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Abstract. This paper presents a novel physics-based dual deformable model to detect
objects in an image. This model is more efficient than the known methods since it can
detect objects whose boundaries are not necessarily defined by gradient. It minimizes
an energy which can be seen as a particular case of a minimal partition problem. This
energy is used as the model motivation power evolving the deformable model, which will
stop on the desired object boundary. However, the stopping term does not depend on the
gradient of the image, as most of the classical active and deformable contour models, but
instead is related to the image color and spatial segments. Modal analysis is exploited to
solve the deformation equation. Furthermore, the segmentation result produced depends
on the physical characteristics of the model. Different physical characeristics lead to
different segmentation results. The introduced deformable dual model composes of three
interconnected deformable models. In most cases, one model expands from inside to the
desired image features, the other contracts from outside, and finally, the deformation of
the intermediate model is controlled by the two others, via modal analysis, to the desired
image features. The whole model interconnection idea provides a balanced technique with
a strong ability to reject “weak” local minima improving the performance of the segmen-
tation against other known methods. The theoretical properties and various experiments
presented demonstrate that the proposed dual deformable model is better and more robust
than other known methods.
Keywords: Deformable model, dual active contours, modal analysis, deformable curves,
segmentation.

1. Introduction. Image segmentation is one of the first and most important tasks in
image analysis and computer vision. In the computer vision literature, various methods
have been proposed for object segmentation and feature extraction [1]. However, the
design of robust and efficient segmentation algorithms is still a very challenging research
topic, due to the variety and complexity of images.

Since the introduction of snakes [2], active contours have been applied to a variety
of problems in image processing and computer vision such as segmentation and feature
extraction, image registration, shape analysis and modeling, and visual tracking.

The basic idea in active contour models or snakes is to evolve a curve, in order to detect
objects in the image under consideration. For instance, starting with a curve around the
object to be detected, the curve moves toward its interior normal and has to stop on the
boundary of the object. The original snake model was formulated to minimize the energy
functional:
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E(C) = a

∫ 1

0

|C ′(s)|2ds+ β

∫ 1

0

|C ′′(s)|2ds+ λ

∫ 1

0

P (C(s))ds, (1)

where a, β and λ are real positive weighting constants, C : [0, 1]→ R2 is a parameterized
curve, and P (C) is a potential which depends upon some desirable image features. In (1),
the first two terms are internal forces, which control the regularity of the active contour
(curve C), while the potential P attracts the curve C toward the desired boundary.
Normally, the potential P is an edge-function, based on the gradient of the processed
image.

It is common knowledge, that the original snake models had difficulty dealing with
topology changes, since they were dependent upon an arbitrary parameterization of the
curve. Geometric active contour models, such as [3, 4], where introduced shortly after-
wards based on curve evolution theory, which could also handle topology changes very
naturally when implemented using level set methods proposed by Osher and Sethian [5].

The geometric active contour model most closely related to the original snake model is
probably the geodesicactivecontour model [6, 7, 8], which has been based on the curvature
of the image and to an inflationaryforce [9].

Both the original snakes as well as geodesic active contours are prone to getting
“trapped” by extraneous edges due to image noise or texture, yielding many undesirable
local minima of their corresponding energy functionals. As a consequence, initializations
of the models must be very carefully chosen. Depending on the initial placement of the
variational active contour models, whose data-dependent energy functionals are designed
to converge to local minima, active contours could be driven to the “desired” global min-
imum or to any other local minimum due to the noise or complex image structure. Thus,
the already existed active contour algorithms would be enriched with energy functionals
free of any kind of sensitivity to local minima.

Cohen et al. [10, 11] has proposed the minimal path technique, which captures the
global minimum of a contour energy between two fixed user-defined end points. In this
technique, the image is defined as an oriented graph characterized by its cost function,
and the object boundary detection becomes the optimal path search problem between
two user-defined points in the graph. This approach leads the snake-like energy to a
global minimum, avoiding any local minima. However, this technique is semi-automatic,
since it requires the user interference to locate the end-points precisely on the desired
object boundary. Also, the extension of the method to closed curve extraction needs a
topology-based saddle search routine.

Other implementations have also been proposed for capturing more global minimizers
by restricting the search space. Dual snakes, proposed by Gunn and Nixon [12, 13], is
such a method. This method uses two interlinked snakes instead of one. The first is set
inside the desired object and expands, and the second is set outside and moves inward.
The two snakes are interlinked by arc-length and reach the inner and outer boundaries
of the desired object, respectively. Similar methods were also proposed in [14, 15, 16,
17], which restrict their search spaces exploiting normals lengths on the initial contour.
Another approach restricting the search space is the dual-band active contour [18], which
exploits predefined width chosen by the Euclidean distance transform of the initial contour
as a means to restrict the search space. Although these methods may find more desirable
minima for some images, they have several drawbacks. One is the choice of the search
space, i.e., the desired boundary should be included in the search space. Another is that
these methods are restricted to detection of objects with simple topologies.
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All these classical snakes and active contour models are known as “edge-based” models,
since they rely on edge-functionals, depending on the image gradient, to stop the curve
evolution. Also, these models can detect only objects with edges defined by gradient. In
practice, the discrete gradients are bounded and then the stopping function is never zero
on the edges, and the curve may pass through the boundary [3, 4]. If the image under
consideration is very noisy, then the isotropic smoothing Gaussian has to be strong, which
will smooth the edges too. Thus, the performance of the purely edge-based models is often
inadequate. Thus, there has been much research into the design of complex region-based
energy functionals that are less likely to yield undesirable local minima when compared
to simpler edge-based energy functionals. In general,region-based models [20]-[27] utilize
image information not only near the evolving contour, but image statistics inside and
outside the contour as well in order to achieve better performance. Many of these methods
were inspired by the “Region Competition” algorithm presented by Zhu and Yuille [28].
Unfortunately, most of these more “robust” region-based energy functionals assume highly
constrained models for pixel intensities within each region.

