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Abstract. Collusion attack is a challenge issue for digital fingerprinting, and it is very
beneficial to study for fingerprinting design. Two models for linear and non-linear collu-
sion attack are constructed from the angles of owner and colluder in the paper. Through
theory and simulation analysis in fingerprints embedding domain and non-embedding do-
main some conclusions are obtained: (1) The attack effects in embedding domain and
non-embedding domain are same for average collusion attack; (2) The attack effects in
embedding domain is stronger than that in non-embedding domain for maximum attack,
minimum attack and randneg attack; (3) The attack effects in embedding domain and
non-embedding domain are similar for median attack, min-max attack and modneg at-
tack; (4) The two models have the similar attacks effects in embedding domain. We have
also studied the relationship between the quality of colluded image and collusion attack.
Large experimental results prove the correctness of the received conclusions, which is very
helpful for fingerprinting design and system analysis.
Keywords:Digital Fingerprinting; Linear Collusion; Nonlinear Collusion; Embedding
Domain; Non-Embedding Domain

1. Introduction. With the development of computer and internet technology, the copy
and transmission of multimedia works become more and more convenient. However,
the multimedia works needing to protect are illegally copied and transmitted. Digital
watermarking can protect multimedia intellectual property effectively. The work holder
embeds some especial information into the works to mark them before distribution, which
aim to maintain his right when disputing. Digital fingerprinting is a special kind of
watermarking [1-4]. It embeds user Identity(ID) into works before distributing them to
user, thus the user can be traced when he sells his copy illegally. Digital fingerprinting is
an effective way to protect copyright. More and more peoples devote themselves to the
studying.
However, several illegal users may come together to generate a new copy using their

authorized copies. The new copy can remove or weak the embedded information to make
them evade punishment. The process is called collusion attack. Collusion attack is a chal-
lenge and difficult issue to solve for fingerprinting. The main concern for a fingerprinting
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system is the performance of anti-collusion attack. So studying the characteristics of
collusion attack is very valuable for fingerprinting design and analysis.

The prior research mainly concern two aspects. One research is fingerprint coding [5-9].
The other is studying fingerprinting scheme and the performance of fingerprinting system
[10-15]. The two aspects are both aiming at strong robust to resist collusion attack. When
designing fingerprinting, many literature [9-16] constructed collusion model in fingerprint
embedding domain for convenience and premised that the host vector had been known.
However, the illegal users dose not know the detail of embedding domain and the position
of coefficients usually, and they may likely collude with all coefficients participating in.
So it is necessary to study collusion attack in fingerprint embedding domain and non-
embedding domain and compare their differences.

Stone studied some kinds of linear and nonlinear collusion attacks [17], and stated
that nonlinear collusion is more effective than average attack when the fingerprints follow
uniform distribution. He also indicated that Gaussian fingerprints are more robust than
uniform fingerprints to resist collusion. Zane studied Gaussian fingerprinting system com-
prehensively, and focused on its ability to resist average attack [8]. Zhao ea el. constructed
nonlinear collusion attack model and studied the ability of Gaussian fingerprinting system
resisting nonlinear collusion comprehensively [18]. Varna et al. extended the application
field of Gaussian fingerprinting system to compressed images [15]. The above methods
all constructed collusion model with the suppose that the components of host vector are
clear for describing simply. But the embedding domain and the components constructed
host vector are unknown to colluders. Chen et al. stated that nonlinear collusion attack
in embedding domain is more effective than that in non-embedding domain [19]. How-
ever, the attack effect of specific nonlinear collusion was not studied specifically. Because
the assumptions from the angles of owner and colluders are different, the collusion model
should be different. Thus the difference of the collusion attacks in different domain needs
to be compared.

Partial-component model and all-component model are constructed in the paper. Gauss-
ian fingerprints are embedded into Discrete Cosine Transform(DCT) domain which is as-
sumed to be embedding domain. The fingerprints are embedded with the two models
in DCT domain, spatial domain, wavelet domain, and their effects of collusion attack
are compared. Some conclusions are obtained through model analysis and experiments,
whose correctness is proved by further experimental results.

The organization of the paper is as follows. Section 2 constructs partial-component col-
lusion model and all-component collusion model from different angles. Section 3 analyzes
the collusion models in theory. Three conclusions are obtained under all kinds of collusion
attacks. Section 4 gives the simulations aimed at the conclusions. Large experimental
results including detection probabilities and the quality of colluded images are also shown.
Conclusions are shown in the final section.

