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Abstract. Steganography and steganalysis are important topics in information hiding.
Steganography refers to the technology of hiding data into digital media without drawing
any suspicion, while steganalysis is the art of detecting the presence of steganography.
This paper provides a survey on steganography and steganalysis for digital images, mainly
covering the fundamental concepts, the progress of steganographic methods for images in
spatial representation and in JPEG format, and the development of the corresponding
steganalytic schemes. Some commonly used strategies for improving steganographic se-
curity and enhancing steganalytic capability are summarized and possible research trends
are discussed.
Keywords: Digital image, information hiding, steganalysis, steganography

1. Introduction. Cryptography is often used to protect information secrecy through
making messages illegible. However, indecipherable messages may raise an opponent’s
suspicion and probably lead to his destruction of such a communication manner. There-
fore, steganography [1] gets a role on the stage of information security. Steganography
refers to the technique of hiding information in digital media in order to conceal the exis-
tence of the information. The media with and without hidden information are called stego
media and cover media, respectively [2]. Steganography can meet both legal and illegal
interests. For example, civilians may use it for protecting privacy while terrorists may
use it for spreading terroristic information. Compared to digital watermarking, another
branch of information hiding, steganography stresses more on preserving the secrecy of
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Figure 1. The model of steganography and steganalysis

the information instead of making the hidden information robust to attacks. For more
details on the difference between steganography and digital watermarking please refer to
ref. [3].

Steganalysis[4], from an opponent’s perspective, is an art of deterring covert communi-
cations while avoiding affecting the innocent ones. Its basic requirement is to determine
accurately whether a secret message is hidden in the testing medium. Further require-
ments may include judging the type of the steganography, estimating the rough length of
the message, or even extracting the hidden message. Steganography and steganalysis are
in a hide-and-seek game [5]. They try to defeat each other and also develop with each
other.

Digital images have high degree of redundancy in representation and pervasive appli-
cations in daily life, thus appealing for hiding data. As a result, the past decade has seen
growing interests in researches on image steganography and image steganalysis [3, 4, 5, 6].
This paper aims to provide a comprehensive review on different kinds of steganographic
schemes and possible steganalytic methods for digital images.

The organization of this paper is as follows. In the next section, we revisit the basic
model of steganography and steganalysis and their evaluation criteria. Then, in Section
3, we review some major steganography for images in spatial representation and in JPEG
format. Steganalytic schemes targeted to the mentioned steganographic methods as well
as some steganalytic features effective to attacking a broad class of steganography are
presented in Section 4. The latest effective and commonly used techniques in steganog-
raphy and steganalysis are discussed in Section 5. This paper shows some possible future
research directions and concludes in Section 6.

2. Fundamental Concepts.

2.1. Basic Model. The issue in steganography and steganalysis is often modeled by the
prisoner’s problem [7] which involves three parties, as illustrated in Figure 1. Alice and
Bob are two prisoners who collaborate to hatch an escape plan while their communications
will be monitored by a warden, Wendy. Using a data embedding method Ψ(·), secret
information m is supposed to be hidden into a cover medium X by Alice with a key
k1. The generation of an innocuous-looking stego medium Y can be described as Y =
Ψ(X,m, k1). On the receiver’s side, the medium obtained by Bob, denoted by Y ′, is
passed to a data extraction method Φ(·) to extract information m′ with a key k2. The
extraction process may be described as m′ = Φ(Y ′, k2). The steganographic scheme
should ensure m′ = m. Although the public key steganographic scheme is considered
in some literatures, the private key steganographic scheme, where k1 = k2 is assumed,
remains the most common scenario in a steganographic system. Wendy can be active or
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Figure 2. Criteria for steganalysis

passive judging from the nature of her work on examining the media in transmission. If
she makes Y ′ 6= Y in order to foil all possible covert communications between Alice and
Bob, she is called an active warden. If she only takes actions when Y is found suspicious,
she is a passive warden. In the passive warden case, which is the main focus of this
paper, once Wendy can differentiate Y from X, the steganographic method is considered
broken. Note that this model only aims to explain the concepts of steganography and
steganalysis, but not to detail the way on how to conduct the practice.

2.2. Evaluation Criteria. In order to reasonably evaluate the performance of various
kinds of steganographic and steganalytic methods, it is necessary to define some criteria
acceptable to the majority. Moreover, the evaluation criteria may also lead us to the right
direction to improve the techniques.

2.2.1. Criteria for Steganography. Three common requirements, security, capacity, and
imperceptibility, may be used to rate the performance of steganographic techniques.

Security. Steganography may suffer from many active or passive attacks, correspond-
ingly in the prisoner’s problem when Wendy acts as an active or passive warden. If the
existence of the secret message can only be estimated with a probability not higher than
random guessing in the presence of some steganalytic systems, steganography may be
considered secure under such steganalytic systems. Otherwise we may claim it to be
insecure. The definition of security is further discussed in Section 2.3.

Capacity. To be useful in conveying secret message, the hiding capacity provided by
steganography should be as high as possible, which may be given in absolute measurement
(such as the size of secret message), or in relative value (called data embedding rate, such
as bits per pixel, bits per non-zero discrete cosine transform coefficient, or the ratio of the
secret message to the cover medium, etc.).

Imperceptibility. Stego images should not have severe visual artifacts. Under the
same level of security and capacity, the higher the fidelity of the stego image, the better.
If the resultant stego image appears innocuous enough, one can believe this requirement
to be satisfied well for the warden not having the original cover image to compare.

2.2.2. Criteria for Steganalysis. The main goal of steganalysis is to identify whether or
not a suspected medium is embedded with secret data, in other words, to determine the
testing medium belong to the cover class or the stego class. If a certain steganalytic



A Survey on Image Steganography and Steganalysis 145

method is used to steganalyze a suspicious medium, there are four possible resultant
situations.

• True positive (TP), meaning that a stego medium is correctly classified as stego.
• False negative (FN), meaning that a stego medium is wrongly classified as cover.
• True negative (TN), meaning that a cover medium is correctly classified as cover.
• False positive (FP), meaning that a cover medium is wrongly classified as stego.

Confusion Matrix. When applying a steganalytic method on a testing data set, which
may consist of cover and stego media, a 2× 2 confusion matrix[8], which is illustrated in
Figure 2(a), can be constructed, representing the dispositions of the instances in the set.
Based on this matrix, some evaluation metrics can be defined.

TP Rate =
TPs

TPs + FNs
,

FP Rate =
FPs

TNs + FPs
,

Accuracy =
TPs + TNs

TPs + FNs +TNs + FPs
,

Precision =
TPs

TPs + FPs
.

Receiver Operating Characteristic (ROC) Curve. The performance of a stegan-
alytic classifier may be visualized by an ROC curve [8], in which true positive rate is
plotted on the vertical axis and false positive rate is plotted on the horizontal axis (see
Figure 2(b)). If the area under the ROC curve (AUC) is larger, the performance of the
steganalytic method is better. For example, it can be observed from Figure 2(b) that the
performance of ROC curve C is better than B, and B is better than A.

2.3. Steganographic Security. Security is the most important evaluation criterion in
steganography and steganalysis. There are several kinds of definition of steganographic
security, each of which are defined from different viewing angles.

2.3.1. Information Theoretical Security. From the point of view of information theory,
Cachin [9] quantified the security of a steganographic system in terms of the relative
entropy between the distribution of X, denoted by PX , and that of Y , denoted by PY ,
in face of passive attacks. The relative entropy between PX and PY is defined as [9]

D (PX ||PY ) = EPX
log

PX

PY

(1)

Based on this definition, if D (PX ||PY ) ≤ ε, the steganographic system is said to be
ε-secure under passive attack. If ε = 0, the steganographic technique is called perfectly
secure.

2.3.2. ROC-based Security. In ref. [6], several shortcomings in the information theoreti-
cal definition of steganographic security are discussed and an alternative security measure
based on steganalyzer’s ROC performance is then proposed. As stated in Section 2.2.2,
ROC is a plot of false positive rate versus true positive rate, which represents the achiev-
able performance of a steganalytic system. Therefore, the steganographic security under
practical steganalyzers may be defined as the following.

• A steganographic technique is said to be γ-secure with respect to (w.r.t.) a stegana-
lyzer if |TP Rate− FP Rate| ≤ γ, where 0 ≤ γ ≤ 1.
• A steganographic technique is said to be perfectly secure w.r.t. a steganalyzer if
γ = 0.
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2.3.3. Maximum Mean Discrepancy Security. Steganalytic methods often map images
into a feature space, in which cover images and stego images may have different dis-
tributions since they can be considered as samples generated from two different sources.
Maximum mean discrepancy (MMD)[10], a statistical method for testing if two kinds
of samples are generated from the same distribution, may be suitable for benchmarking
steganography since it is numerically stable even in high-dimensional space. It is defined
as

MMD[F ,X,Y ] =sup
f∈F

(
1

D

D∑
i=1

f(xi)−
1

D

D∑
i=1

f(yi)

)
(2)

where X = {x1, . . . , xD},Y = {y1, . . . , yD} are the samples from PX and PY , respectively.
F is a class of function which should be chosen carefully. More details on selecting the
function F are covered in ref. [10].