This paper deals with the above mentioned problems. It presents a novel physics-based
dual deformable model for image segmentation with better performance than the existing
methods, since it can handle objects whose boundaries are not necessarily defined by gra-
dient. The objects of the image are extracted by the equilibrium state of the deformations
of a 2D finite elementbased model. The dual deformable model evolves and reaches, fi-
nally, the equilibrium state minimizing an energy which can be seen as a particular case of
a minimal partition problem. Deformation equations are solved exploiting modal analysis.
The introduced dual deformable model comprises of three interlinked deformable models.
In most cases, one model expands from inside to the desired image features, the other
contracts from outside, and finally, the intermediate model is deformed by the others, via
modal analysis, to the desired image features. Experiments show that the whole model
interconnection idea provides a balanced technique with a strong ability to reject “weak”
local minima. Furthermore, the physical characteristics of the deformable model deter-
mine how detailed the segmentation would be, as well as, how resistant the model would
be to noise. Also, different image segmentations can be achieved by the same method
only varying the physical characteristics of the dual deformable model used.

The proposed approach was motivated by the technique presented in [29], which deter-
mines correspondences between objects features using eigen-decomposition analysis. How-
ever, the proposed method determines the objects of an image, exploiting the frequency-
based features, obtained by the free vibrations of a physics-based modeling [30, 31, 32]
adapted on the contour of the objects under consideration. Modal features using physics-
based models assist our method to be robust to noise and shape variations.

The remainder of the paper is organized as follows. The 2D physics-based dual de-
formable model [31] is presented in Section 2. In Section 3, the motivation energy min-
imization problem is introduced. Experimental results are presented in Section 4 and
conclusions are drawn in Section 5.

2. 2D Physics-Based Dual Deformable Model. In this Section, the physics-based
dual deformable model exploiting modal analysis, whose deformations are used in order
to extract the object, will be briefly reviewed. More details regarding the deformation
process and all the adopted assumptions are presented in [31, 32].

Modelling an elastic 2D boundary can be achieved by a single closed chain topology of
N virtual masses on the contour. In our dual deformable model, the term “dual” is not
used as a mathematical concept, but to describe the two models: an interior model (inner)
lies within the region of the desired feature and an exterior (outer) outside it (Figure 1).
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A third one (intermediate model) lies between them. Each model node has a mass m
and is connected to its two neighbors with identical springs of stiffness k. Furthermore,
the three models are coupled using springs with the same characteristics, which cause
the models to be attracted to each other as well as to suitable image features. The ratio
a = k

m
constitutes the so-called characteristic value of the model, which is a constant value

that describes its physical characteristics and determines its physical behavior. When a
increases, the object tends to behave as a rigid one, which means in practice, that the
model can be spatially moved without any deformation. On the other hand, when a
decreases, model tends to be treated as a fully deformable one, which means that each
force affects only the node (mass) it is applied to. Furthermore, these model nodes are
points on the object contour at equilibrium and do not represent interior object regions.
The node coordinates of the model under examination are stacked in vector:

Vt = [vt11, v
t
12, ..., v

t
1N , v

t
21, ..., v

t
2N , v

t
31, ..., v

t
3N ]T , (2)

where N is the number of vertices (masses) of each single model (the dual model has
3N nodes), t denotes the t-th deformation time instance, and vt0,i = [xt1,i, y

t
1,i]

T . The vt0,i

Figure 1. 2D dual model example of 8 nodes per single model (outer, inner
and intermediate) of mass m connected with identical springs of stiffness k.
Five forces are acting on the model, that produce model deformation.

represents the i-th node of the outer model, the vtm,i the i-th node of the intermediate
model and vti,i the i-th node of the inner model. The model under study, is a physics-
based system governed by the fundamental equation of dynamics, which can be written
in a matrix form [33]:

Mü + Cu̇ + Ku = f t, (3)

where u = vt− vt0 is the nodal displacements vector. M, C, and K [31, 32, 33, 34] are the
mass, damping, and stiffness matrices of the model, respectively, and ft is the external
force vector, usually resulting from the attraction of the model by the object contour
(sometimes based on the Euclidean distance between the object contour and the node
coordinates [35, 36]). Equation (3) is a finite element formulation of the deformation
process.
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Instead of solving directly the equilibrium equation (3), one can transform it by a
change of basis:

u = Ψũ, (4)

where Ψ is the square nonsingular transformation matrix of order 3N to be determined,
and ũ is referred to as the generalized displacement vector. One effective way of choosing
Ψ is setting it equal to Γ,a matrix whose entries are the eigenvectors of the generalized
eigenproblem:

Kγi = ω2
i Mγi. (5)

Thus, equation (4) is transformed to:

u = Γũ =
3N∑
i=1

ũiγi. (6)

