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Abstract. The task of automatic gesture segmentation is highly challenging due to the
computational burden, the presence of unpredictable body motion and ambiguous nonges-
ture hand motion. In this paper, a new approach is developed using Hausdorff-based
model tracking technique for the application of real-time human-computer interaction.
This paper proposed a three-phase model tracking approach. It consists of two main
stages; one is the motion history analysis to classify dynamic gesture into preparation,
retraction and nucleus state based on temporal relationship. The other is model tracking,
which tracks signer model and object model with different constraint based on the classi-
fied state. Finally, gesture model is extracted based on matching object model and signer
model and the hand gesture region is segmented from the gesture model. Experiments
are performed to test the robustness of gesture segmentation under various hand scale
and complex background. The segmentation error rate and computational complexity are
also analyzed to demonstrate the proposed three-phase model tracking approach can be
applicable to real-time human-computer interaction system.
Keywords: Hausdorff distance, motion analysis, model track, hand gesture segmenta-
tion, humancomputer interaction

1. INTRODUCTION. The use of hand gestures provides an attractive to cumbersome
interface devices for human-computer interaction (HCI). In particular, visual interpreta-
tion of hand gestures can help in achieving the ease and naturalness desired for HCI. This
motivated a number of researchers concerned with the computer visionbased analysis and
interpretation of hand gestures [1]. An important application of machine version, there-
fore, is to extent the interface between man and machine, allowing machine to directly
perceive what its operator is doing. The ability to follow a hand moving in the space and
to recognize a particular motion as a meaningful gesture is an essential step in intelligent
system design and natural human-machine interaction.
To extract and recognize gestures, researches have used various techniques ranging

from hidden Markov modeling (HMM), artificial neural networks (ANN), dynamic timing
warping (DTW) and others techniques reviewed in [2][3][4][5]. However, these approaches
require the signer to wear specialized gloves or when the background color is restricted. It
reveals that these systems do not provide excellent means of human-computer interaction.
To overcome the limitations of the individual cues, fusion of cues is explored for face
localization in video, but not fully exploited for hand localization [1].
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This paper concentrates on the problem of automatically separating hand location from
the gesture sequence. Pure vision-based solutions usually rely on skin color and/or motion
information to detect hands [6]-[8]. However, approaches based on predefined skin color
models suffer from sensitivity with respect to changing illumination conditions. Motion-
based hand segmentation approaches rely on the assumption that features important for
gesture will be associated with motion. However, a usable HCI related applications require
on-line procedure and real-time performance. Thus, reducing the desirable appearance
based features or models of the gestures to decrease computational complexity have to be
considered. This paper proposes an efficient model, named signer model, which can be
automatically constructed without prior information. This idea comes from the degree
of boundaries variation when the signer performs gesture. The boundary of the body
will have less variation than the boundary of hand/arm parts. Fig 1(b) and (c) show an
example on the degree of boundaries variation. Thus one can establish a signer model,
which comprises model points in the signer except the hand/arm points, by tracking two
different boundaries. Fig 1 shows the concept of the signer model construction. The
signer model is an efficient feature because one can extract the hand/arm edge points by
matching edge points between signer model and object model from the inputted sequence.

This paper develops a three-phase model tracking approach (TPMT). It consists of
two main components. The first component, motion history analysis, classifies inputted
gesture frame into three states, said as preparation, retraction and nucleus state, based on
temporal relationship. The second component tracks signer model and object model with
different constraint based on the classified state. Gesture model is then extracted based
on matching object model and signer model. Finally, hand gesture regions are segmented
from the gesture model.

2. MOTION HISTORY ANALYSIS. Human gestures are the dynamic process. It is
important to consider the temporal characteristics of gestures. This may help in temporal
segmentation of gestures from other unintentional hand/arm movements. In terms of our
general definition of hand gestures, this is equivalent to determine the gesture interval.
[1] calls this interval a gesture state. It has established that three phases make a gesture:
preparation, nucleus, and retraction. Fig. 2 shows an example that dynamical represen-
tation of a gesture is separated into frames associated with these three states respectively.
The preparation state consists of a preparatory movement that sets the hand in motion
from some resting position. In the retraction state, the hand approach consists of a posi-
tion for presenting a gesture. Finally, the nucleus of a gesture has some definite form and
enhanced dynamic qualities. This involves classifying each inputted frame based on the
performed gesture into preparation, retraction and nucleus state.

