∗

p,×).
Afterwords, B calculates values c1 and c2, where

c1 = gymod p

c2 = mhymod p

and sends (c1, c2) to A.
For the decryption process, A on receiving (c1, c2), decrypts the message, by calculating

the value c2c
−x
1 mod p to obtain message m. This works because:

c2c
−x
1 ≡ mhy(gy)−xmod p

≡ m(gx)y(gy)−xmod p

≡ mgxyg−xymod p ≡ m

4. Previous work. We start this section with a definition of SETUPs. A. Young and
M. Yung, have the following definition [34, 32]:

Definition 4.1. Let C be an honest black box cryptosystem that conforms to a public spec-
ification. Let C’ be a dishonest version of C that contains a publicly known cryptotrojan
algorithm, that was implemented by an attacker A, and that may contain secret seeding
information that is not publicly known. Cryptosystem C’ constitutes a SETUP version of
C if the following properties hold:

1. C and C’ run in polynomial time.
2. The outputs of C and C’ are indistinguishable to all efficient probabilistic algorithms,

except for the attacker who can always distinguish and ...
3. The outputs of C are confidential to all efficient probabilistic algorithms and do not

compromise the cryptosystem that C implements.
4. The outputs of C’ are confidential to all efficient probabilistic algorithms except for

the attacker A and do not compromise the cryptosystem that C’ implements.
5. With overwhelming probability the attacker A can decrypt, forge or otherwise crypt-

analyze at least one private output of C’ given sufficient number of public outputs
of C’.

The above definition is not as insightful as to what a SETUP is realy like, so it is more
than appropriate to give an elementary example. Let’s suppose that we want to create a
SETUP for RSA. The attacker should be able to find the private key d efficiently, when
all that he can get from the client is his public key pair (e, n). Let’s suppose that the
attacker has a secure keyed hash function H, then he can alter the key generation of the
private key pair as follows.

1. Create two large prime numbers p and q.
2. Calculate values n = pq and ϕ(n) = (p− 1)(q − 1).
3. Set d = H(k, n), where k is the attacker’s key. While gcd(d, ϕ(n)) ̸= 1

(a) n = n+ 1,d = H(k, n)
4. Calculate e, the inverse of d mod ϕ(n), that is ed mod ϕ(n) ≡ 1.

It is more than obvious from their definition, that e, d may switch places. The key
generation procedure above creates a random n of arbitrary length and two random
looking exponents e and d, with ed mod ϕ(n) ≡ 1. The attacker can now easily find
the private key d, by calculating H(k, n). If this is not the case, he tries a few more times
with H(k, n+ 1), H(k, n+ 2) etc.
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Figure 3

This SETUP, despite its simplicity, has an inherent flaw that does not allow it to be
used. The SETUP can only work with e and d that it creates and not with fixed e, as it
happens in many applications.
It is clear, that this hashing technique can easily be ported to ElGamal encryption

algorithm, creating a secure SETUP. In this case, we have the same key generation pro-
cedure with the original one, with only one alternation. Instead of picking a random x,
the attacker uses his secure hash function H to pick x = H(p||g), where || denotes the
concatenation operator.
Several SETUPs have been proposed for the public key algorithms. The beginning

was made with Anderson [2] in 1993, which Kaliski proved to be prone to attacks later
the same year [20]. Young and Yung, apart from setting formal definitions and setting
the new grounds for the foundations of kleptography, introduced improved methods for
SETUP with PAP (Pretty-Awful-Privacy) [32, 33]. A simpler method has been proposed
by Crepeau and Slakmon [11]. A revised SETUP of Young and Yung is given in [30].
For more on the applications of kleptography and generaly of malicious cryptography the
reader may refer to [32, 31, 35, 14].
The two new SETUPs that are being presented in this work show the high dependability

of SETUPs on number theory. Moreover, by studying possible attacks, we are able to
detect and defend ourselves from other similar attacks.

5. The four square method. The SETUP that is presented in this section tries to take
advantage of the Euler’s identity we stated in a previous section. According to it, we have
an identity which may lead us to a factorization of a big integer, under certain restrictions.
The restriction is to bound the values of certain variables in the Euler’s identity, up to a
certain value. Then if we decompose the product properly, its prime factorization will be
easily found.
Before presenting this SETUP, it is necessary to make a reference to Rabin and Shal-

lit, who propose in [29] two randomized algorithms for decomposing integers as sum of
squares. The first algorithm aims to the decomposition of integers as sum of two squares
and has complexity of O(log2n). The second one has complexity O(log2n loglogn) and it
is made for decomposing integers as sum of four squares. Both of them are randomized
algorithms, hence we shall use three keyed pseudo-random number generators namely
Gen1, Gen2 and Gen3, with keys k1, k2 and k3 respectively. This way, we create a keyed
algorithm for the decomposition of an integer as sum of four squares which we call RSK ,
Figure 5. This means that each key triplet K = (k1, k2, k3) decomposes differently an
integer.
The SETUP is the following. Let’s suppose that we have a mechanism M that honestly

creates primes. M provides us with p and q, that their product n conforms to every
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standard of RSA encryption referred above. From Lagrange’s theorem we have that n
can be written as a sum of squares of four integers. We apply RSK to n to find a, b, c
and d, thus:

n = a2 + b2 + c2 + d2

We can now form the following system of equations:

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y22 + y23 + y24) = a2 + b2 + c2 + d2

a = x1y1 + x1y1 + x1y1 + x1y1

b = x1y2 − x2y1 + x3y4 − x4y3

c = x1y3 − x3y1 + x4y2 + x2y4

d = x1y4 − x4y1 + x2y3 − x3y2

p = x2
1 + x2

2 + x2
3 + x2

4

q = y21 + y22 + y23 + y24
Of course this is a non-linear system of 7 equations and 8 variables. In order to simplify

it, we set a base B = (b1, b2, b3) which determines the maximum values of variables x1, x2

and y1respectively. By using every possible value of x1, x2 and y1 from base B, we
can solve the remaining equations for x3, x4, y2, y3 and y4 efficiently. For the sake of
simplicity, the equations to be checked have been omitted, yet they can easily be produced
using a mathematical application like Mathematica or Matlab. If the system of equations
is not solvable, a new pair of p and q is generated from M and the procedure is repeated
until a proper pair is found.

It may seem that setting a threshold to values x1, x2 and y1 would eliminate many
decompositions, yet there are plenty such forms that meet our constrains. Let’s suppose
that we have a big prime q and set 0 ≤ y1 ≤ 100 then q − 1002 ∼= q and we want to
count how many representations as sum of three squares q − 1002 has. From the proved
theorem, there are about 2π

√
q such representations. So totally we have about 200π

√
q

representations for which

q = y21 + y22 + y23 + y24

0 ≤ y1 ≤ 100

and we have n = pq.
A base B = (100, 1000, 100) suggests that when prime p is expressed as a sum of four

squares, then the square of an integer of at most 100 and a square of an integer of at most
1000 appear. On the same time, q in its sum of squares representation has the square of
an integer of at most 100. The restrictions of this base can be easily fulfilled, applying in
worst case scenario 100× 1000× 100 = 10, 000, 000 calculations for solving the system of
equations, which can be thought in many cases an affordable cost.

The attack is quite obvious again, the attacker finds the client’s public key and decom-
poses it with RSK . Knowing that for this decomposition, the restrictions of B are met,
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Algorithm 1 The pseudo-code of the proposed algorithm.

• while p is not prime
– r1 = random integer in (0, 3

√
N − 1)

– p = (a1 + r1)
E mod N ||r1

• while q is not prime
– r2 = random integer in (0, 3

√
N − 1)

– while r1r2 >
3
√
N − 1

∗ r2 = random(0, 3
√
N − 1)

– q = (a2 + r2)
E mod N ||r2

• return (p, q)

he tries to solve the system of equations for every possible triplet of the bounded values
x1, x2 and y1.

6. SETUP based on Coppersmith’s theorem. The second SETUP that is presented
in this work uses Coppersmith’s theorem in order to hide its trapdoor. This theorem
enables an attacker to solve efficiently non-linear systems of equations, under certain
restrictions. In the proposed SETUP scheme, the generation of the primes p and q is
tampered to contain a random value and the attacker’s key. The SETUP creates a product
n = pq, whose first bits follow a certain non-detectable pattern.
Coppersmith’s theorem allows an attacker knowing the upper half bits of the two prime

factors to efficiently factor n. The presented SETUP needs the creation of the attacker
key, which is composed by a secret RSA key (E,D,N) and two integer values a1 and a2.
To embed the backdoor in the client’s RSA key, the attacker tries to find primes p and

q of the following form:

p = (a1 + r1)
E mod N ||r1

q = (a2 + r2)
E mod N ||r2

where r1 and r2 are two random integers, whose magnitude will be determined later on
and || represents the concatenation operator. The outline of the algorithm is illustrated
in algorithm 1.
This scheme works because if the attacker wants to recover the prime factorization, he

may use Coppersmith’s theorem to solve one binomial equation. To create the equatiom
we first substitute p and q in the equality n = pq. So we have that:

n = pq = [(a1 + r1)
E mod N ||r1] ∗ [(a2 + r2)