Equation (6) is referred to as the modal superposition equation. The i-th eigenvector, i.e.
the i-th column of Γ, denoted by γi, is also called the i-th vibration mode, is also called
the i-th vibration mode, ũi(the i-th scalar component of ũ) is its amplitude, and ωi is the
corresponding eigenvalue (also called frequency). Using the standard Rayleigh hypothesis
[31], matrices K, M and C are simultaneously diagonalized:{

ΓTMΓ = I
ΓTKΓ = Ω2 , (7)

where Ω2is a diagonal matrix whose elements are the eigenvalues ω2
i and I is the identity

matrix. Thus, in the modal space the governing matrix-form, equations decoupled into
3N scalar equations, by substituting (6) into (3) and premultiplying by ΓT :

¨̃u + C̃̃̇u + Ω2ũ = f̃ , (8)

where C̃ = ΓTCΓ and f̃ = ΓTf . Solving these equations at time t leads to ũ and the
displacement u of the model nodes is obtained by the modal superposition equation (6).

In practice, we wish to approximate nodal displacements u by ũ, which is the truncated
sum of the 3N low-frequency vibration modes, where 3N ′ � 3N :

u ≈ û =
3N ′∑
i=1

ũiγi (9)

Eigenvectors (γi)i=1,...,3N ′ form the reduced modal basis of the system. This is the major
advantage of modal analysis: it is solved in a subspace corresponding to the 3N truncated
lowfrequency vibration modes of the deformable structure [31, 32, 37]. The number of
vibration modes retained in the object description, is chosen so as to obtain a compact
but adequately accurate representation. A typical a priori value for N , covering many
types of standard deformations is equal to one quarter of the number of the vibration
modes (N).

An important advantage of the formulations described so far, in the full as well as
the truncated modal space, is that the vibration modes φi and the frequencies ωi of a
chain topology have an explicit expression [31] and they do not have to be computed
using eigen-decomposition techniques (due to the dimensions of matrices K and M). The
eigenvalues (frequencies) are given by:

ω2
i′,i = 4a

[
sin2

(
πi′

6

)
+ sin2

(
πi

N

)]
, (10)
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and the eigenvectors (vibration modes) are obtained by:

λi′,i =

[
..., cos

π (2i′ − 1) j′

6
cos

2πij

N
, ...

]T
, (11)

where i ∈ {1, 2, ..., N}, i′ ∈ {1, 2, 3}, and j ∈ B(N), j′ ∈ {0, 1, 2}. B(N) is the first
Brillouin zone [31] and is equal to

{
−N

2
+ 1, ..., N

2

}
for N even, and

{
−N−1

2
, ..., N−1

2

}
for

N odd. This is one of the main reasons we have chosen and used the dual model topology
to parameterize our objects under examination.

In many computer vision applications [32], when the initial and the final deformable
contour states are known, it is assumed that a constant force load f is applied to the
contour model. Thus, equation (3) is called the equilibrium governing equation and
corresponds to the static problem:

Ku = f . (12)

In the new basis, equation (12) is simplified to 2P3N scalar equations:

ω2
i ũi = f̃i. (13)

In equation (13), ωi designates the i-th eigenvalue and the scalar ũi is the amplitude of the
corresponding vibration mode (corresponding to eigenvector γi ). Equation (13), indicates
that, instead of computing the displacements vector u from equation (12), we can compute
its decomposition in terms of the vibration modes of the original circular model. Thus,
the physical representation v(ũ) is finally given by applying the deformations to the initial
position of the dual model:

v (ũ) = v0 + Γũ. (14)

3. Description of the Dual Deformable Model Motivation Energy.

3.1. The Main Idea. The dual deformation model exploits the following simple obser-
vation. Given an image I, let us define the evolving two closed curves Cout and Cin (outer
and inner deformable models) in I.

The proposed approach is based on the minimization of a model energy. Let us define
the functionals Fi to be:

F1 (Cout, Cin) =
∫
outside(Cout)
outside(Cin)

|I(x, y)− c1|2dxdy

F2 (Cout, Cin) =
∫
inside(Cout)
outside(Cin)

|I(x, y)− c2|2dxdy

F3 (Cout, Cin) =
∫
inside(Cout)
inside(Cin)

|I(x, y)− c3|2dxdy

where ci are constants expressing the average value of the image regions defined by the
models. That is, c1 expresses a constant for the image area outside of both models, c2 for
the image area between outer and inner models, and c3 for the image region lies to the
interior of both models. With the assumption that I consists of two regions I1 and I2
with boundary Co, Cout and Cin the boundaries of the outer and inner deformable models
used (Section 2), it is obvious that Cois the minimizer of the “fitting”’ term:

inf
C
{F1 (Cout, Cin) + F2 (Cout, Cin) + F3 (Cout, Cin)}

≈ 0
≈ F1 (Co, Co) + F2 (Co, Co) + F3 (Co, Co) .

This can be seen easily. For instance, if models Cout and Cin are both outside the
object, then F1(Cout, Cin) ≈ 0, F2(Cout, Cin) ≈ 0 and F3(Cout, Cin) > 0. If the models
Cout and Cin are both inside the object, then F1(Cout, Cin) > 0, F2(Cout, Cin) ≈ 0 and
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F3(Cout, Cin) ≈ 0. If the model Cout is outside the object while Cin is inside, then
F1(Cout, Cin) ≈ 0, F2(Cout, Cin) > 0 and F3(Cout, Cin) ≈ 0. If the models Cout and Cin
are both inside and outside the object, then F1(Cout, Cin) > 0, F2(Cout, Cin) > 0 and
F3(Cout, Cin) > 0. Finally, the fitting energy is minimized if Cout = Cin = Co, i.e., if
the models Cout and Cin are on the boundary of the object. That is, the fitting term is
minimized when the outer and inner models of the dual deformable model converged to
each other and to the object boundary Co. These basic marks are illustrated in Figure 2.