2.1. Concept. This paper uses a period of motion, named motion history, to identify
gesture state in each inputted frame. Specifically, the proposed TPMT uses the statistic
of motion information m(t) and r(u, v) of the consecutive frame to denote three gestures
state on-line. m(t) is noted as the summation of the t-th difference image in temporal
domain

m (t) =
∑
x∈I

dt (x) (1)

where dt (x) presents the difference image in position x of the frame I at time install t.
r(u, v) is denoted as the difference of motion information within a period of time install
u to v

r (u, v) = m (u)−m (v) (2)
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A gesture sequence may contain several distinct and important gestures. In our ob-
servation, the nucleus state can be identified by local minimum of r(u, v), due to the
characteristics of held gestures to emphasize their important. The preparation state can
be identified by the increased r(u, v), and the retraction state can be identified by the
decreased r(u, v).

2.2. On-line motion history analysis. Since the hand/arm will have larger motion
than the resting parts in the gesture sequence, the local minima of motion information
can be obtained by observing differences of the motion information around time install
t that converge to zero. Unfortunately, the nucleus state does not always take place at
every local minima of motion information in reality, because signers will not completely
stop their hand/arm when emphasizes the important of the gesture in reality. Besides,
other factors such as illumination and noise may also affect the nucleus state judgment
using the local minimum of motion information.
To overcome this problem, an additional state, named fleet nucleus state, is introduced.

Fleet nucleus state deals the noise, illumination and body motion. It needs a counter to
determine the period of the nucleus state when local minima have been detected. A
nucleus state will be brief when it is caused by noise, illumination and body motion.
Otherwise, a nucleus state will keep long when it is causied by actual gesture appearance.
This paper proposes a finite state machine with the difference of the motion information,
and judges the gesture state in each time install t. The four-state transition diagram
is shown in Fig 3, where each state stands for a gesture state and comprises respective
trigger conditions

1) Preparation state: in this state, a transformation to retraction state will only be
triggered. This implies that the hand motion will start decreasing. Thus, one can
judge whether the retraction state can be triggered by examining the ratio r(t, t− 1).
If the ratio r(t, t− 1) becomes negative, then a retraction state is triggered.

2) Retraction state: in this state, a transformation to fleet nucleus state will only be
triggered. This implies that the hand motion is at local minima. Thus, one can
judge whether the nucleus state will be triggered by examining the ratio r(t, t − 1).
If the ratio r(t, t − 1) becomes positive, a fleet nucleus state is triggered. While fleet
nucleus state is triggered, swing and base parameter have to be determined. Base
is determined as m(t − 1) and swing is determined as follow: if m(t − 1) is smaller
than Tcontext and max(r(t, t− 2), r(t− 1, t− 3)) is smaller than m(t− 1), then swing
is determined as max(r(t, t− 2), r(t− 1, t− 3)); else if m(t− 1) is smaller than Tcontext

and max(r(t, t− 2), r(t− 1, t− 3)) is larger than m(t− 1), then swing is determined
as m(t − 1); else swing is determined as min(r(t, t − 2), r(t − 1, t − 3)). These two
parameters determine an oscillation range of motion information under incomplete
stillness nucleus gesture during nucleus and fleet nucleus state.

3) Fleet nucleus state: in this state, three transformations will be triggered. The first
one is a transformation to retraction state, if m(t− 1) is larger than base + swing or
m(t − 1) is smaller than base − swing, and ratio r(t, t − 1) is positive. The second
one is a transformation to preparation state, if m(t − 1) is larger than base + swing
or m(t − 1) is smaller than base − swing, and ratio r(t, t − 1) is negative. These
two cases imply that the triggered local minimum of motion information is caused by
noise, illumination. The third one is a transformation to nucleus state, if the fleet
nucleus state keeps triggered over four consecutive frames. This case implies that the
meaningful gesture is in appearance

4) Nucleus state: in this state, a transformation to preparation state will only be triggered.
This implies that the hand motion will start increasing. One can judge whether the
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preparation state will be triggered by satisfying one of following two rules. One is
the continuous positive period over four consecutive frames. The continuous positive
period is a quantity presenting how many continuous positive ratios appeared in a
period of frames. The continuous positive ratio is a sample frame where ratios satisfy
that r(t, t−1), r(t−1, t−2), r(t−2, t−3) are positive and r(t, t−1) > r(t−1, t−2) >
r(t− 2, t− 3). The other is m(t− 1) is larger than base+ swing or m(t− 1) is smaller
than base− swing.