E mod N ||r2]

If we set r1 and r2 to be k bits long, then we can rewrite it as:

n = [(a1 + r1)
E mod N ∗ 10k + r1] ∗ [(a2 + r2)

E mod N ∗ 10k + r2]

Now, applying mod N to both sides, we have that:

n mod N ≡ [(a1 + r1)
E ∗ 10k + r1] ∗ [(a2 + r2)

E ∗ 10k + r2]

which is an equation on two variables r1 and r2 of degree 2E. For the sake of simplicity,
we set x = r1 and y = r2, with their upper bounds, being X and Y respectively. In order
to be able to have as many possible r1 and r2, while being able to solve the equation using
Coppersmith’s theorem we require E = 3 so that

XY < M2/2·3 =
3
√
M
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where M = maxi,j|pij|X iY j. Making the substitutions, the equation to be solved is the
following:

102ka31a
3
2 − n+ 10ka32x+ 3 · 102ka21a32x+ 3 · 102ka1a32x2

+102ka32x
3 + 10ka31y + 3 · 102ka31a22y + xy + 3 · 10ka21xy

+3 · 10ka22xy + 9 · 102ka21a22xy + 3 · 10ka1x2y + 9 · 102ka1a22x2y

+10kx3y + 3 · 102ka22x3y + 3 · 102ka31a2y2 + 3 · 10ka2xy2

+9 · 102ka21a2xy2 + 9 · 102ka1a2x2y2 + 3 · 102ka2x3y2

+102ka31y
3 + 10kxy3 + 3 · 102ka21xy3 + 3 · 102ka1x2y3

+102kx3y3 ≡ 0 mod N

Since we do not know the coefficients after their reduction modulo N, we may assume
that M = N − 1, thus

XY < 3
√
N − 1

If we want X and Y to be of the same magnitude we finally have that

r1, r2 <
6
√
N − 1

which means that if the public key of the attacker is small, let’s say that it has 512 bits
length, then for each r1 and r2 we have about 2

85 possible values to select. The wide range
of random seeds leads to a very wide selection of possible primes. Moreover, since both
the upper and the lower part, is randomized, it is impossible without the knowledge of the
attacker’s key to recover or even detect the SETUP. As it is obvious from the test results
of the SETUP, that will be illustrated in the following section, the effective randomization
that it provides, enables the quick creation of possible primes.

7. Experimental results. In this work, only the experimental results of the second al-
gorithm are included. The reason for excluding experimental results of the first algorithm
is that the process to find proper primes p and q is significant and may reveal the existence
of the SETUP. However, the same does not apply in the case of the second algorithm.
The key generation tests were made on a system with Intel Core2 Quad CPU Q9400 at
2.66GHz with 4 GB RAM, running on Ubuntu 10.04, with kernel 2.6.32-24 and using
Wolfram Mathematica 7. Figures 4 and 5 present the time it takes to create RSA keys
of 1024 bits length with an honest algorithm and the SETUP. The average time for the
honest key creation is about 0.156 secs and of course is comparable to 0.17 secs of the
presented SETUP. The same applies to their standard deviation, which is 0.03 secs and
0.11 secs respectively.
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Figure 4. Honest RSA key creation time for 1000 keys.

Figure 5. RSA keys creation time with SETUP.
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8. Conclusions. Creating and studding SETUPs might of course seem like working
against security, on the side of the attackers, and many arguments can be said about
that. In any case the reality is that in order for someone to understand how to defend
against attackers, he must study how they are attacking or how they might attack. Klep-
tography exposes the dark side of cryptography. It tries to identify and exploit the risks
that a user is exposed to by the use of encryption algorithms, mechanisms and devices,
where companies or developers are hidding the code being used. Therefore, when it comes
to using encryption algorithms, specially if their implementation remains a blackbox to
the user, then the user must trust the provider of this implementation.

The two presented SETUPs can be applied to all RSA like factoring based encryption
algorithms. The first algorithm might be more time consuming, yet the second one is
comparable to the honest one, as it provides not only good key creation times, but a wide
range of primes to be selected thus makes it untraceable. The use of random numbers, in
conjunction with modular exponentiation, circumvents the problem of embedding secret
information in the key and on the same time creating primes with no identifiable pattern

Both algorithms, for key extraction, due to their number theoretic roots, require the
solution of some modular equations and can be implemented efficiently. It should be
noted that he backdoor embedding process in both algorithms, does not undermine the
strength of the encryption algorithms from outside attacks, therefore the user remains
secure from others. Not only these SETUPs are untraceable, but even if someone tries to
exploit the possibility of their existence, hewill fail, unless of course if he can guess the
used key.
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