In our model, we will minimize the above fitting term and we will add some regularizing
terms, like the length of the models Cout and Cin, and the area of the region between
models Cout and Cin. Therefore, we introduce the energy functional F (Cout, Cin), given
by:

F (Cout, Cin) = µ1 · Length (Cout) + µ2 · Length (Cin) + ν · Area (between (Cout, Cin))

+λ1

∫
outside(Cout)
outside(Cin)

|I (x, y)− c1|2dxdy + λ2

∫
inside(Cout)
outside(Cin)

|I (x, y)− c2|2dxdy

+λ3

∫
inside(Cout)
inside(Cin)

|I (x, y)− c3|2 dxdy

(15)

where µ1, µ2 ≥ 0, ν ≥ 0, λ1, λ2, λ3 > 0 are fixed parameters. If Co solves:

F (Co, Co) = inf
C
F (C) , (16)

that Co is the solution to the segmentation problem (object boundary). The first two
terms, in the definition of F (15), accounts for smoothing Cout and Cin and the third term
forces model Cout to move inward and Cin to move outward, if ν is large.

3.2. Level-Set Formulation. In the level set method [5], Cout ⊂ I and Cin ⊂ I are
represented by the zero level set of Lipschitz function φout : I → R, such that: Cout = {(x, y) ∈ I : φout (x, y) = 0} ,

inside (Cout) = {(x, y) ∈ I : φout (x, y) > 0} ,
outside (Cout) = {(x, y) ∈ I : φout (x, y) < 0} ,

(17)

and φin : I → R:  Cin = {(x, y) ∈ I : φin (x, y) = 0} ,
inside (Cin) = {(x, y) ∈ I : φin (x, y) > 0} ,
outside (Cin) = {(x, y) ∈ I : φin (x, y) < 0} ,

(18)

Figure 3 illustrates the above assumptions and notations on the level set functions φout
and φin, defining the evolving models Cout and Cin. For more details, we refer the reader
to [5].

For the level set formulation of our variational dual deformable model, we represent
models Cout and Cin by the unknown variables φout and φin.

Recall the definition of the Heaviside function H(s) to be:

H (s) =

{
1, if s ≥ 0
0, if s < 0,

(19)

and δ(s), the Dirac delta function, to be the distributional derivative of H(s). Noting
that:

length {Cout} =
∫
I
∇H (φout (x, y)) dxdy

length {Cin} =
∫
I
∇H (φout (x, y)) dxdy
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Figure 2. Consider all possible cases in the position of the models Cout
and Cin. The fitting term is minimized only when the models are on the
boundary of the object.

Figure 3. Models Cout and Cin and properties of the image I regarding them.

Area {between (Cout, Cin)} =
∫
I
H (φout (x, y)) [1−H (φin)] dxdy,

and∫
outside(Cout)
outside(Cin)

|I (x, y)− c1|2 dxdy =
∫
I

|I (x, y)− c1|2 [1−H (φout)] [1−H (φin)] dxdy,

∫
outside(Cout)
outside(Cin)

|I (x, y)− c2|2 dxdy =
∫
I

|I (x, y)− c2|2H (φout) [1−H (φin)] dxdy,
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outside(Cout)
outside(Cin)

|I (x, y)− c3|2 dxdy =
∫
I

|I (x, y)− c3|2H (φout)H (φin) dxdy,

we can rewrite the energy F (Cout, Cin) (15) in the following way:

F (φout, φin) = µ1

∫
I

δ (φout (x, y)) |∇φout (x, y)| dxdy + µ2

∫
I

δ (φin (x, y)) |∇φin (x, y)| dxdy

+ν

∫
I

H (φout (x, y)) [1−H (φin)] dxdy + λ1

∫
I

|I (x, y)− c1|2 [1−H (φout)] [1−H (φin)] dxdy

+λ2

∫
I

|I (x, y)− c2|2H (φout) [1−H (φin)] dxdy + λ3

∫
I

|I (x, y)− c3|2H (φout)H (φin) dxdy

(20)

where constants c1, c2 and c3 expressed by functions φout and φin by:

c1 =

∫
I
I (x, y) [1−H (φout)] [1−H (φin)] dxdy∫

I
[1−H (φout)] [1−H (φin)] dxdy

, (21)

if
∫
I

[1−H (φout)] [1−H (φin)] dxdy > 0 (i.e. if the model Cout has a nonempty exterior

in I), and

c2 =

∫
I
I (x, y)H (φout) [1−H (φin)] dxdy∫

I
H (φout) [1−H (φin)] dxdy

, (22)

if
∫
I
H (φout) [1−H (φin)] dxdy > 0 (i.e. if the area between models Cout and Cin is

nonempty in I), and

c2 =

∫
I
I (x, y)H (φout) [1−H (φin)] dxdy∫

I
H (φout) [1−H (φin)] dxdy

, (23)

if
∫
I
H (φout)H (φin) dxdy > 0 (i.e. if the model Cin has a nonempty interior in I).