3. MODEL TRACKING. The signer model and object model are tracked and matched
to each other after gesture states have been obtained by motion history analysis. How-
ever, gray scale images are not normally suitable for template matching because they are
too sensitive and too heavy in computational load. Instead, it is common to use binary
edge images with fewer computations. The edge points of the models are not restricted
to object boundaries, but they can also be in the interior such as eyes and mouth in a
face. In TPMT, the edge images are obtained by the Canny operator [9]. Two different
edge images are applied to TPMT, one is current edge model obtained by Canny oper-
ator at the current frame It. The other is object model obtained by Canny operator at
difference image dt. Moreover, a robust matching method must be able to handle binary
models that are undergoing translation, rotation, and changes in shape. This excludes
basic template matching where the new position is determined by the highest correlation
between the model and subsequent frames. The Hough transform has been successfully
applied to the detection of arbitrary shaped binary edge points [14]. However, it comes
at a high computational cost, especially for a multidimensional Hough accumulator space
that includes translation, rotation, and scaling. The Hausdorff approach, which matches
the interested binary model against subsequent frames by minimizing the Hausdorff dis-
tance, is adopted. This approach is computationally efficient and robust to noise and
changes in shape.

3.1. Signer model tracking phase. While edge plays an important role in extracting
both the physical change of the surface of signer and the surface of gesture in the real
scene, segmentation of the gesture in sequence suffers to separate moving edge belonging
to hand/arm from great deal of moving edges. One of the simple ways is to construct a
signer model SE which consists of body/head edge points except hand/arm edge points.
The constructed signer model is used to compare with the object model in the nucleus
state. Since the signer model consists of only body/head edge points, the hand/arm edge
points can therefore be separated as those that deviates the signer model. Accordingly, the
extracted hand/arm edge points are the edges corresponding to the gesture. Therefore,
the key point in our algorithm is to obtain the edge points in object model corresponding
to the edge points in the signer model.

The signer might rotate or change its shape as it signs through the video sequence. As
a consequence the corresponding edge points in the signer model must be updated during
the preparation state and the retraction state. More precisely, the model is actually not
updated, but a new model is derived by selecting an appropriate set of edge points from the
object model of the current difference image. Considering two frames and their difference
images in the preparation state and the retraction state respectively as the example shown
in Fig. 4, the pixels associated with considerable difference value are hand/arm region
and the boundaries of head and body. This implies that the object model of the previous
difference image contains an important cue for choosing the set of edge points forming
the new signer model. The edges associated with the head/body of signer tend to enforce
temporal continuity since the motion of head/body is small while a person is gesturing in
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the preparation state and the retraction state. On the other hand, the hand/arm edges
are much more discontinuous than the head/body edges because the motion of hand/arm
is very large during these two states, as shown in Fig. 4.
As the matching block in Fig. 5, the object model of the difference image in the pre-

vious preparation state is matched against the object model x of the difference image in
the current retraction state. Matching is performed on edge points because it is computa-
tionally efficient and insensitive to the changes in illumination. It is also a natural choice
given that binary models represent signer in this paper. Notes that e is the representative
of the signer for the previous difference image, and our goal in signer model tracking phase
is to find its position in the current difference image. To this end, the Hausdorff distance
is chosen as matching criterion [10]. It is a simple but powerful measure for comparing bi-
nary images or positions. It is very robust when signers are partially occluded, rotated, or
changed with their shape. The Hausdorff distance H(O,R) between the objective model
O and the reference model R is illustrated in Fig. 6 and given by

H (O,R) = max {h (O,R) , h (R,O)} (3)

with

h (O,R) = max
o∈O

min
r∈R

∥o− r∥ (4)

and

h (R,O) = max
r∈R

min
o∈O

∥r − o∥ (5)