3. Image Steganography. Although steganography for binary images [11, 12] and 3-
D images [13] have some progresses, researches mainly concentrate on hiding data in
gray-scale images and color images. Since the luminance component of a color image is
equivalent to a gray-scale image, we focus on the steganography for gray-scale images.
Besides, it is generally considered that gray-scale images are more suitable than color
images for hiding data [14] because the disturbance of correlations between color compo-
nents may easily reveal the trace of embedding. If not specified, the images in this paper
are referred to 8-bit gray-scale images. Owing to the fact that bitmap/raw and JPEG
images are of great interests in steganography community, we focus on spatial steganogra-
phy and JPEG steganography. Moreover, since the data extraction steps are usually the
inverse operations of the data embedding steps, we mainly describe the data embedding
approaches for each steganographic method in the following sub-sections.

3.1. Spatial steganography. The common ground of spatial steganography is to di-
rectly change the image pixel values for hiding data. The embedding rate is often mea-
sured in bit per pixel (bpp). According to the embedding manner, we review six major
kinds of steganography in the following.

3.1.1. Least Significant Bit (LSB) Based Steganography. LSB based steganography is one
of the conventional techniques capable of hiding large secret message in a cover image
without introducing many perceptible distortions[15]. It works by replacing the LSBs of
randomly selected pixels in the cover image with the secret message bits. The selection of
pixels may be determined by a secret key. The embedding operation of LSB steganography
may be described by the following equation

yi = 2bxi
2
c+mi, (3)

where mi, xi, and yi are the i-th message bit, the i-th selected pixel value before embed-
ding, and that after embedding, respectively. Many steganographic tools using the LSB
based steganographic technique, such as Steghide, S-tools, Steganos, etc, are available on
the Internet1.

Let {PX(x = 0), PX(x = 1)} denote the distribution of the least significant bits of a
cover image, and {Pm(m = 0), Pm(m = 1)} denote the distribution of the secret binary
message bits. Generally, in order to protect the secrecy, the to-be-hidden message may
be compressed or encrypted before being embedded. Hence, the distribution of message
may be assumed to approximate a uniform distribution, that is, {Pm(m = 0) ' Pm(m =

11http://www.stegoarchive.com
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1) ' 1/2}. Besides, the cover image and message may also be assumed to be independent.
Thus, the noise introduced to the image (thereafter stego-noise) may be modeled as

P+1 =
p

2
PX(x = 0), P0 = 1− p

2
, P−1 =

p

2
PX(x = 1), (4)

where p is the embedding rate in bpp.
From the embedding operation described above, it is easy to know that the secret

message bits may be extracted directly from the LSBs of these pixels which are selected
during embedding.

3.1.2. Multiple Bit-planes Based Steganography. The methodology of LSB embedding can
be easily extended to hiding data in multiple bit-planes. But one major defect of this
kind of extension is that the non-adaptive embedding manner may reduce the perceptual
quality of a stego image if some high bit-planes are involved in embedding arbitrarily
without considering the local property. To address this problem, Kawaguchi and Eason[16]
developed the bit-plane complexity segmentation (BPCS) steganography. In this method,
the raw image which is represented in pure-binary coding (PBC) system will be firstly
converted to canonical Gray coding (CGC) system. Then the image is decomposed to a
set of binary images according to the bit-plane. Next, for each candidate embedding CGC
bit-plane, its corresponding binary image is divided into consecutive and non-overlapping
blocks of size 2L × 2L, where L = 3 is a recommended choice. If the complexity of the
image-block, computed by

α =
k

2× 2L × (2L − 1)
, (5)

is larger than a predefined threshold α0, such a block is regarded as noise-like and suitable
for data embedding. The k in Eq. (5) stands for the total number of black-and-white
borders in the block. At the same time, secret data are grouped into a series of data-
blocks with the size 2L × 2L and their complexities are also computed by eq. (5). If the
complexity of a data-block is less than α0, such a block is processed by a conjugation
operation[16] and the complexity of the conjugated data-block will be (1−α), larger than
α0. Then the noise-like data-blocks will replace the noise-like image-blocks to carry data.
And the whole image after data embedding is transformed back to PBC system. The
embedding rate of BPCS steganography may achieve as high as 4 bpp without causing
severe visual artifacts.

3.1.3. Noise-adding Based Steganography. The embedding effect of “pairs of value” (PoV)
exists in LSB steganography and may lead to successful steganalysis[17] (see Section 4.1.1
for details). In order to avoid PoV statistical attack, LSB matching[18, 19, 20], which is
a minor modification of LSB steganography, is proposed. Instead of replacing the LSBs
of the cover image pixels, LSB matching adds or subtracts them by 1 if they does not
match the message bits.

In fact, LSB matching may be considered as a special case of ±k steganography[21]
with k = 1, which increases or decreases the pixel value by k to match its LSB with the
binary message bit. The distortion due to non-adaptive ±k embedding may be modeled
as an additive independent identically distributed (i.i.d.) noise signal with the following
probability mass function (PMF)

P+k =
p

4
, P0 = 1− p

2
, P−k =

p

4
, (6)

where p is the embedding rate in bpp.
Fridrich[22] presented another novel noise-adding steganography, known as stochastic

modulation steganography. Message bits are embedded in the cover image by adding a



148 B. Li, J.H. He, J.W. Huang, and Y.Q. Shi

weak noise signal with a specified but arbitrary probabilistic distribution. A high hiding
capacity (about 0.8 bpp) may be achieved with the use of a well-designed parametric
parity function. The parametric parity function p (x, z) used in stochastic modulation
steganography is required to satisfy the anti-symmetric property for x, i.e. p (x+ z, z) =
−p (x− z, z) (z 6= 0). The definition of the parity function proposed in ref. [22] is given
as follows.

• If x ∈ [1, 2z], p (x, z) =

{
(−1)x+z if z > 0,

0 if z = 0.

• If x 6∈ [1, 2z], p (x, z) can be computed according to the anti-symmetric property.

The embedding procedure of stochastic modulation can be described as follows. Firstly,
sequential or random visiting path and the to-be-added stego-noise ξn are generated using
a secret key. Then for the pixel xi along the visiting path, one sample ni of the stego-noise
ξn is rounded off to an integer zi. If zi = 0, the pixel xi is skipped and at the same time
the next stego-noise sample is input and rounded. If zi 6= 0, the pixel xi will be modified
according to the value of the parity function. That is,

if p (xi + zi, zi) = mk then yi = xi + zi,

elseif p (xi + zi, z) = −mk then yi = xi − zi.
(7)

where mk is the k-th message bit. During the embedding process, those pixels out of the
range of [0, 255] will be truncated to the nearest values in this range with the desired
parity.

Though the embedding operations of LSB matching and ±k steganography are different
from that of LSB steganography, their methods of extracting the secret message bits
are the same as the one stated in Section 3.1.1. For message extraction in stochastic
modulation steganography, the same rounded stego-noise sequence zi is generated from
the stego key as is done during message embedding, follow the same pseudo-random path
in the stego image, and apply the parity function p(x, z) to the pixel values. The non-zero
parity values form the secret message.

3.1.4. Prediction Error Based Steganography. In order to maintain image visual quality,
it is intuitive to think that secret data should be hidden in complex areas of the image.
To evaluate the local complexity, one way is to use the pixel prediction error. The large
the prediction error, the more obvious the local fluctuation. Data can be hidden into the
prediction errors. Using a pixel’s neighboring pixel is a simple way to predict the current
pixel value and thus their difference can be considered as a kind of prediction error. In
the pixel value differencing (PVD) steganography[23], an image is partitioned into non-
overlapping and consecutive groups of two neighboring pixels. The to-be-embedded secret
data are hidden into the difference values. Suppose two neighboring pixels, xi and xi+1,
are used and their difference value is di = xi+1 − xi, where 0 ≤ |di| ≤ 255. A large |di|
means a complex block. Then classify |di| into a set of contiguous ranges, denoted by Rk,
where k = 0, 1, ..., K − 1 is the range index. Denote lk, uk, and wk as the lower bound,
the upper bound, and the width of Rk, respectively. The value of wk is designed to be a
power of 2. If |di| ∈ Rk, the corresponding two pixels are expected to carry log2(wk) bits.
That is, their pixel values are changed so that the absolute value of their new difference
equals to |d′i| = |yi+1 − yi| = lk + bi, where bi is the decimal value of the to-be-embedded
bits. The embedding operation can be described as

(yi, yi+1) =

{
(xi − rc, xi+1 + rf ) if di is odd,

(xi − rf , xi+1 + rc) if di is even,
(8)
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(c) Stego (∆ = 10)

Figure 3. The histogram of a cover image (a), the histogram of of a stego
image with ∆ = 2 (b), and that of a stego image with ∆ = 10 (c).

where rc = dd
′
i−di
2
e and rf = bd

′
i−di
2
c. In this way, the embedding distortion is distributed

almost equally in two pixels. In Bob’s side, the difference values can be obtained. If
|d′i| ∈ Rk, the decimal value of the embedded bits is computed as bi = |d′i| − lk.