3.3. Functional Minimization. As stated in the energy definition, we seek to minimize
F (Cout, Cin) (20) with respect to Cout and Cin, i.e., to φout and φin which represent our
models. From variational calculus, the minimization of a functional asks for the Euler-
Lagrange equation to be solved. In order to compute the associated Euler-Lagrange
equation for the unknown functions φout and φin, we consider slightly regularized versions
of the functions H and δ, denoted here by Hε and φε, so that δε (x) = ∇Hε (x) in the
strict sense of the derivative. Let us denote by Fε (φout,φin) the associated regularization
functional, defined by:

Fε (Cout,Cin) =

µ1

∫
I

δε (φout (x, y)) |∇φout (x, y)| dxdy + µ2

∫
I

δε (φin (x, y)) |∇φout (x, y)| dxdy

+ν ·
∫
I

Hε (φout (x, y)) |1−Hε (φin)| dxdy + λ1

∫
I

|I (x, y)− c1|2 [1−Hε (φout)] dxdy

+λ2

∫
I

|I (x, y)− c2|2Hε (φout) [1−Hε (φin)] dxdy + λ3

∫
I

|I (x, y)− c3|2Hε (φin) dxdy,

(24)
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Keeping c1, c2 and c3 fixed, and minimizing Fε with respect to φout and φin, we deduce
the associated Euler-Lagrange equation both for φout and φin. Parameterizing the descent
direction by an artificial time t ≥ 0, the equation in φout (t, x, y) as well as in φout (t, x, y)
(with φout (0, x, y)) and φin (t, x, y) defining the initial position of the model) is:

∂φout
∂t

= δε (φout)
[
µ1div

(
∇φout
|∇out|

)
− ν + λ1 (I − c1)2 − λ2 (I − c2)2

]
= 0

δεφout
|∇φout|

∂φout
∂~n

= 0 on ∂I,

(25)

∂φin
∂t

= δε (φin)
[
µ2div

(
∇φin
|∇φin|

)
− ν + λ2 (I − c2)2 − λ3 (I − c3)2

]
= 0

δεφin
|∇φin|

∂φin
∂~n

= 0 on ∂I,

(26)

where ~n denotes the exterior normal to the boundary ∂I, and ∂φout/∂~n and ∂φin/∂~n
denote the normal derivatives of φout and φin at the boundary. In order model to reach to
a steady state, equations (25) and (26) must be satisfied, and hence the functional (20)
is minimized. The zero level-set of φout and φin at the steady state is the curve Co, which
solves the segmentation problem.

3.4. Numerical Approximation of the Energy. Firstly, the regularization of H and
δ functions, namely Hε and δε, respectively, used in our computations is the following:

Hε (s) = 1
2

(
1 + 2

π
arctan

(
s
ε

))
,

δε (s) = 1
π

ε
ε2+s2

.
(27)

This distinct approximation and regularization of the functions Hε and δε (taking δε = H ′ε)
are presented in Figure 4. As ε→ 0, the regularized functions converge to H and δ. Also,
these functions are different to zero everywhere, tending not to zero our energy in any
case except in its minimization state.

Figure 4. (a) Regularized Heaviside function Hε for ε = 0.1 and ε = 0.3,
and (b) regularized Delta function δε for ε = 0.1 and ε = 0.3.

To discretize the energy equation in φout and in φin, we use a finite differences implicit
scheme. Let us first define some notations: let h be the space step, ∆t be the time step,
and (xi, yi) = (ih, jh) be the grid points, 1 ≤ i, j ≤ M . Let φnout (i, j) = φout (n∆t, xi, yi))
be an approximation of φout (t, x, y), and φnin (i, j) = φin (n∆t, xi, yi) an approximation
of φin (t, x, y), with n ≥ 0, φ0

out (i, j) = φout (0, xi, yi) , φ
0
in (i, j) = φin (0, xi, yi). The finite

differences are:
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∆x
−φ (i, j) = φ (i, j)− φ (i− 1, j) ,

∆x
+φ (i, j) = φ (i+ 1, j)− φ (i, j) ,

∆y
−φ (i, j) = φ (i, j)− φ (i, j − 1) ,

∆x
+φ (i, j) = φ (i, j + 1)− φ (i, j) ,

(28)

where φ (i, j) is thought either φout (i, j) or φin (i, j).
Knowing φnout and φnin, c1, c2 and c3 using (21), (22) and (23), respectively, can be com-

puted. Then, we can compute φn+1
out out by the following discretization and linearization

(forward implicit scheme presented in [22]) of (25) in φout:

φn+1
out (i,j)−φnout(i,j)

∆t
=

δh (φnout (i, j))
[
µ1

h2 ∆x
−

 ∆x
+φ

n+1
out (i,j)√

(∆x+φ
n
out(i,j))

2

h2 +
(φnout(i,j+1)−φnout(i,j−1))2

4h2



+µ1

h2 ∆y
−

 ∆y
+φ

n+1
out (i,j)√

(∆
y
+φ

n
out(i,j))

2

h2 +
(φnout(i+1,j)−φnout(i−1,j))2

4h2


−ν + λ1 (I (i, j)− c1)2 − λ2 (I (i, j)− c2)2] , (29)

and φn+1
in in of (26) in φin is:

φn+1
in (i,j)−φnin(i,j)

∆t
=

δh (φnin (i, j))
[
µ1

h2 ∆x
−

 ∆x
+φ

n+1
in (i,j)√

(∆x+φ
n
in

(i,j))
2

h2 +
(φnin(i,j+1)−φn

in
(i,j−1))

2

4h2



+µ1

h2 ∆y
−

 ∆y
+φ

n+1
in (i,j)√

(∆
y
+φ

n
in

(i,j))
2

h2 +
(φnin(i+1,j)−φn

in
(i−1,j))

2

4h2


−ν + λ2 (I (i, j)− c2)2 − λ3 (I (i, j)− c3)2] , (30)

This linear system is solved via the Jacobi iterative method, and for more details, we refer
the reader to [38].