Thus, for every model point o ∈ O , the distance to the nearest edge pixel r ∈ R is
calculated, and the maximum value is assigned to h (O,R) . Similarly, for each edge
point r ∈ R , the distance to the nearest model point o ∈ O is computed and h (R,O)
is set to the maximum distance. Finally, the Hausdorff distance is the larger of the two
ones, and every point in the objective model O must be within the obtained Hausdorff
distance of some point in the reference model R.
A shortcoming of the definition in (4) and (5) is the large impact that outlying model

points will lead to a large Hausdorff distance, even if all other points perfectly are matched.
Therefore, it is preferable to use the generalized Hausdorff distance [10], as it does not
suffer from this problem. Instead of using the maximum value in (4), the distances are
sorted in ascending order and the k-th value is chosen. Similarly, the l-th value of the
ordered distances in selected in (5). With the parameters k and l, we can choose how many
model points are the near edge points and vice versa. The best match is now found by
minimizing the Hausdorff distance between the objective model O and the reference model
R for all translations of the reference model relative to the objective model. The smallest
distance indicates the new position of the tracked edge point. Several suggestions for
efficient implementation are presented in [10]. The main idea assumes that the Hausdorff
distance is smaller than a specific threshold so that bad matches can be ruled out early.
Obviously, matches can only be found if the Hausdorff distance is indeed smaller than the
specific threshold.
The signer model update process is illustrated in Fig. 5. We first apply motion history

analysis to find retraction and preparation states. When preparation state is determined,
the first difference image in that state is applied to Canny operator to obtain difference
edges and keep the resulted difference edges DEp as the object model for the prepara-
tion state. Similarly, the same procedure is applied for the retraction state when it is
determined, and its resulted difference edges DEr are the object model for the retraction
state. While both two difference edges are determined, we then construct a signer model
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by tracking these two moving edges using generalized Hausdorff distance, i.e.

SE =

{
o ∈ DEr| min

r∈DEp

∥o− r∥ ≤ Ts

}
(6)

where Ts is the threshold value for the signer model. For the next gesture, the same
procedure is used to update the signer model.

3.2. Object model tracking phase. This paper models a gesture as preparation, re-
traction and nucleus state in turn, since a gesture is a series of postures over a time span
connected by motion. During the preparation state and the retraction state, the signer
model is constructed by tracking both difference edges in the preparation state and the
retraction states. After reconstructing signer model, the gesture model can be extracted
by matching the object model and signer model in the nucleus state.

The object model tracking procedure is active when the nucleus state is determined.
As the block diagram shown in Fig. 5, we first use Canny operator to extract the current
edge Et from the current frame It and the difference edge DEt from difference image. The
set of MEt presents the object model in the t-th frame. The points in MEt are edges of
the moving objects. If DEt denotes the set of all pixels belonged to the moving edge from
the difference image, the object model generated by moving edge is given by selecting all
edge pixels within a small distance Tc of DE and denoted as MEmoving, i.e.

MEmoving
t =

{
o ∈ Et| min

r∈DEt

∥o− r∥ ≤ Tc

}
(7)

In addition, a previous frames moving edges are referred to detect still edges in the current
frame. These still edges are belonged to moving edges and denoted as MEstill i.e.

MEstill
t =

{
o ∈ Et| min

r∈MEt−1

∥o− r∥ ≤ Ts

}
(8)

The final edge modelMEt is for current frame. It is expressed by combining theMEmoving

and MEstill

MEt =
{
MEmoving

t ∪MEstill
t

}
(9)

3.3. Gesture model tracking phase. The detected MEt consists of two parts. One
is the edges belonged to gesture and the other is edges belonged to body/head of the
signer. In order to extract gesture region, the gesture edges and the body edges need to
be separated. Based on the SE model constructed before, the body edges in the MEt are
separated by selecting all edge pixels within a small distance Tb of SE, i.e.

BEt =

{
o ∈ MEt| min

r∈SE
∥o− r∥ ≤ Tb

}
(10)

Then we can obtain the gesture model GE by

GEt = {o ∈ MEt|o /∈ BEt} (11)

With the GEt be detected, the gesture is ready to segment. The procedure [13] that
extracts relevant regions to edges is employed to extract the gesture region by the GEt.
The horizontal candidates are declared as the region inside the first and last edge points
in each row and the vertical candidates for each column. After finding both horizontal
and vertical gesture candidates, intersection region through logical AND operation are
further processed by morphological operations [11].
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4. EXPERIMENTAL RESULTS. We use a video database of i6-Gesture database
[12] and MH sequence. All image sequences in i6- Gesture database have been recorded
by two different view, hand view and body views. Sequence MH is a home-made gesture
sequence. Fig. 7 shows the value of motion information for each frame of a sequence in
i6-Gesture database, and the first frame of each state detected by motion history analysis.
The segmented gesture from the first frame of the nucleus state is also obtained. Note
that the motion information of the segmented frame close to the local minimum is the
most representative gesture than others in preparation and retraction state. The motion
information of the hand view shown in left figure is more stable than the body view, where
the only local minimum falls in nucleus state. The body view has more than one local
minimum, where one is in nucleus state and the other caused by illumination change is
in preparation state. Despite illumination change happened, the proposed motion history
analysis classifies each inputted frame correctly. Besides, the computation load is also
reduced, since our algorithm only segments gesture during the nucleus state. Fig. 8
shows the value of motion information for each frame of MH sequence, and the first
frames of two nucleus states and a fleet nucleus state detected by motion history analysis.
The fleet nucleus state involves that the transition from the current gesture to the next
gesture. Despite a local minimum of motion information is detected, the proposed motion
history analysis can determine it as a transitional gesture and avoid it to be considered
as the representative gesture.
Fig 9 shows three gestures extraction results on MH sequence. The original frames