3.1.5. Modulo Operation Based Steganography. In multiple base notational system (MBNS)
steganography [24], binary secret data are converted into symbols represented in a nota-
tional system with variable bases. The conversion can be done by using simple arithmetic
as described in ref. [24]. The pixel value is modified to

yi = arg min
v∈[0,255], mod (v,bi)=di

|v − xi|, (9)

where bi and di are the base value and the corresponding symbol for the to-be-modified
pixel xi, respectively. The mod(v, bi) is an modulo operation which computes the re-
mainder of division of v by bi. In this way, the remainder of division of new pixel value
yi by the base value bi equals to the to-be-embedded symbol di. The base value is deter-
mined by image local property and the pixel yi can carry log2 (bi) bits secret data. The
larger the local variation, the larger the base is, and the more information bits can be
hidden in the pixel. MBNS steganography takes advantage of the human visual system.
Its embedding rate may even achieve 2 bpp for some images. In the data extraction side,
the base value bi can be retrieved from the image and thus di = mod(yi, bi). Then the
symbols are transformed back to binary data. Since the data embedding and data extrac-
tion processes are based on a modulo operation, we regard such type of steganography as
modulo operation based steganography.

3.1.6. Quantization Based Steganography. Quantization index modulation (QIM)[25] is a
commonly used data embedding technique in digital watermarking and it can be employed
for steganography. It quantizes the input signal x to the output y with a set of quantizers,
i.e., Qm(·). Using which quantizer for quantization is determined by the message bit m. A
standard scalar QIM with quantization step ∆ for embedding binary data can be simply
described as:

yi = Qm(xi) =

{
∆
⌊
xi
∆

+ 1
2

⌋
if mi = 0,

∆
⌊
xi
∆

⌋
+ ∆

2
if mi = 1.

(10)

As explained in ref. [3] and illustrated in Figure 3, if the standard QIM is employed to
spatial domain, the histogram will show a sign of discreteness in the integer multiple of
∆/2, especially when ∆ > 2. It is unusual for a spatial image to have such a kind of
quantization phenomenon. Therefore QIM is often employed to the coefficients in the
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transform domain which are needed to be quantized. For example, QIM can be used with
JPEG compression, such as the method described in ref. [26].

A variant of QIM is called dither modulation (DM)[25, 27]. Unlike QIM which produces
the output values only at the reconstruction points of quantizers, DM can produce the
output signal covering all of the values of the input signal. Such capability is achieved
by adding a dither signal to the input signal before quantization and subtracting it after
quantization. That is,

yi = Qm(xi + di)− di. (11)

The dither signal di is determined by a key and uniformly distributed over [−∆/4,∆/4).
DM can be applied to spatial image to avoid making the histogram sparse, but it is also
more often used for transform coefficients.

3.2. JPEG steganography. JPEG is the common format of the images produced by
digital cameras, scanners, and other photographic image capture devices. Therefore,
hiding secret information into JPEG images may provide better camouflage. Most of
the steganographic schemes embed data into the non-zero alternate current (AC) discrete
cosine transform (DCT) coefficients of JPEG images. As a result, the embedding rate of
JPEG steganographic is often evaluated in bit per non-zero AC DCT coefficient (bpac).
We review five major JPEG steganographic methods in the following.

3.2.1. JSteg/JPHide. Jsteg [28] and JPHide [29] are two classical JPEG steganographic
tools utilizing the LSB embedding technique. JSteg embeds secret information into a
cover image by successively replacing the LSBs of non-zero quantized DCT coefficients
with secret message bits. Unlike JSteg, the quantized DCT coefficients that will be used
to hide secret message bits in JPHide are selected at random by a pseudo-random number
generator, which may be controlled by a key. Moreover, JPHide modifies not only the
LSBs of the selected coefficients, it can also switch to a mode where the bits of the second
least significant bit-plane are modified.

3.2.2. F5. F5 steganographic algorithm was introduced by Westfeld[30]. Instead of re-
placing the LSBs of quantized DCT coefficients with the message bits, the absolute value
of the coefficient is decreased by one if it is needed to be modified. The author argued that
this type of embedding cannot be detected using the chi-square attack[17]. The F5 algo-
rithm embeds message bits into randomly-chosen DCT coefficients and employs matrix
embedding that minimizes the necessary number of changes to hide a message of certain
length. In the embedding process, the message length and the number of non-zero AC
coefficients are used to determine the best matrix embedding that minimizes the number
of modifications of the cover image.

3.2.3. OutGuess. OutGuess[31] is provided by Provos as UNIX source code. There are
two famous released versions: OutGuess-0.13b, which is vulnerable to statistical analysis,
and OutGuess-0.2, which includes the ability to preserve statistical properties. When
we talk about the OutGuess, it is referred to OutGuess-0.2. The embedding process of
OutGuess is divided into two stages. Firstly, OutGuess embeds secret message bits along
a random walk into the LSBs of the quantized DCT coefficients while skipping 0’s and
1’s. After embedding, corrections are then made to the coefficients, which are not selected
during embedding, to make the global DCT histogram of the stego image match that of
the cover image. OutGuess cannot be detected by chi-square attack[17].
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Figure 4. Illustration of B-blocks and H-blocks in YASS

3.2.4. MB. Sallee[32] presented a general framework for performing steganography and
steganalysis using a statistical model of the cover media. The proposed example stegano-
graphic method for JPEG images, named model-based steganography (MB), achieves a
high message capacity while remaining secure against several first order statistical at-
tacks. MB adapts the division of the carrier into a deterministic random variable Xdet

and an in-deterministic one Xindet. And a suitable model is employed to describe the
distribution of Xindet, which reflects the dependencies with Xdet. The general model is
parameterized with the actual values of Xdet of a concrete cover image, which leads to
a cover specific model. The purpose of this model is to determine the conditional dis-
tributions P (Xindet|Xdet = xdet). Then, an arithmetic decompression function is used to
fit uniformly distributed message bits to the required distribution of Xindet, thus replac-
ing Xindet by X∗indet, which has similar statistic properties and contains the confidential
message.

3.2.5. YASS. Yet Another Steganographic Scheme (YASS) [33] belongs to JPEG steganog-
raphy but it does not embed data in JPEG DCT coefficients directly. Instead, an input
image in spatial representation is firstly divided into blocks with a fixed large size, and
such blocks are called big blocks (or B-blocks). Then within each B-block, an 8×8 sub-
block, referred to as embedding host block (or H-block), is randomly selected with a secret
key for performing DCT. The B-blocks and H-blocks are illustrated in Figure 4. Next,
secret data encoded by error correction codes are embedded in the DCT coefficients of
the H-blocks by QIM. Finally, after performing the inverse DCT to the H-blocks, the
whole image is compressed and distributed as a JPEG image. For data extraction, image
is firstly JPEG-decompressed to spatial domain. Then data are retrieved from the DCT
coefficients of the H-blocks. Since the location of the H-blocks may not overlap with the
JPEG 8×8 grid, the embedding artifacts caused by YASS are not directly reflected in
the JPEG DCT coefficients. The self-calibration process [34, 35], a powerful technique in
JPEG steganalysis for estimating the cover image statistics, is disabled by YASS. Another
advantage of YASS is that the embedded data may survive in the active warden scenario.
Recently Yu et al [36] proposed a YASS-like scheme to enhance the security performance
of YASS via enhancing block randomization. The comparative security performance of
YASS, F5 and MB against state-of-the-art steganalytic methods can be found in recent
work of Huang et al [37].

4. Image Steganalysis. Steganalysis can be regarded as a two-class pattern classifica-
tion problem which aims to determine whether a testing medium is a cover medium or
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(c) LSB Matching

Figure 5. The histogram of a sample cover image (a), that of the stego
images produced by LSB steganography (b), and that of the stego images
produced by LSB matching steganography(c), respectively.

a stego one. According to its application fields, it can be divided into specific meth-
ods and universal methods. A specific steganalytic method fully utilizes the knowledge
of a targeted steganographic technique and may only be applicable to such a kind of
steganography. A universal steganalytic method can be used to detect several kinds of
steganography. Usually universal methods do not require the knowledge of the details of
the embedding operations. Therefore, it is also called blind method. Some methods can
be considered as ”semi-universal”. For example, the methods in ref. [34, 35, 38, 39] can
reliably detect many JPEG steganographic schemes but may not be effective to spatial
steganography. We still regard these methods in the universal category.

4.1. Specific Approaches. A specific steganalytic method often takes advantage of the
insecure aspect of a steganographic algorithm. We present some specific steganalytic
methods for attacking the steganographic schemes introduced in Section 3.