3.5. Reinitialization. At each time step, when φn+1
out and φn+1

in are computed from φout
and φin , respectively, the δh (·) term, in the scheme, causes sharp gradients in both φout
and φin (i.e. |∇φout| 6= 1 and |∇φout| 6= 1 after a finite amount of time. Maintaining φout
and φin as distance “like” functions is essential for providing the interface with a width
fixed in time. Computation of δh (·) is difficult to be computed near a steep gradient
(“shocks”) in the distance function. The values of δh (·), especially for large density ratios,
will be greatly distorted if |∇φout| and/or |∇φin| are far from one. Thus, the presence of
such shocks may cause difficulty in the computation [39].

This is resolved by reinitializing φn+1
out and φn+1

in to the signed distance function to its
zero-level curve. This prevents the level set function to become too flat, or it can be seen
as a rescaling and regularization. For our algorithm, the reinitialization is optional. It
can be implemented by solving the following evolution equation [39] (we use the term p
in the following equations, but the same procedure stands for each φout and φin):
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ψt = sign (φn) (1− |∇ψ|)
φ (0, ·) = φn (·) , (31)

where φ (t, ·) is our solution φ at time t. Then the new φ (t, ·) will be r, such as obtained
at the steady state of (31). The solution ψ (t, ·) of (31) will have the same zero-level set
as φ (t, ·) and away from this set, |∇ψ| will converge to 1. To discretize the equation (31),
we use the scheme proposed in [39]. The numerical scheme in solving this is as follows.
Let:

ψk+1 (i, j) = ψk (i, j)−∆t (sign (φn))G
(
ψk (i, j)

)
, (32)

where G (ψ (i, j)) is defined as:
√

maxa+,b + maxc+,d−

h
− 1, ifφn (i, j) > 0√

maxa−,b+ + maxc−,d+

h
− 1, ifφn (i, j) < 0

0, otherwise,

(33)

where maxa+,b− = max((a+)
2
, (b−)

2
), maxc+,d− = max((c+)

2
, (d−)

2
) and so on, and

a+ = max(∆x
−ψ (i, j), 0), c+ = max (∆y

−ψ (i, j) /h, 0) , d+ = max (∆y
+ψ (i, j) /h, 0) , a− =

min
(
∆x
−ψ (i, j) /h, 0

)
, b+ = min

(
∆x

+ψ (i, j) /h, 0
)
, and so on.

In general, the bulk of the computation time is spend during the reinitialization proce-
dure.

3.6. Final Dual Deformable Model. The energy function we already presented, is
used as the motivation power function of the dual deformable model presented in Section
2. The exterior model (outer) uses the implicit function (29), while the interior model
(inner) uses function (30). The intermediate model does not uses any power energy
function, but the deformations of the other two model, which are interconnected to each
other, deform it as well. Thus, at each iteration step of the above described procedure, we
calculate φn+1

out and φn+1
in , and the difference between the dual deformable model position

(Cn
out and Cn

in) with the curves φn+1
out (x, y) = 0 and φn+1

in (x, y) = 0 is used as the motivation
force of the introduced dual model. These differences could be calculated using signed
distance maps of the curves φn+1

out and φn+1
in [40, 41, 42]. The deformation of the model give

us the new position of the model (φn+1
out and φn+1

in ). However, after dual model deformation,
the φn+1

out and φn+1
in in are reinstalled based on Cn+1

out and Cn+1
in in order to be synchronized

with the dual model position. This procedure is repeated until model motivation energy
is minimized, i.e., until the energy becomes stationary forcing the model to stop moving.

Due to the fact that all three models are coupled using springs (which cause them to
be attracted to each other) and the nature of energy (which causes model to be attracted
to suitable image features), stationary model state usually occurs when all three models
have converged to each other and all together to the boundary of the object under de-
termination. That is, thorough the iterative process, the outer model converges to the
inner, the inner to the outer, and both converge to the object boundary. The intermediate
model of the dual deformable model, finally, provides us the object boundary.

The overall dual deformation model algorithm is summarized as follows:
•step1 : Initialize the physics - based dual deformable model ( C1

out and C1
in ).

•step2 : Initialize φ0
out and φ0

in based on the dual model position.
•step3 : Compute c1, c2 and c3 by (21), (22) and (23) respectively.
•step4 : Solve (25) and (26) to obtain φn+1

out and φn+1
in .

•step5 : Calculate the motivation force using signed distance maps of curves φn+1
out and

φn+1
in .

•step6 : Deform the dual model.
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•step7 : Adapt φn+1
out and φn+1

in to be synchronized with model position (Cn+1
out and Cn+1

in ).
•step8 : Reinitialize φout and φin locally to the signed distance function to the curve

(this step is optional).
•step9 : Check whether the solution is stationary. If not, n = n+ 1 and returns to

step 3.
Figure 5 depicts the detection of different objects exploiting the introduced method. It

is shown, in the intermediate steps, the convergence of the outer model to the inner and
the opposite (inner model converges to the outer), and how all three interconnected models
of the dual deformation scheme converges to the boundary of the objects. The stationary
(final) state of the dual model lies on the boundary of all the detected objects in the
image, which occurs when outer and inner model (and as a consequence the intermediate
model) converge to each other and to the objects boundary.