2. Collusion model. Collusion attack is classified into linear collusion and nonlinear
collusion according to the performance of collusion model. A representative collusion
for linear collusion is average attack. There are some typical nonlinear collusion named
minimum attack, maximum attack, median attack, minmax attack, modified negative at-
tack, randomized negative attack separately [11,12,18]. They all constructed the collusion
model as follows.

Assume the host vector as S with length N , and there are M fingerprints in the fin-
gerprint family with length N denoted by {fk}Mk=1. The fingerprinted copy distributed to

the kth user is Y
(j)
k = S

(j)
k +αf

(j)
k . Where α is a constant, j represents the jth component

in each vector. Suppose there are K colluders to conspire. The colluder subset denotes
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by Sc = {1, 2, · · · , K}. The nonblind detection is employed to assurance high detection
probability. Thus the partial-component collusion model is represented as follows.

Average attack: V(j)
aver = (

∑
K∈Sc

f
(j)
k )/K

Minimum attack: V
(j)
min = min({f(j)k }K ∈ Sc)

Maximum attack: V(j)
max = max({f(j)k }K ∈ Sc)

Median attack: V
(j)
median = median({f(j)k }K ∈ Sc)

Minmax attack: V
(j)
minmax = (V

(j)
min +V(j)

max)÷ 2

Modneg attack: V
(j)
modneg = V

(j)
min +V(j)

max −V
(j)
median

Randneg attack: V
(j)
randneg =

{
V

(j)
min with prob. p

V(j)
max with prob. 1− p

(1)

Where f
(j)
K represents the jth component of theKth fingerprint. min(·),max(·),median(·)

represent minimum function, maximum function and median function respectively.
It should be noted that the illegal users may collude with all the coefficients because

they didn’t know which coefficients are the components of the host vector. So they must
compute the collusion copy with all the coefficients participating. We imitate formula (1)
to construct all-component collusion model as follows.

Average attack: I(x, y)aver = (
∑
K∈Sc

I(x, y))/K

Minimum attack: I(x, y)min = min((I(x, y))K∈Sc
)

Maximum attack: I(x, y)max = max((I(x, y))K∈Sc
)

Median attack: I(x, y)median = median((I(x, y))K∈Sc
)

Minmax attack: I(x, y)minmax = (I(x, y)min + I(x, y)max)/2

Modneg attack: I(x, y)modneg = I(x, y)min + I(x, y)max − I(x, y)median

Randneg attack: I(x, y)randneg =

{
I(x, y)min with prob. p
I(x, y)max with prob. 1− p

(2)

Where I(x, y)k represents the coefficients of the kth image located at (x, y). The rest
parameters are same as formula (1). I(x, y)k may be frequency coefficient or pixel value.

3. Collusion attack analysis.

3.1. Collusion process. This paper suppose DCT domain as the embedding domain
for most literatures embed fingerprints in DCT domain. The non-embedding domain
represented with spatial domain and wavelet domain. Figures 1-3 show the collusion
process.
Fig.1 shows the collusion process in DCT domain. The collusion operation is done after

DCT operation. It is clear that the objects of collusion computing are DCT coefficients.
Fig.2 shows the collusion process in spatial domain, and its operation objects are pixels.
However, from the dashed frame in Fig.2 we know it is equivalent to a group of orthogonal
transform are done before and after collusion operation on DCT coefficients. Similar with
spatial domain collusion, Fig.3 is collusion in wavelet domain. There are two groups of
transform before and after collusion operation on DCT coefficients. The outer contents
of dashed frame are same in Figures 1-3. Their differences are manifested in the inner of
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dashed frame. The collusion in non-embedding domain can be seen as a special collusion
in embedding domain. The difference is that there are some orthogonal transforms before
and after collusion operation.
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images
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image

Figure 1. Collusion in DCT domain
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Figure 2. Collusion in spatial domain
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Figure 3. Collusion in wavelet domain

3.2. Theory analysis. In this section we analyze the effects of different collusion with
all-components model. Suppose Mk(k ∈ Sc) is the data to be operated, g(·) represents
collusion operation. Then the collusion in DCT domain, spatial domain and wavelet
domain are defined as follows.

Attackdct = g(Mk) (3)

Attackspatial = DCT (g(DCT−1(Mk))) (4)

Attackwavelet = DCT (DWT−1(g(DWT (DCT−1(Mk))))) (5)

Where DCT , DCT−1, DWT , DWT−1 denotes DCT, Inverse Discrete Cosine Trans-
form(IDCT), Discrete Wavelet Transform(DWT) and Inverse Discrete Wavelet Trans-
form(IDWT) respectively. In order to describe simply, we define the following notations.