4.1.1. Attacking LSB steganography. As mentioned previously, LSB steganography was
put into use in many steganographic tools very early and has been one of the most im-
portant spatial steganographic techniques. Accordingly, much work has been done on
steganalyzing LSB steganography in the initial stage of the development of steganalysis.
And many steganalytic methods toward LSB steganography have been proved most suc-
cessful, such as Chi-square (χ2) statistical attack [17, 40], RS analysis [14], sample pair
analysis (SPA) analysis [41], weighted stego (WS) analysis [42], and structural steganalysis
[43, 44], etc.

As regards LSB steganography, some of the LSBs of a cover image will be flipped when
they differs from the message bits, which is discussed in details in Section 3.1.1. Without
loss of generality, the message bits may be considered to be uniformly distributed, which
is usually the case when they are compressed or encrypted ahead of embedding. Then
the flipping 2n ↔ 2n + 1 (n = 0, 1, · · · , 127 for a gray-scale image) may result in the
occurrence times of both values of each PoV (2n, 2n + 1), denoted by O2n and O2n+1

respectively, becoming more equal than those of the original cover image, which can be
seen from Figure 5(b) and 5(a). The more uniformly message bits are hidden into the
cover image, the more the occurrence times of a PoV will be equal. But the sum of their
occurrence times O2n + O2n+1 stays the same. Thus, the arithmetic mean of the sum,
denoted by Oe = O2n+O2n+1

2
may be taken as the theoretically expected frequency in the

Chi-square test for the frequency of occurrence of 2n or 2n+ 1 [17]. Then the χ2 statistic

may be given as χ2
k−1 =

∑ (O2n−Oe)2
Oe

with k − 1 degrees of freedom. And the probability
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Figure 6. RS diagram of a gray-scale 128 × 128 Lena. The x-axis is the
percentage of pixels with flipped LSBs, the y-axis is the relative number of
regular and singular groups with masks M and −M , M = [0 1 1 0].

of embedding p can be calculated by

p = 1− 1

2
k−1
2 Γ(k−1

2
)

∫ χ2
k−1

0

e−
x
2x

k−1
2
−1dx (12)

where Γ is the Euler Gamma function.
The quantitative analysis of LSB steganography was firstly addressed by Fridrich et al.

[14] Their method is well known as RS analysis. By defining a discrimination function f ,
which maps a group of n neighboring pixels (x1, x2, · · · , xn) into a real number, and an
invertible flipping operation F , a pixel group G is classified into one of the three types:
R,S, and U .

Regular groups: G ∈ R⇐⇒ f(F (G)) > f(G)

Singular groups: G ∈ S ⇐⇒ f(F (G)) < f(G)

Unusable groups: G ∈ U ⇐⇒ f(F (G)) = f(G)

(13)

where F (G) means apply the operation F on each element of G. Different flipping may be
conducted on different pixels and the assignment of flipping to each pixel in G is given by
a mask M . Fridrich et al. observed that the approximate equality existing between the
number of regular (singular) groups for mask M denoted by RM (SM) and that for mask
−M denoted by R−M (S−M) may be destroyed by LSB steganography to a corresponding
degree with the length of the message bits, which is well illustrated by the RS diagram
in Figure 6, where the R−M and S−M curves can be well modeled with a straight line,
and the “inner” curves RM and SM follow a parabola. Then the message length may be
calculated with these models and the special points in the RS diagram.

Many other steganalytic techniques [41, 42, 43, 44] have been proposed in recent years.
The success of most of these methods is based on the fact that the pixel/coefficient values
are changed within the PoV, i.e., 2n↔ 2n+ 1. Note that some steganalytic methods, for
example, the Chi-square attack [17, 40], are effective to LSB steganography for spatial
images as well as JPEG images. The fact that LSB steganography is vulnerable to attack
implies that high imperceptivity does not guarantee a high security level.

4.1.2. Attacking LSB Matching Steganography. It may be seen from Figure 5(c) that the
equal trend of the frequency of occurrence of PoVs no longer exists for LSB matching
steganography. Thus many steganalytic methods toward LSB steganography turn out
be invalid. LSB matching, or more general ±k steganography, may be modeled in the
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context of additive noise independent of the cover image, which is discussed in Section
3.1.3.

The effect of additive noise steganography to the image histogram is equivalent to
a convolution of the histogram of the cover image and the stego-noise PMF. It may be
analyzed more conveniently in the frequency domain [45]. Let the histogram characteristic
function (HCF) be the discrete Fourier transform (DFT) of a histogram. The histogram
characteristic function center of mass (HCF-COM), which gives a general information
about the energy distribution in HCF, is exploited to capture the low pass filter effect of
the additive noise. The HCF-COM can successful detect the steganographic techniques
of additive noise type.

In ref. [46], Ker’s experimental results showed that the HCF-COM-based steganalytic
method performed quite good for color images, but it turned out to have very poor perfor-
mance for gray-scale images. Ker found that the reason lied in the high variability of the
cover images’ HCF. Therefore, a down-sampled image by a factor of two in both dimen-
sions and processed by a straightforward averaging filter was employed to calibrate the
HCF-COM of the full-sized image [46]. In view of the variation between the magnitudes of
the HCF-COM of a cover image, denoted by C(H[k]), and that of the down-sampled im-
age, denoted by C(H ′[k]), the ratio C(H[k])/C(H ′[k]) is then proposed as a dimensionless
discriminator. Another way of applying the HCF-COM is also introduced by computing
the adjacency histogram. The HCF-COM detector based on C(H[k])/C(H ′[k]) and that
based on the adjacency histogram are proved by extensive experimental that both of them
produce reliable detectors for LSB matching steganography in gray-scale images. A novel
calibration-based detectors calculated on the difference image to detect LSB matching is
recently investigated in ref. [47]. By combining techniques of pixel selection and utilizing
low-frequency DFT coefficients, the new detectors outperform the Ker’s calibrated version
and are capable of detecting LSB matching in gray-scale image even when the embedding
rate is low, especially for compressed images.

Besides the steganalytic algorithms summarized above, there are still several other
targeted methods of steganalyzing LSB matching [48, 49, 50]. Zhang et al. [48] observed
that the local maxima of an image’s gray-level or color histogram decrease and the local
minima increase. Consequently, the sum of the absolute differences between the local
extrema and their neighbors in the histogram of a cover image will be greater than that
of the stego image. This property is then used to construct a new discriminant feature for
steganalysis. Later, the algorithm of Zhang et al. was modified [49] to deal with border
effects associated with the 1-D intensity histogram, and extended to include statistics
associated the amplitude of local extrema in the 2-D adjacency histogram. In ref. [50], a
new image is first produced by combining the least two significant bit-planes and is then
divided into 3 × 3 overlapped sub-images. The sub-images are grouped into four types
Ti (i = 1, 2, 3, 4), where i is the number of gray levels in a sub-image. Via embedding a
random sequence by LSB matching and then computing the alteration rate of the number
of elements in T1, the alteration rate is found to be higher in cover image than in the
corresponding stego image. And this new finding is used as the discrimination rule for
the detection of LSB matching.

4.1.3. Attacking Stochastic Modulation Steganography. It is reported in [51] that the hori-
zontal pixel difference histogram of a natural image can be modeled as a generalized Gauss-
ian distribution (GGD). However, as stated in 3.1.3, stochastic modulation steganography
adds stego-noise with a specific probability distribution into the cover image to embed
secret message bits. The embedding effect of adding stego-noise may disturb the dis-
tribution of the cover natural image. A quantitative approach to steganalyze stochastic
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Figure 7. The complexity histogram of some data-blocks (a), that of the
image-blocks of 5th most significant bit-plane of a cover image (b), and that
of a stego image (with complexity threshold α0 = 0.375).

modulation steganography was presented in [52, 53]. For the non-adaptive stochastic
modulation steganography, the stego-noise added during embedding may assumed to be
independent from the cover image. The distribution of stego-image’s pixel difference
is thus approximately equal to the convolution of the probabilistic distribution of the
rounded stego-noise difference and that of the cover image’s pixel difference. And the
variance of the stego-noise, denoted by σn, may be estimated with the use of grid search-
ing and goodness-of-fit test. Then the length p (in bpp) of the embedded secret message
may be estimated by

p = 1− erf(1/(2
√

2σn)) (14)

where erf(x) = 2/
√
π
∫ x

0
e−t

2
dt. It is necessary to mention that the proposed estimator

is not so robust for the two relied assumptions may not hold so well, which was analyzed
in [53].