The left image of each pair of images in Figure 5 depicts the dual deformable model
during the object boundary detection, while the right shows only the intermediate model.

4. Experimental Results. In this Section, we show the performance of our method by
presenting numerical results using our dual deformable model on various synthetic and
real images, with different types of contours and shapes. We show the active contour
evolving in the original image I, and the associated piecewise-constant approximation of
I (given by the averages c1, c2 and c3). In our numerical experiments, we generally choose
the parameters as follows: λ1 = λ3 = 1, λ2 = 2, µ1 = µ2 = 1, ν = 1, h = 1 (the step
space), ∆t = 0.1 (the time step). Only the characteristic value a (Section 2) of the dual
deformable model, which has a scaling like role, is not the same in all experiments. If we
have to detect all or as many objects as possible and of any size, then a will be small. If
we have to detect only larger objects and to not detect smaller objects (like points/pixels,
due to noise), then a has to be larger.

The selection of the parameter a has been performed by trial-and-error method selecting
the one with the best performance. Furthermore, the model is randomly initiated on the
image. Also, all the experiments have been performed without the re-initialization step.
The adaptation step between φout and φin curves and the dual deformable model in order
to be synchronized, corrects the problem handled by the re-initialization step.

The length parameters µ1 and µ2, have a scaling role as well. This means that if
µ1, µ2 � 1, then a few large closed curves will retain in the steady state, compared to many
small ones. This may be useful in grouping objects of similar characteristics (“chromatic
resemblance”). The area parameter ν controls the importance of area between the outer
and inner model. If ν � 1, it forces the outer model to move strictly inward, while
the inner model strictly outward. Also, the speed at which models converge increases.
Finally, the relative balance between λ1, λ2 and λ3 determines which side, inside, outside
or intermediate, has higher importance in minimizing

∫
I
|I − ci| dxdy. This is useful in

segmenting blurred images, e.g., λ3 > λ2 > λ1 ensure that the blurred object will be
completely enclosed. All these properties will be verified in the experimental results.

In Figure 6, we show how our dual deformable model works on a synthetic image with
various shapes. Figures 7 and 8 depict the way our model converges at the objects on
noisy synthetic images containing various objects. In this experiments was used Gauss-
ian (Figure 7) and uniform noise (Figure 8) as well. Due to the fact that models are
interconnected with springs, it is shown that dual model has a remarkable resistance to
noise, converging almost like at a “clea” (without noise) image. In this experiment, the
characteristic value a was set equal to 20 (a = 20), enforcing the model to “ignore” the
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Figure 5. Object detection example exploiting the introduced method. Left:
all three models during the convergence to the boundary of the objects. Right:
the intermediate model.

noise. Table 1 confirms the results in terms of the well known Tanimoto/Jaccard error
[43] A(·,·) defined here as:

A (m, o) = 1−

∫
Co∩Cm

dxdy∫
Co∪Cm

dxdy
, (34)

where Cm and Co are the extracted and the desired contours respectively. In Table 1,
the desired contour was extracted manually and compared using (34) with the extracted
contours by the proposed method and the Chan-Vese method [22]. The errors of the pro-
posed method are significantly less than the errors produced by the Chan-Vese method.
Only the blurred images produce similar error, but still the proposed approach is better
than that of Chan-Vese.

Furthermore, Figure 9 illustrates that the introduced dual model can detect different
objects with blurred boundaries. Also, depending on the model parameters, we can enclose
all blurred objects, or (as in our case) take an average like contour (intermediate model),
since we do not let outer and inner models to fully converge to each other.
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Figure 6. Detection of different objects with various shapes. Left: all three
models (dual deformable model) during convergence to the objects shape.
Right: the intermediate model at the same steps. In this experiment model
characteristic value was a = 1.

Figure 7. Detection of different objects from a noisy image with various
shapes (Gaussian noise). Left: all three models (dual deformable model)
during conver- gence to the objects shape. Right: the intermediate model at
the same steps. In this experiment model characteristic value a was a = 20.

In the next example (Figure 10), we validate our model on a very different problem:
to detect features in spatial point processes in the presence of substantial cluster. One
application can be the detection of minefields using reconnaissance aircraft images that
identify many objects that are not mines. These problems are usually solved using statis-
tical methods (see [44] and [45]). By this application, we show again how our model can
be used to detect objects or features with contours without gradient. This is not possible
using classical snakes or active contours based on the gradient. The characteristic value
of the model was set equal to a = 15 in order to pass over the “noise” like points.

We also show examples on real images, with different types of contours or shapes,
illustrating all the advantages of our model: the ability of detecting smooth boundaries,
scale adaptivity, automatic change of topology, and robustness with respect to “noise”.

Some examples on real images (collected from the Internet) are illustrated in Figures
11, 12 and 14. The characteristic value of the model was set larger than the previous
experiments (a ∈ [10, 15]), in order to overpass the small objects spread all over the
image and to detect those under consideration. It is shown, that the proposed algorithm
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Figure 8. Detection of different objects from a noisy image with various
shapes (Uniform noise). Left: all three models (dual deformable model)
during conver- gence to the objects shape. Right: the intermediate model at
the same steps. In this experiment model characteristic value a was a = 20.