• Attack X > Attack Y: Attack X is more effective than attack Y in defeating the
fingerprinting.

• Attack X = Attack Y: Attack X and attack Y have the same performance in defeating
the fingerprinting.

• Attack X ≈ Attack Y: Attack X and attack Y have similar performance in defeating
the fingerprinting.
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The all-component collusion model is studied next from the colluders angle. For mean
operation is linear computation, if aver(·) represents mean operation we can know

DCT (aver(DCT−1(Mk)

= DCT (DCT−1(aver(Mk)))

= aver(Mk)

(6)

DCT (DWT−1(aver(DWT (DCT−1(Mk)))))

= DCT (DWT−1(DWT (DCT−1(aver(Mk)))))

= aver(Mk)

(7)

The formula (6) and (7) indicate that average attack in DCT domain, spatial domain and
wavelet domain are same. Further we can obtain conclusion 1:
Attack DCT-aver=Attack Spatial-aver=Attack Wavelet-aver.
For maximum operation, minimum operation we have

DCT (max(DCT−1(Mk)

< DCT (DCT−1(max(Mk)))

= max(Mk)

(8)

DCT (min(DCT−1(Mk)

< DCT (DCT−1(min(Mk)))

= min(Mk)

(9)

DCT (DWT−1(max(DWT (DCT−1(Mk)))))

< DCT (max(DCT−1(Mk)

< DCT (DCT−1(max(Mk)))

= max(Mk)

(10)

DCT (DWT−1(min(DWT (DCT−1(Mk)))))

< DCT (min(DCT−1(Mk)

< DCT (DCT−1(min(Mk)))

= min(Mk)

(11)

Here A < B indicates the variation amplitude of A is bigger than B. According to formula
(2) we can get conclusion 2:
Attack DCT-min=Attack DCT-max>Attack Spatial-min=Attack Spatial-

max>Attack Wavelet-min=Attack Wavelet-max.
Attack DCT-randneg>Attack Spatial-randneg>Attack Wavelet-randneg.
For median operation we have

DCT (median(DCT−1(Mk) ≈ median(Mk) (12)

DCT (DWT−1(median(DWT (DCT−1(Mk))))) ≈ median(Mk) (13)

According to formula (2), (8), (9), conclusion 3 can be obtained easily:
Attack DCT-mean≈Attack Spatial-mean≈Attack Wavelet-mean.
Attack DCT-minmax≈Attack Spatial-minmax≈Attack Wavelet-minmax.
Attack DCT-modneg≈Attack Spatial-modneg≈Attack Wavelet-modneg.
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4. Experimental results. In order to examine the correctness of the conclusions, we
employed 1000-dimension fingerprints which are random sequences following Gaussian
distribution to test. 10 fingerprints were chosen randomly to be computed with the 7
kinds form in formula (2). The simulations are processed 10 groups in total. Figures 4-10
show the fingerprint histogram under each collusion. Fig.4 shows the results of averaging
collusion. It is very obvious that the 3 figures in Fig.4 are same, which indicates that
the results are consistent with conclusion 1. From Fig.5 we can know the descending
order of fingerprints distribution deviation is Figs.5(a), 5(c) and 5(b). It means Fig.5(a)
corresponds to the most seriously attack. The results prove the correctness of conclusion
2. The same results can be derived from Fig.6 and Fig.7. All the fingerprints distribution
deviations for all the sub-images of Figures 8-10 are almost the same, so the three figures
correspond to the attacks with similar intensity. The resulti s consistent with conclusion
3.

(a) (b) (c)

Figure 4. Fingerprint histogram under average attack (a)DCT (b)Spatial (c)Wavelet

(a) (b) (c)

Figure 5. Fingerprint histogram under maximum attack (a)DCT
(b)Spatial (c)Wavelet

In order to prove the correctness of conclusions further, an orthogonal fingerprint data-
base which is composed of 1024 Gaussian sequences with 1024-dimension. Then 100
randomly selected fingerprints were embedded into 256×256 images with spread spec-
trum method [1,2]. The fingerprinted images were colluded with formula (1) and (2) and
further compressed to get collusion copy. The colluders were traced according to the
extracted fingerprint. Catching one colluder was studied in the paper [12], 100 groups of
simulations were done with all kinds of collusion attacks. Fig.11 shows the results of the
probabilities of detection.