4.1.4. Attacking the BPCS Steganography. In BPCS steganography, the binary patterns
of data-blocks are random and it is observed that the complexities of the data-blocks
follow a Gaussian distribution with the mean value at 0.5 [54]. For some high significant
bit-planes (e.g., the most significant bit-plane to the 5th significant bit-plane) in a cover
image, the binary patterns of the image blocks are not random and thus the complexities of
the image blocks do not follow a Gaussian distribution. If a histogram of the complexities
of the image blocks is constructed, it is expected that the complexity histogram of a high
significant bit-plane of a cover image is in a non-Gaussian-like shape. For a stego image,
since the image blocks whose complexities being larger than the threshold α0 are replaced
by data-blocks, the complexities larger than α0 will be replaced by the complexities of
the data-blocks. Therefore, the complexity histogram will also be changed in the portion
where the complexity is larger than α0. It is expected that this portion will have a
Gaussian-like shape. Besides, a valley can be found in the complexity histogram at the
complexity threshold α0. As a result, the presence of BPCS steganography can be revealed
by observing the complexity histogram of high significant bit-planes, as proposed by Niimi
et al. [54]. Figure 7 illustrates the complexity histogram of data-blocks, the complexity
histogram of the image-blocks of the 5th most significant bit-plane of a cover image, and
that of its stego image, respectively.

4.1.5. Attacking the Prediction Error Based Steganography. If there is no special scheme to
prevent Wendy retrieving the correct prediction values, it is quite easy for Wendy to detect
the steganographic method which utilizes prediction errors for hiding data, such as PVD
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Figure 9. Conditional probability PD|B(d|b) for a cover-image and its
stego-image

steganography. Zhang et al. [55] proposed a method for attacking PVD steganography
based on observing the the histogram of the prediction errors. Since “0” and “1” are
equally distributed in the binary secret data, the occurrence of the decimal values are
also equally distributed in each Rk. The reason is very similar to the LSB steganography.
Replacing the prediction errors with the secret data will make the histogram equalized in
each Rk. Figure 8 shows the pixel value difference histogram of a cover image and that of
a PVD stego image. It is quite easy to observe a “step effect” in the histogram and use
the unusual phenomenon to launch an attack.

4.1.6. Attacking the MBNS Steganography. It’s hard to observe any abnormality between
a cover image and its MBNS stego image through the histogram of pixel values and the
histogram of pixel prediction errors. In ref. [56], the authors observed and illustrated
that given any base value, more small symbols are generated than large symbols in the
process of converting binary data to symbols. Since the remainders of the division of pixel
values by bases are equal to the symbols, the conditional probability PD|B can be used
to discriminate the cover images and stego images, where B and D denote the random
variable of the base and the remainder, respectively. For a given base, the following
inequality holds in the stego image when the embedding rate is high.

PD|B(D = 0|b) ≥ PD|B(D = 1|b) ≥ · · · ≥ PD|B(D = (b− 1)|b) (15)

Figure 9 shows the conditional probabilities when b = 8 and b = 16. To increase the
robustness of the steganalytic method, it has been proposed to examine whether (16)



A Survey on Image Steganography and Steganalysis 157

holds for the most frequently appeared base values in a testing image.

PD|B(D = 0|b) ≥ 1

b− 1

b−1∑
i=1

PD|B(D = i|b). (16)

4.1.7. Attacking QIM/DM. The issue in steganalysis of QIM/DM has been formulated
into two sub-issues by Sullivan et al. [57]. One is to distinguish the standard QIM
stego objects from the plain-quantized (quantization without message embedding) cover
objects. Another is to differentiate the DM stego objects from the unquantized cover
objects. Figure 10 demonstrates the histogram of DCT coefficients of an unquantized
cover image, plain-quantized images, QIM stego images, and DM stego image. Since the
PMF of a QIM stego object, or the PDF (probability density function) of a DM stego
object, has a relation with the PMF/PDF of its cover counterpart, if the PMF/PDF of
the cover is known, a likelihood ratio test (LRT) can be conducted for optimal detection.
It was noted in ref. [58] and confirmed by ref. [57] that if the PMF/PDF of the cover
object follows a uniform distribution, it would be impossible to detect DM. In practice, the
PMF/PDF of the coefficients in transform domain follows a Gaussian-like or Laplacian-
like distribution, which means there is a large spike around the mean value. Therefore, it
is possible to detect DM in real scenarios. For a Gaussian-like distribution, Sullivan et al.
concluded that the detectability of QIM/DM is related to σ/∆, where σ is a parameter
measuring the concentration of PMF/PDF. Under the same σ, the larger the ∆, the easier
the detection. This conclusion may be a bad news for Alice since she cannot have the
robustness and the security at the same time. But Wendy cannot perform LRT in real
life since she does not know the exact PMF/PDF of the cover object. Alternatively, a
supervised learning scheme was practically employed in ref. [57] to use the PMF of the
quantized coefficients as features for steganalyzing standard QIM. But the performance
of steganalyzing DM has not been reported.

It was assumed the image coefficients are i.i.d. in Sullivan et al.’s work [57]. Malik et
al. [59, 60, 61] proposed a series of methods which utilized the dependency among image
coefficients when data are hiding in DCT coefficients by QIM/DM. In ref. [59], a random
variable, named randomness mask and denoted by Rcx , has been defined to measure the
similarity between the current DCT coefficient and the coefficients at the same frequency
subband in the neighboring DCT blocks. Its value ranges from 0 to 1, where Rcx = 0
implies the maximum degree of similarity and Rcx = 1 indicates the minimum. Next,
kernel density estimation is taken to estimate the density of the randomness mask. The
density is then modeled by a Gamma density function. Finally, the skewness and the peak
of the density function, are used for distinguishing between standard QIM stego images
and quantized cover images via comparing the them with some predefined thresholds.
This method has a high false positive rate when ∆ is small. In an improved work in ref.
[60], the detection performance is boosted.

The above mentioned methods [59, 60] can even be adapted to detect other JPEG
steganographic schemes, which disturb the local correlation between coefficients. However,
the performance of detecting the DM has not been reported. In ref. [61], two similar
steganalytic schemes, both using approximate entropy (ApEn), had been proposed to
detect QIM and DM, respectively. In the first scheme for detecting QIM, DCT coefficients
in each individual AC DCT subband are firstly grouped into a sequence. Then the ApEn
is calculated for each sequence. A high ApEn value indicates the degree of randomness
of the sequence is high. It is observed that the ApEn values of the high frequency AC
subband of a QIM stego image is always larger than that of a quantized cover image. This
property is explored to detect the QIM stego image. However, such a method is still hard
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Figure 10. The histogram of DCT coefficients of a cover image without
quantization (a), that of a cover image using plain-quantization with ∆ = 2
(b), that of a cover image using plain-quantization with ∆ = 6 (c), that of
a DM stego image with ∆ = 2 (d), that of a QIM stego image with ∆ = 6
(e), and that of a QIM stego image with ∆ = 6 (f).

to distinguishing DM stego images and unquantized cover images. Hence the normalized
ApEn (nApEn), obtained from dividing the ApEn by the variance of its corresponding
DCT sequence, is used in the second scheme. To amplify the difference between cover
and stego, a second testing image, named as DM re-embedded stego image, is generated
by embedding some data into the testing image with DM. Then, the Euclidian distance
between the nApEn of the testing image and that of its DM re-embedded stego image
is computed. It is expected that the Euclidian distance of a stego image is smaller than
that of a cover image. With a threshold, DM stego image and unquantized cover image
may be differentiated.

4.1.8. Attacking the F5 Algorithm. Some crucial characteristics of the histogram of DCT
coefficients, such as the monotonicity and the symmetry, are preserved by the F5 algo-
rithm. But F5 does modify the shape of the histogram of DCT coefficients. This drawback
is employed by Fridrich et al.[62] to launch an attack against F5. Let h(d) be the total
number of AC coefficients with absolute value equal to d in an image. In an F5 stego im-
age, the first two values in the histogram (d = 0 and d = 1) experience the largest change
during embedding. To facilitate the attack, a procedure of estimating the cover image’s
histogram from the stego image is taken in the steganalytic method as follows. Firstly,
the stego image is decompressed to the spatial domain, then cropped by 4 columns, and
re-compressed using the same quantization parameters as that of the original stego image.
A blurring operation is applied as a preprocessing step to remove possible JPEG blocking
artifacts from the cropped image before re-compressing. The resulting DCT coefficients
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will provide the estimation of the cover image histogram. Then the probability of a non-
zero AC coefficient being modified, denoted by β, may be estimated by the least square
approximation minimizing the square error between the stego image histograms h(0), h(1)
and those expected values obtained in the previous estimation procedure.