Figure 9. Detection of three blurred objects. Left: all three models (dual
de- formable model) during convergence to the objects shape. Right: the in-
termediate model at the same steps. In this experiment model characteristic
value a was a = 1.

can work very effectively at real images as well, even in cases where the objects under
consideration are more than one (Figure 14).

Furthermore, all the experiments described in this Section are applied to the Chan-Vese
[22] method too. Figures 13 and 14 depict the results (the extracted contours) for both
the proposed algorithm and the Chan-Vese method. The results of the introduced method
are visually quite better, a fact that has been arithmetically confirmed in Table 1. The
ground truth, in these examples, has been manually extracted and the Tanimoto/Jacard
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Figure 10. Detection of a simulated minefield with contour without gra-
dient. Left: all three models (dual deformable model) during convergence to
the objects shape. Right: the intermediate model at the same steps. In this
experiment model characteristic value a was a = 15.

Figure 11. Object detection on a real image. Left: all three models (dual
de- formable model) during convergence to the objects shape. Right: the in-
termediate model at the same steps. In this experiment model characteristic
value a was a = 15.

Figure 12. Object detection on a real image. Left: all three models (dual
de- formable model) during convergence to the objects shape. Right: the in-
termediate model at the same steps. In this experiment model characteristic
value a was a = 15.

error measurement (34) placed in Table 1 (average error of all tested real images), confirms
that the proposed algorithm provides better and more qualitative results, even in cases
where the objects of interest are more than one.

Another interesting property of the proposed algorithm is that different values of the
parameter a could produce different segmentation results. As the models characteristic
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Figure 13. Object detection by the proposed (left images) and the Chan-
Vese method (right images). (a) image corrupted by gaussian noise, (b)
by uniform noise, (c) by speckle noise, (d) by speckle noise (with different
variance), (e) blurred image, (f) image with no sufficient gradient, (g) and
(h) real images.

value a is getting smaller then the deformable model is behaved as a fully deformable
one producing oversegmentation results (Figure 15(a)). On the other hand, when the
characteristic value a is getting larger, then the deformable model is more rigid and the
segmentation result is grouping the objects under consideration (Figure 15(d)). Such an
example is shown in Figure 15, where the proposed algorithm was applied on a noisy
image with three objects using different values of the models characteristic value a.

Finally, Figure 16 illustrates the average computational cost for the proposed and the
Chan- Vese algorithm compared above. Each image size has been tested to five different
images. The proposed method is quite computational consuming, since it also involves
the deformations of the model, but this drawback is compensated for its very good perfor-
mance as it was shown above. All experiments were performed on a Pentium IV (3 GHz)
workstation under Windows XP Professional without any particular code optimization.

However, the proposed method shares a problem with the Chan-Vese method, that is,

there are objects which cannot be detected using the intensity average only, i.e., texture
images. Figure 17 illustrates four such examples that the averages “insid” and “outside”
the curves are almost equal, and as a consequence the method will fail to detect the ob-
jects of interest. One way to overcome this difficulty, would be to use other information
from the intensity of the initial image I, like the curvature, the orientation of level sets, or
any other discriminant. That is, for image in Figure 17(a) we will replace in our method
intensity I by curvature (I) = div (∇I/|∇I|). If the image under consideration is like the
one in Figure 17(b), then intensity I will be replaced by orientation (I) = tan−1 (Iy/Ix)
(the angle of the normal to the level curves). Furthermore, in Figures 17(c) and 17(d) the
intensity I of the image could be replaced by any texture discriminant. In this framework,
we refer the reader to [46].
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Figure 14. Object detection on real images (left column) by the proposed
(middle column) and the Chan-Vese method (right column).

Figure 15. Object detection with different values of models parameter a.
(a) a = 1, (b) a = 15, (c) a = 50, and (d) a = 500.

5. Conclusion. In this paper, we have introduced a novel physics-based dual deformable
model for image segmentation. Our model can detect objects whose boundaries are not
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Figure 16. Computational cost (in seconds) of the proposed and the Chan-
Vese method.

Figure 17. Example of images that have almost equal intensity averages
“inside” and “outside” the curves.

necessarily defined by gradient, due to the fact that it is based on an energy minimization
problem, and not on an edge-function as the most classical active contour models. This
energy is used as the model motivation power evolving the deformable model, which will
stop on the desired object boundary. Modal analysis was exploited in order to solve the
deformation governing equations, and proportionally to model physical characteristics, a
different segmentation result is produced every time. Three interconnected deformable
models constitute the introduced dual deformable model. The main idea was captured
by the fact that springs connect all three parts of the dual deformable model, enforce
model to overpass local “minima” resulting to the desired global energy minimum. If a
model “falls” in a local minima, the others “pull” it over and overcomes it, converging
in that way to the global one. Thus, the whole model interconnection idea provides a
balanced technique with a strong ability to reject “weak” local minima improving the
performance of the segmentation against other known methods. Furthermore, the images
under consideration do not need to be smoothed, even if they are noisy, and the location
of their boundaries are very well detected and preserved. Objects, whose boundaries are
not necessarily defined by gradient or with very smooth boundaries, can be detected very
easily by the proposed dual deformable model.
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Furthermore, the extension of the proposed dual deformable model to higher dimensions
is an open research topic, since there are no explicit functions for the calculation of the
deformations of the model in higher dimensions.
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