There are six sub-images in Fig.11, and there are 4 curves in each sub-image. The DCT,
DCT-all, Spatial and Wave curves represent the results of collusion with formula (1) in
DCT domain, with formula (2) in DCT domain, with formula (2) in Spatial domain, with
formula (2) in Wavelet domain, respectively.
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(a) (b) (c)

Figure 6. Fingerprint histogram under minimum attack (a)DCT
(b)Spatial (c)Wavelet

(a) (b) (c)

Figure 7. Fingerprint histogram under randneg attack (a)DCT (b)Spatial (c)Wavelet

(a) (b) (c)

Figure 8. Fingerprint histogram under median attack (a)DCT (b)Spatial (c)Wavelet

(a) (b) (c)

Figure 9. Fingerprint histogram under minmax attack (a)DCT (b)Spatial (c)Wavelet
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(a) (b) (c)

Figure 10. Fingerprint histogram under modneg attack (a)DCT
(b)Spatial (c)Wavelet

Fig.11(a) shows the probabilities of detection under averaging attack. It is easy to
know that all the curves in Fig.11(a) are coincident, which indicates the collusion copies
are same with the four kinds of attacks and proves the conclusion 1. Figs.11(b) and 11(f)
show the scenarios under maximum and randneg attack. The probabilities of detection
under minimum attack is same as that maximum, so it is omitted for economization.
From Figs.11(b) and 11(f) it is clear that the probabilities of detection under maximum
attack with formula (1) in DCT domain is lowest, and the attack with formula (2) in
DCT domain is close to it. The third is that with formula (2) in wavelet domain followed
by that with formula (2) in spatial domain. The curves are consistent with conclusion 2
and Figures 5-7. Figs.11(c),11(d), and 11(e) are probabilities of detection under median
attack, minmax attack and modneg attack. The curves in Figs.11(c),11(d), and 11(e) are
close and they are also consistent with conclusion 3.

It can be conclude that the attack effect with partial-component collusion model in
embedding domain is close to that with all-component collusion model, and the former
slightly stronger than the latter. the attack effect with partial-component collusion model
in embedding domain is stronger than that with all-component collusion model in non-
embedding domain. So the proposed all-component model is more representative.

Generally, stronger attack often leads to bad quality of fingerprinted copy. The Peak-
Signal-to-Noise Ratio(PSNR) is often used to measure the image quality. It is defined as
follows

PSNR = 10log10(
255MN∑M

x=1

∑N
y=1(I(x, y)− Î(x, y))2

) (14)

Where I(x, y), Î(x, y) denote the pixel located at (x, y) in original image and collusion
copy respectively, M and N are their length and width.

The relationship between quality of colluded images and colluder number is shown in
Fig.12 for realization comprehensively. The vertical axis denotes PSNR and the horizontal
axis denotes colluder number. From Figs.12(a), 12(c), 12(d), and 12(e) we know PSNR
increases with the increase of colluder number under average attack, median attack, min-
max attack and modneg attack. It is because that in these attacks the coefficients will be
close to their original value, and the greater number the closer it will be.

On the contrary, from Figs.12(b) and 12(f) PSNR decrease with the increase of colluder
number when collude under minimum attack, maximum attack, randneg attack. Being
similar with the former analysis, the coefficients deviate the original value when the col-
luded copies are obtained with these attacks. Naturally, more coefficient can make the
deviation more severe.
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(b)

(e)
(f)

(c) (d)

(a)

Figure 11. Probability of detection under collusion attacks (a) average
(b) maximum (c) median (d) minmax (e) modneg (f) randneg

It can be concluded that from Fig.11 and Fig.12, when the quality of colluded image
becomes well with the increase colluders it needs more colluders to defeat the fingerprint-
ing. At the same time, when the quality of colluded image becomes bad with the increase
colluders it needs less colluders to defeat. In fact it is in accord with the law that the
more distorted image the more difficult to test information from it.

5. Conclusions. The prior works constructed collusion model in the embedding domain
only for convenience. A new collusion model is constructed from the colluders’ angle. We
analyzed the difference of the two models in theory and obtained some conclusions. Large
experimental results proves the conclusions. This can support the former model and can
be a guide for designing fingerprinting system.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. The relationship between PSNR and colluder number under
collusion attacks (a) average (b) maximum (c) median (d) minmax (e) mod-
neg (f) randneg
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