4.1.9. Attacking OutGuess. OutGuess preserves the shape of the histogram of DCT co-
efficients and thus it may not be easy to employ a quantitative steganalyzer to attack
OutGuess with the statistics of DCT coefficients as that in attacking F5. Fridrich et al.
[63] found a new path to detect OutGuess quantitatively by measuring the discontinuity
along the boundaries of 8× 8 JPEG grid. A spatial statistical feature, named blockiness,
for an image is defined as

B =
∑b(M−1)/8c

i=1

∑N

j=1
|x8i,j − x8i+1,j|+

∑b(N−1)/8c

j=1

∑M

i=1
|xi,8j − xi,8j+1| (17)

where xi,j is the gray level of the pixel at location (i, j) in an M×N image. It is observed
that the blockiness linearly increases with the number of altered DCT coefficients. Sup-
pose that some data are embedded into an input image. If the input image is innocent,
the change rate of the blockiness between the input image and the embedded one will
be large. If the input image already contains some data, the change rate will be smaller.
The change rate of the blockiness can be used to estimate the embedding rate. In the
steganalytic process, four corresponding images are generated from an input testing im-
age. Denote the input image by T . The first image is generated by using OutGuess to

embed data with maximal length to T and it is denoted as Ŝ0. The second one is cre-
ated by decompressing the input image, cropping 4 columns, and then compressing the
cropped image into JPEG with the same compression parameters as T . This image can
approximate a cover image, and it is denoted as Ĉ. The third image is formed through

embedding data with maximal length to Ĉ and it is denoted as Ŝ1. The fourth one is

generated by embedding some different data with maximal length toŜ1 and it is denoted

as Ŝ2. Ŝ1 can simulate a stego image and Ŝ2 a twice data embedded stego image. The
estimated embedding rate can be calculated as

p =
[B(Ŝ1)−B(Ĉ)]− [B(Ŝ0)−B(T )]

[B(Ŝ1)−B(Ĉ)]− [B(Ŝ2)−B(Ŝ1)]
(18)

where B(T ), B(Ŝ0), B(Ĉ), B(Ŝ1), and B(Ŝ2) are the blockiness of T , Ŝ0, Ĉ, Ŝ1, and Ŝ2,
respectively.

4.1.10. Attacking MB. MB steganography uses a generalized Cauchy distribution model
to control the data embedding operation. Therefore, the histogram of the DCT coefficients
will fit the generalized Cauchy distribution well in a stego image. Bohme and Westfeld
[64] observed that the histogram of the DCT coefficients in a natural image is not always
conforming the distribution. There exist more outlier high precision bins in the histogram
in a cover image than in a stego image. Judging from the number of outlier bins, cover
images and stego images can be differentiated.

4.1.11. Attacking YASS. The locations of the H-blocks of YASS are determined by a key,
which is not available to Wendy. Therefore, it may not be straightforward for Wendy to
observe the embedding artifacts. Li et al. [65] observed that the locations of the H-blocks
are not randomized enough in YASS. Specifically, the H-blocks are constrained to reside
inside B-blocks. Define the origin of an block is the upper-left element in such a block.
Along the main diagonal direction of a B-block, the first (B − 7) elements are possible
to be the origin of the H-block and the remaining 7 elements are definitely impossible to
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Figure 11. The P-regions and I-regions in 10× 10 B-blocks

be the origin of the H-block. For simplicity we refer to these two kinds of element region
in a B-block as P-region and I-region, respectively. Figure 11 shows the P-regions and
I-regions in 10 × 10 B-blocks. These two kinds of regions bear different characteristics.
Use a JPEG quantizer to quantize the 8×8 blocks whose origins are on the main diagonal
direction of the B-blocks. It can be observed that more zero quantized coefficients are
generated from P-region than I-region in a stego image. And a cover image does not
show such a phenomenon. The reason is that QIM embedding in YASS data embedding
process introduces more zero coefficients.

As a summarization of this sub-section,we present a table (Table 1) to demonstrate the
capacity and the outstanding feature of typical steganographic methods as well as their
deviation in image statistics which are utilized by some targeted steganalytic methods.

4.2. Universal Approaches. Unlike specific steganalytic methods which require know-
ing the details of the targeted steganographic methods, universal steganalysis [66] requires
less or even no such priori information. A universal steganalytic approach usually takes a
learning based strategy which involves a training stage and a testing stage. The process
is illustrated in Figure 12. During the process, a feature extraction step is used in both
training and testing stage. Its function is to map an input image from a high-dimensional
image space to a low-dimensional feature space. The aim of the training stage is to obtain
a trained classifier. Many effective classifiers, such as Fisher linear discriminant (FLD),
support vector machine (SVM), neural network (NN), etc., can be selected. Decision
boundaries are formed by the classifier to separate the feature space into positive regions
and negative regions with the help of the feature vectors extracted from the training im-
ages. In the testing stage, with the trained classifier that has the decision boundaries,
an image under question is classified according to its feature vector’s domination in the
feature space. If the feature vector locates in a region where the classifier is labeled as
positive, the testing image is classified as a positive class (stego image). Otherwise, it is
classified as a negative class (cover image). Please note that some specific steganalytic
methods may also take a similar learning based process. The difference between specific
and universal methods lies in whether the features are effective in detecting a wide range of
steganographic techniques. In the following, we mainly devote to presenting some typical
universal steganalytic features.

4.2.1. Image Quality Feature. Steganographic schemes may more or less cause some forms
of degradation to the image. Objective image quality measures (IQMs) are quantitative
metrics based on image features for gauging the distortion. The statistical evidence left by
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Table 1. Performance of typical steganographic methods

Steganography Capacity∗ Outstanding Features Typical Deviated Statistics

LSB 1 bpp substitute the least signifi-
cant bit

”pairs of value” in his-
togram

BPCS ≈ 4 bpp substitute the noise-like bi-
nary image blocks

complexity histogram of
the data-blocks

LSB Matching 1 bpp plus or minus 1 randomly histogram characteristic
function

Stochastic
Modulation

≈ 0.8 bpp modulate the embedded
data as noise

pixel difference histogram

PVD > 1 bpp embed data in the differ-
ence of neighboring pixel

”step effect” in pixel differ-
ence histogram

MBNS ≈ 2 bpp embed data in modulo
value and the base value is
determined adaptively

given any base value, more
small symbols are gener-
ated

QIM/DM depend on
the specific
application

quantizer is determined by
message bit (usually in
transform domain)

local correlation between
coefficients

JSteg < 1 bpnc substitute the least signifi-
cant bit of JPEG DCT co-
efficients

”pairs of value” in DCT his-
togram

F5 ≈ 0.8 bpnc decrease coefficients’ abso-
lute values and use matrix
embedding

increased zero coefficients

OG ≈ 0.4 bpnc preserve the global DCT
histogram

blockiness

MB ≈ 0.8 bpnc preserve the low-precision
model

the high-precision bins fol-
low the generalized Cauchy
distribution too well

YASS < 0.4 bpnc use randomized locations more zero quantized coef-
ficients are generated from
P-region than I-region

∗ The capacity of some steganographic method may depend on the specific parameter

and/or the specific image.

steganography may be captured by a group of IQMs and then exploited for detection[67].
In order to seek specific quality measures that are sensitive, consistent and monotonic
to steganographic artifacts and distortions, the analysis of variance (ANOVA) technique
is exploited and the ranking of the goodness of the metrics is done according to the F-
score in the ANOVA tests. And the identified metrics can be defined as feature sets to
distinguish between cover images and stego images.

4.2.2. Calibration Based Feature. Fridrich et al. [34] applied the feature-based classifica-
tion together with the concept of calibration to devise a blind detector specific to JPEG
images. Here the calibration means that some parameters of the cover image may be
approximately recovered by using the stego image as side information. As a result, the
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Figure 12. The process of a universal steganalytic method

calibration process increases the features’ sensitivity to the embedding modifications while
suppressing image-to-image variations.

In blind steganalysis scenarios, only the stego image J1 can be obtained. By decom-
pressing the stego image J1 to the spatial domain, cropping by 4 pixels in each direction,
and re-compressing with the same quantization table as J1 , we may get a “calibrated”
image J2 with most macroscopic features similar to the original cover image. Instead of
measuring the distance between the image and a statistical model, the distance between
certain parameters of the image and the same parameters related to the recovered image
are calculated and exploited for detection. 23 vector functionals Fi (i = 1, 2, · · · , 23)
are applied to the stego JPEG image J1. These 23 functionals include the global DCT
coefficient histogram, individual histograms for 5 DCT modes (h21, h31, h12, h22, h13), dual
histograms for 11 DCT values (−5, · · · , 5), variation, L1 and L2 spital blockiness, and
co-occurrence matrixes, etc. The same set of vector functionals Fi are then applied to J2.
The final feature f is obtained as an L1 norm of the difference

f = ‖Fi(J1)− Fi(J2)‖L1 (19)

where the L1 norm is defined for a vector (or matrix) as a sum of absolute values of all
vector (or matrix) elements.

By extending the 23 DCT feature set described previously, then applying calibration
to the Markov process based features described in ref. [38] and reducing their dimension,
Pevný et al. merged the resulting feature sets to produce a 274-dimensional feature vector
[35]. The new feature set is then used to construct a multi-classifier capable of assigning
stego images to six popular steganographic algorithms.