associated with each extracted gesture are shown in first column. The current edge
image of each original frame, the difference edges determined as gesture edges by the
signer model, and the extracted gestures are shown in second, third, and fourth column
respectively. In the initial two gestures, the signer model contains disturbances which
contain some part of edges of moving head. In the third gesture, the signer model contains
only few edges of moving head. This is because the TPMT can track the head/body edges
while excluding the hand/arm edges. Therefore, the signer model will become robust after
a short initial period. Also note that the gesture images are successfully extracted despite
that the difference edges for gesture are disturbed. This is because most of edges of head
are discontinuous, the formed intersection regions are small and removed by morphological
operations.
Numerical evaluation is usually done in terms of the number of false negatives (the

number of gesture pixels that were missed) and false positives (the number of other
pixels that were marked as gesture). The ground truth is achieved by manually labeling
some frames from the video sequence. The gesture extraction results of Lab1 1, Lab1 2,
Class 1, Class 2, Lab2 1, and Lab2 2 are shown in first, second, third, fourth, fifth, and
sixth row respectively in Fig. 10. The frame size of hand view is 320 × 240, the frame
size of body view 352 × 288. Each gesture comprises a different background. The first
four columns show frames contained in video sequence, the fifth column shows segmented
results of the fourth column. The numerical evaluation results are given in Table 1. The
error rate of frame is tested by FN + FP/framesize. It is seen that, the average error
rate is below 2%.
All experiments are performed on a Pentium IV 1.8 GHz PC. The run time performance

of the proposed method is about 0.03msec per frame for 320×240 frame size and 0.028msec
per frame for 352 × 288 frame size. This performance is applicable on real-time HCI
applications. Run time analysis show that Canny operator takes nearly 66% of the whole
run time, and Gaussian smooth is the major contributor. Model tracking takes 21% of
the whole run time. The motion history analysis takes the least computation load, which
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takes 7% of the whole run time. This makes the method well-suited to systems with
require real-time processing requirement.

5. CONCLUSION. This paper proposes a TPMP approach to automatically construct
three different models without prior information. The TPMP approach consists of two
main components. The motion history analysis classifies inputted gesture frame into
preparation, retraction and nucleus state based on a history of motion information. The
model tracking component tracks signer model and object model with different constraint
based on the classified state. When the nucleus state is detected, the object model and
the signer model are matched to generate gesture model and segmented hand region from
gesture model. The experiment results show that our proposed algorithm can perform
well in the real scene. The run time analysis demonstrates that the proposed algorithm
is usable on real time HCI applications.
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Figure 1. Two-dimensional binary signer model construction. (a) signer
image. (b), (c) moving edge points derived from different time install. (d)
the constructed signer model points using (b) and (c).

Figure 2. An example of dynamical representation of a gesture.

Figure 3. A four gesture states transition diagram, that model the gesture
state as preparation, retraction, fleet nucleus and nucleus state.

Figure 4. Two frames and its difference image in the preparation state
and the retraction state.
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Figure 5. Block diagram of the proposed gesture extraction algorithm.

Figure 6. Definition of Hausdorff distance.
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Figure 7. The histogram of the motion information for each frame. The
first frame corresponding to each state and the extracted gesture of the first
frame of the nucleus state is shown in upper row.

Figure 8. The history of the motion information for each frame in HM sequence.
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Figure 9. HM sequence and its gesture extraction result. The first column
shows three frames in nucleus state. The current edge image, the difference
edges for gesture, and the extracted gestures are shown in second, third,
and fourth column respectively.
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Figure 10. Image sequences in i6-Gesture database and its gesture ex-
traction results.