4.2.3. Moment Based Feature. The impact of steganography to a cover image can be
regarded as introducing some stego-noise. As noise is added, some statistics of the image
may be changed. It is effective to observe these changes in wavelet domain. Lyu and
Farid [68] used the assumption that the PDF of the wavelet subband coefficients and that
of the prediction error of the subband coefficients would change after data embedding.
As a result, the statistical moments of the PDF (thereafter PDF moments), which can
describe the PDF characteristics, were developed as steganalytic features. The n-th order
PDF moment of a random variable S with a sequence of realizations {s1, s2, · · · , sN} can
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be computed as

Mn = E(Sn) =
1

N

N∑
i=1

(si)
n (20)

where E(·) is the expectation operator. In ref. [68], with a 3-level wavelet decomposition,
the first four PDF moments, i.e., mean, variance, skewness, and kurtosis, of the subband
coefficients at each high-pass orientation (horizontal, vertical and diagonal direction) of
each level are taken into consideration as one set of features. The same kinds of PDF
moments of the difference between the logarithm of the subband coefficients and the
logarithm of the coefficients’ cross-subband linear predictions at each high-pass orientation
of each level are computed as another set of features. These two kinds of features provide
satisfactory results when the embedding rate is high.

Goljan et al. [69] contributed a method with features from the first nine absolute central
moments of the PDF (thereafter absolute PDF moments) of the estimated stego-noise.
The n-th absolute PDF moment of a random variable S with the mean value s can be
computed as

An = E(|S − s|n) =
1

N

N∑
i=1

|si − s|n (21)

And the estimation of stego-noise is performed in the wavelet domain with an adaptive
denoising filter. It is expected that the features extracted from the estimated stego-noise
will be more sensitive to data embedding and can greatly suppress the impact of the cover
signal, compared to extracting features from cover signal directly. Besides, the stego-noise
is only estimated in the one-level wavelet decomposition, justified by the fact that the SNR
(stego-noise signal to cover image signal ratio) is high in this level. The features hit the
right nail on the head and show superior performance in detecting additive steganography,
even if the stego noise is weak.

As mentioned in Section 4.1.2, host-independent additive noise has a low-pass filtering
effect on the PMF of the image [45]. The inverse Fourier transform of the PMF, also
known as characteristic function (CF), will change accordingly. Xuan et al. [70] extended
this conclusion to wavelet domain and used the statistical moments of the CF (thereafter
CF moments) of the wavelet subband coefficients as steganalytic features. The n-th order
CF moment is defined as

Cn = (

K/2∑
k=0

(k)n|H(k)|)/(
K/2∑
k=0

|H(k)|). (22)

where H(k) is the discrete CF at frequency index k. The K-point discrete CF can be
computed as

H(k) =
L−1∑
l=0

h(l)e
j2π
K
lk (23)

where h(l) (l ∈ {0, ..., L − 1}) is the normalized histogram of the coefficients, L is the
total number of bins in the histogram, K = 2dlog2 Le, and j =

√
−1. The first three CF

moments of the image and its three-level wavelet decomposited subband coefficients are
used in ref. [70]. Improved from Xuan et al.’s work, Shi et al. [71] proposed to use a
slightly different CF moment, which is defined as

C ′n = (

K/2∑
k=1

(k)n|H(k)|)/(
K/2∑
k=1

|H(k)|). (24)
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The zero frequency component of the CF, i.e., H(0) is deliberately excluded from eq. (22)
for computing the new CF moment to enhance its discrimination capability. Besides, not
only the CF moments of the the image and its wavelet subband coefficients are used,
but also the CF moments of the prediction-error image, which is generated by a spatial
prediction algorithm for removing the impact the image content, and its wavelet subband
coefficients are also used as steganalytic features. This scheme is very sensitive to the
changes caused by data hiding and outperforms the prior-arts.

Note that in practical computation, the PDF moments and absolute PDF moments
can be directly calculated from the coefficient samples {s1, s2, · · · , sN}, as seen in eq.
(20) and (21). But the CF moments, as in eq. (22) and (24), are computed from a
histogram. Different histogram bin size may lead to different results if the data sample are
in continuous values. In ref. [70, 71], Haar wavelet was used and therefore the coefficients
are discrete. As a result, the bin of the histogram is easy to select for the discrete values.
In general, the CF moment based features performs better than the PDF moment based
features in most of the steganographic cases. The reason was first explained by Xuan et
al. [72] and further verified by Wang et al. [73]. Simply speaking, when the energy of the
stego-noise is low, the low-order PDF moments may not be able to catch the changes in
PDF as effective as that low-order CF moments reflect the alterations in CF.

4.2.4. Correlation Based Feature. Data embedding may disturb the local correlation in an
image. Here the correlation is mainly referred to the inter-pixel dependency for a spatial
image, and the intra-block or inter-block DCT coefficient dependency for a JPEG image.

Sullivan et al. [74] modeled the inter-pixel dependency by Markov chain and depicted
it by a gray-level co-occurrence matrix (GLCM) in practice. The element in the (u+ 1)-
th row and the (v + 1)-th column of the GLCM corresponds to the joint probability
P (Xi = u,Xi−1 = v), where Xi denotes the i-th indexed pixel in an image X, and
m,n ∈ {0, 1, · · · , 255} for a 8-bit gray-scale image. For a cover image, the inter-pixel
correlation is strong and thus the joint probability P (Xi = u,Xi−1 = v) is large. Therefore
large values are mainly concentrated on the main diagonal of the GLCM and making it
sparse. As the host-independent noise is added, large values in GLCM are spreading
towards the minor diagonal direction in a stego image. Figure 13 illustrates the GLCM
of a cover image, the GLCM of its stego image, and the difference between these two
GLCMs. The joint probabilities on the main diagonal and near the main diagonal of the
GLCM are served as steganalytic features. Although the features are not selected in a
well-picked fashion from the GLCM, the method is in fact effective to a broad class of
steganography, especially to the case of additive steganography. It shows that the i.i.d.
assumption is unsuitable to characterize the cover data distribution for Alice, and Wendy
can explore the data dependency for steganalysis.

Inspired by Sullivan et al.’s work, Shi et al. [38] proposed a Markov process based
method that explores the intra-block DCT dependency for steganalyzing JPEG steganog-
raphy blindly. In this method, a JPEG 2-D array is defined as the array consisting of
the absolute values of the 8×8 block DCT coefficients that have been quantized by JPEG
quantization steps but before a zig-zag scan and entropy encoding. Then four difference
JPEG 2-D arrays are obtained by subtracting the JPEG 2-D array by its horizontal, ver-
tical, main diagonal, and minor diagonal shift, respectively. Next, a threshold technique
is taken to reduce the number of states (coefficient values) in the difference JPEG 2-D
arrays. Specifically, the element in the array whose value is smaller than −T or larger
than T (e.g., T = 5) will be represented by −T or T , respectively. Later, the transition
probability matrix (TPM) is obtained for each difference JPEG 2-D array, and all tran-
sition probabilities are served as steganalytic features. The element in the (T + 1 + u)-th
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Figure 13. The GLCM of a cover image (a), the GLCM of a ±K (K = 3)
stego image (b), and their difference (c).

row and the (T + 1 +v)-th column of the TPM corresponds to the conditional probability
P (Fi = u|Fi−1 = v), where Fi denotes the i-th indexed coefficient in a difference JPEG
2-D array, and u, v ∈ {−T,−T + 1, · · · , 0, · · · , T − 1, T}. The difference JPEG 2-D array
is expected to enlarge the data embedding disturbance and the threshold can reduce the
feature dimension. In an updated work [39], in addition to the features with intra-block
DCT dependency, the inter-block DCT dependency is also taken into account. A mode
(or called sub-band) 2-D array is formed by re-arranging the JPEG 2-D array. And similar
to the difference JPEG 2-D arrays, a horizontal mode 2-D array and a vertical difference
mode 2-D array are generated and the threshold technique is exploited. By averaging the
transition probability over 63 AC modes, the averaged probabilities in the TPM are served
as inter-block features. The Markov process based features [38, 39] are very effective in
detecting several JPEG steganographic scheme, even under a low embedding rate.

5. The Continuing Competition. From the development of the early LSB stegano-
graphic scheme[15] and Chi-square attatck[17], to the latest universal steganalytic methods[35]
and YASS steganography[33] , it is not difficult to conclude that the fundamental relation
between the research of steganography and steganalysis is their mutual resistance. The
former tries to hide as large amount of information as possible while maintaining the
undetectability level. And the later attempts to maximize the accuracy of detection in
order to disable the steganography. Their competition is still going on.

5.1. Improving Steganographic Security. There are some factors that may influence
the steganographic security, such as the number of changed pixels/coefficients, the am-
plitude of the stego-noise signal, the properties of cover images, etc. In the following we
discuss some techniques for making the steganography less detectable.

5.1.1. Increasing the Embedding Efficiency. If cover images do not need to be modified at
all for conveying secret information, certainly the warden cannot differentiate the cover
images and stego images. Therefore, if the probability of modification to the images is less,
the embedding changes to the image will reduce, and the security of the steganographic
method may increase. Define the embedding efficiency as the number of embedded bits
per one embedding change. Hence, increasing the embedding efficiency is a possible way to
enhance the steganographic security. One technique, called matrix encoding [75, 30], can
be used to increase the embedding efficiency. The concept was first proposed by Crandall
[75] and implemented by Westfeld [30]. The basic idea is to divide coefficients into groups
and use Hamming error correction codes to limit the changes in each group. A (d, n, k)
code can be used to embed k bits into n coefficients by making at most d coefficients
changed. The limitation of using Hamming code is that the embedding efficiency gets
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high only when the embedding rate is low. Fridrich et al. [76] proposed to use random
linear codes or simplex codes to cope with the case when the embedding rate is high. More
advancement in constructing codes for improving embedding efficiency can be found in
ref. [77, 78, 79].

5.1.2. Reducing the Embedding Distortion. Increasing the embedding efficiency can reduce
the embedding changes to the image. However, it cannot guarantee that the distortion to
the image is minimized. If not all of the coefficients are used for carrying data, Alice has
the freedom to select the coefficients whose resultant distortions after data embedding are
the smallest for modification. In this way, the stego image will be close to the cover image
perceptually and statistically, thus enhancing the steganographic security. Perturbed
quantization (PQ) steganography [34] is the first method addressing this issue. It is
realized by changing some coefficients whose quantization errors are the smallest after
data hiding. The method is facilitated by using the wet paper codes, a technique enabling
Alice not to share the location of the changed coefficients with Bob. The method can be
used in an information-reducing process which includes real transform and quantization,
such as resizing and JPEG compression. Inspired by PQ steganography, Kim et al. [80]
proposed the modified matrix encoding (MME) steganography by changing coefficients
whose quantization errors plus embedding errors are the smallest when embedding data
during the JPEG compression process. The method requires the uncompressed image
as input and employs matrix encoding in embedding. Judging from the obtained results
in ref. [81, 82], minimizing the embedding distortions does make the steganography
less detectable. The tradeoff between embedding efficiency and embedding distortion is
discussed in ref. [83].

5.1.3. Selecting Proper Cover Images. In some scenarios, Alice has the freedom to select
the most unsuspicious stego images for conveying secret information. Kharrazi et al.
[84] proposed a scheme for selecting the better images according to the availability of
the knowledge of a potential steganalyzer. It implicitly assumes that the steganalyzer is
not error free. If the steganalyzer is fully known, Alice can select the images which are
undetectable by the steganalyzer. If Alice only has partially knowledge of the steganalyzer,
for example, the input and output of the steganalyzer, she can choose the images which
have similar properties with the undetectable images under some standard measures. If
no knowledge of the steganalyzer is provided, Alice needs to decrease the possibility of
being detectable by using the images with minimum changes.

5.2. Enhancing Steganalytic Capability. The statistics of stego images may be dif-
ferent from that of cover images. However, the deviated statistics may not obviously
fall outside the normal scope where the statistics of cover images belong to. Therefore,
some techniques may be needed to magnify the difference between cover and stego image
(thereafter cover-and-stego difference) and thus enhancing the capability of a steganalyzer.

5.2.1. Calibration – Estimating Cover Image’s Statistics. One way to magnify the cover-
and-stego difference is to estimate the cover image’s statistics from the testing image. The
technique in using is often referred to as ”calibration” and introduced in Section 4.2.2. By
doing so, the estimated statistics can be employed to evaluate whether the statistics of the
testing image are deviated. In a general case, denote the statistics in a vector form of the
testing image as Ft, and that of its cover image as Fc. If the testing image is in fact a cover
image, we will have ‖Ft−Fc‖ = 0, where ‖ · ‖ is the norm of a vector. Otherwise, we will
have ‖Ft−Fc‖ > 0. But in practice Wendy does not know Fc. She may estimate it from
the testing image with some calibration techniques [62, 34, 46]. The estimated statistics
vector is denoted as Fĉ(t). It is expected that ‖Ft=c − Fĉ(t)‖ < ‖Ft=s − Fĉ(t)‖, where
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Ft=c and Ft=s denote the statistics of a testing image when it is a cover image and when
it is a stego image, respectively. As discussed in Section 4.2.2, Fridrich [34] designed
a powerful calibration method for JPEG images through cropping and re-compressing.
Ker [46] proposed an effective scheme for estimating the statistics of spatial cover images
via down-sampling. The calibration technique in essence provides a way to measure the
scope the statistics of cover images belong to, therefore, it can enhance the capability
of a steganalyzer. Obviously, the more accurate the estimation, the more accurate the
steganalyzer with the calibration technique is.

5.2.2. Re-embedding – Computing Re-stego Image’s Statistics. In contrast to the calibra-
tion technique which is independent of the steganographic method, another scheme that
can magnify the cover-and-stego difference is related to the targeted steganographic algo-
rithm. It is referred to as re-embedding and its operation is usually taken as embedding
some arbitrary data into the testing image using the targeted steganographic algorithm.
The resultant image is referred to as re-stego image. Re-embedding may be effective for
only a limited number of steganographic methods which have a special property. That
is, the re-embedding operation has a more severe impact on a cover image than on a
stego image. For example, the LSB steganography with maximum embedding rate may
make the unequalized value pair 2i and 2i + 1 in a cover image be balanced, while it
cannot make the already equalized value pair in a stego image be more balanced. Denote
the statistics of a re-stego image as Fŝ(t). If the relation ‖Ft=c − Fŝ(t)‖ > ‖Ft=s − Fŝ(t)‖
holds, the re-embedding takes effect and it can be used to enhance the capability of the
steganalyzer. It has been successfully used in ref. [42, 50, 60, 61]. Note that calibration
and re-embedding are not mutually opposed and they may work together to construct a
steganalyzer, such as that used in attacking OutGuess [63].

5.2.3. Filtering – Magnifying the Stego-noise. Another way to magnify the cover-and-
stego difference is to employ filtering, de-nosing, or prediction. The filtered/denoised/prediction
residue may suppress the interference from the image content and magnify the stego-noise.
Therefore, the statistics of the filtered residue from a stego image may be much different
from the that from a cover image. It has been demonstrated in ref. [68, 71] that the
methodology is very effective.

6. Discussions and Conclusions. In this paper, we review the fundamental concepts
and notions as some typical techniques in steganography and steganalysis for digital im-
ages. Some developing trends of steganography are sketched as follows.

Adaptively selecting the embedding locations. We have witnessed plenty of stegano-
graphic methods [16, 85, 23, 24] using adaptive embedding strategy to embed data into
the complex areas of an image, for the sake of avoiding causing perceptual artifacts. Be-
sides, the edges and irregular texture areas may be hard to build a statistical model so
that steganalytic method could be prone to make false decision. Therefore, selecting
locations adaptively for embedding is still a promising solution in steganography. Note
that the adaptive strategy should also be protected, such as using a key to ensure the
randomness of the strategy. Or else the Wendy may use the same adaptive strategy to
observe embedding artifacts.

Reducing embedding distortion and increasing embedding efficiency. It seems to be hard
to preserve all statistics of the image after data embedding. Therefore, an intuitive idea
is to minimize the embedding impact to the cover image, thus reducing the deviation of
statistics. Through reducing the embedding changes and embedding energy, the stego
image may be more similar to the cover image, both visually and statistically. Thus the
statistics of the cover image may be preserved better.
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Embedding data in the image creation process. If the data are embedded in an already
generated image, it may be hard to preserve the image statistics. But what if data are
embedded in the process of generating a new image? It has been shown that it’s possible
to improve the steganographic security by embedding data in the creation process of
JPEG images [80, 34]. This may be a good solution for steganography.

Sacrificing the imperceptivity while preserving the statistics. Since a warden cannot
obtain the original cover images and human eyes are insensitive to the distortion caused
by steganography, it is feasible to introduce additional distortion in order to trade off a
higher security level, such as YASS [33] .

Modern steganalytic techniques have greatly progressed. However, there are still some
unsolved challenges. We summarize the future development directions of steganalysis in
the following.

Identifying the type of steganography, the used parameters, the embedding rate, and even
the embedding locations. If some more information can be dug out from the stego image,
it will be more easy for Wendy to convict Alice. There are already some quantitative
steganalytic techniques that can estimate the embedding rate [42, 86] and methods that
can identify the steganography types [87, 88]. As long as the development of powerful
steganalyzers, it may not be an illusion for Wendy to get the knowledge of the used
parameters and even the embedding locations.

Working jointly with digital forensics. Some techniques used in steganalysis may be
generalized in the applications of digital forensics [89], such as authenticating the origin,
the generating process, or the doctoring evidences of digital media. In return, some digital
forensics techniques may also help to stimulate the development of steganalysis.

From the ultimate competition between steganography and steganalysis, a byproduct,
namely a natural image model, may be obtained, which is beneficial to both sides. For
example, steganographic side can utilize the model to preserve image statistics, while
steganalytic side can employ the model to examine if any statistic is deviated. It may
also be useful in other related fields, such as digital forensics [89].

In summary, Alice wishes to safely send data to Bob as many as possible, while Wendy
tries to neither malign an innocent cover medium nor let a single stego medium slip by. It
seems that the competition between steganography and steganalysis will never end easily.
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