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Abstract. A new audio watermarking algorithm resilient to MPEG 1 layer III (MP3)
with bit rate of 64 kbps is proposed. High embedding capacity is its main characteris-
tic. The proposed algorithm is able to use either semi-blind or blind decoding. With the
former, the algorithm achieves an embedding capacity of 204 bits per second (bps) and
with the latter obtains 155 bps, them both with bit error rate lower than 10−4. Using
semi-blind decoding, benefit of more than 33 bps is obtained in comparison with, in our
knowledge, any other previously proposed algorithm for compression at 64 kbps. The
algorithm uses dither modulation to embed a coded-watermark in certain frequencies of
wavelet domain. Those frequencies were found to be robust against compression. The
coded-watermark is generated with the concatenation of low-density parity-check (LDPC)
codes and repetition codes. Also, an accurate estimation of the statistics of the channel
noise, due to compression, is introduced. Finally the proposed algorithm is improved
using erasures at the decoder. This improvement achieves more than 15 bps in com-
parison with normal decoding. The highest embedding capacity achieved is 229 bps. All
the watermarked audio files obtain SNR higher than 40 dB. The audio quality was also
measured with a subjective evaluation in which the watermarked audio obtained a score
higher than 4, where the best audio quality is scored with 5.
Keywords: Audio watermarking, MP3 compression, dither modulation, LDPC codes

1. Introduction. Data hiding techniques provide a way to embed extra information
within the original contents, without serious degradation of the quality. With the de-
velopment of proper and robust data hiding systems, more technologies have found new
and promising applications. For example, high payload techniques have been used to
extend narrow bands from 8 kHz to 16 kHz in telephony speech [1], that results in high
quality speech with the same physical resources. Another uses of data hiding are: adding
commercials in free media, usage control, index information for data bases and so on.

Nowadays, MPEG 1 layer III (MP3) is a common format of compressed digital audio.
Its popularity is because MP3 offers good audio quality within small storage space. As
repercussion, on-line stores have proliferated because compression algorithms allow to
deliver the audio files in a short period of time through the Internet.
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Digital watermarking is a data hiding technique with a trade-off between the embedding
capacity, robustness and quality. Generally, when applications of digital watermarking
are developed, limits on robustness and quality must be defined. Therefore, would be
desirable to increase the payload meanwhile the other constraints are kept as much as
possible because with a higher payload, digital watermarking can be applied to a wider
number of applications.

In this paper, we focus on the embedding capacity1 for audio files. Our aim is to develop
watermarking schemes with high payload and low probability of error against the lowest
compression with commercial value, i.e. radio quality which is equivalent to MP3 with a
bit rate of 64 kbps. This scenario is detailed in Sec. 2.

Since the pioneer paper of Boney [2] in 1996 for audio watermarking, many algorithms
with robustness to MP3 compression have been proposed. For example in 2003, Cvejic [3]
proposed a scheme using spread spectrum and characterization of the attack, with a
payload of 27.1 bits per second (bps). In the same year, In-Kwon [4] used patchwork
algorithm to embed the watermark in audio files producing a scheme with 10 bps. Later,
in 2004, Wang [5] introduced a decoding algorithm using linear predictive coding to recover
the watermark from wavelet domain; the achieved payload was 10.72 bps. Another two
proposals [6] and [7] were described in 2006, the former includes neural networks to
increase the robustness and the latter proposes a solution for time-scale modification,
obtaining 86 bps and 4.26 bps respectively. Between 2007 and 2008, Xiang presented two
schemes in [8] and [9] based on modifying the histogram of the audio files; with embedding
rates of 3 bps and 2 bps. At the same time, two papers with high embedding rates were
published, [10] with a payload of 170 bps and [11] with 220 bps; however those payloads
were achieved with MP3 of 128 kbps and 96 kbps respectively. More recently, in 2009
Fan [12] proposed an embedding of a chaotic-based watermark on discrete fractional sine
transform domain, with 86 bps of payload. Also, in the same year, Wang [13] introduced
a robust algorithm against MP3 at 64 kbps but the embedding payload was not reported.
Finally, in 2010 a self-synchronized algorithm was introduced by Meǵıas [14] with an
embedding rate of 30.09 bps. Almost all the works presented above have an embedding
rate lower than 100 bps and those with payload higher than 100 bps are not robust to
MP3 with quality of 64 kbps.

Among the variety of embedding algorithms, quantization-based are very popular be-
cause its ease of implementation, computational flexibility, high embedding rate and
amenability to theoretical analysis. In 1999, Chen et ál. [15] introduced a new quantization-
based data hiding algorithm called quantization index modulation (QIM). Since then,
several variations have been developed. For example, in [15] Chen also proposed dither
modulation (DM) and, Pérez-González in [16] introduced an invariant method to gain
attacks called rational dither modulation (RDM).

DM is a practical implementation of QIM. Its main characteristic is the use of scalar
quantizers. DM incorporates a private key for decoding and it has low-complexity. A
formal description of DM is included in Sec. 3. In our proposal, we use DM to embed
a coded-watermark in wavelet domain. Similar proposals can be found in [17] and [18].
The former is an algorithm with self-synchronization in wavelet domain that embeds
the watermark in the low-frequency coefficients. The scheme achieves 172 bps, however
is well-known that modifications to low-frequencies produce audible distortion, and the
authors did not report evidence of the audio quality. The latter is a recent proposal,
2010, that embeds the watermark by quantizing the Euclidean norm of a singular value

1The term “capacity” refers to watermark payload and it is different from the theoretical channel
capacity defined by information theory.
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decomposition of an audio segment. The reported payload is 196 kbps, however the bit
error probabilities are computed with short simulations, around 5 seconds.

Our algorithm embeds a coded-watermark in a specific range of frequencies which were
found to be robust against MP3, Sec. 4. The coded-watermark was obtained with the
concatenation of an outer low-density parity-check (LDPC) encoder and inner repetition
codes. Watermarking channels tend to have very high bit error rate (BER), therefore
repetition codes are needed to increase the signal-to-noise (SNR) ratio [19]. LDPC codes
are powerful error-control coding (ECC) suitable for very noise channels in which common
ECC like BCH codes or convolutional codes have shown to be inefficient [20].

LDPC codes [21] have stated near performance to the theoretical Shannon limit for
noisy channels. They work under the general principle: the longer the code length, the
closer from the theoretical channel capacity. Unlike BCH codes, decoding complexity of
LDPC codes increase linearly to its code length.

Audio watermarking with powerful ECC can be found in [22] and [23]. Turbo codes
together with spread spectrum are used in the former, achieving 21.6 bps. The latter is
our previous proposal which has an embedding capacity of 61.25 bps for MP3 at 64 kbps.
Specially LDPC codes have been already used, but in image watermarking [24]; they
produced very high embedding rates, however only normal decoding is applied.

The proposal of this paper is explained in Sec. 5. The decoder is implemented in two
versions: semi-blind and blind decoding. In semi-blind decoding, the “watermarked audio
without noise” is compared with the noisy audio in order to compute the noise variance.
The statistics of the channel noise, variance, can be approximated with different techniques
that are not the aim of this paper. However we implemented a blind decoding with the
aid of pilot symbols.

The proposed algorithm achieves an embedding capacity of 155 bps with blind decoding
and 204 with semi-blind decoding, shown in Sec. 6. Then, the proposal was improved using
erasures at LDPC decoder, Sec. 7. The result is an embedding capacity of 229.7 bps which
represents a benefit of more than 15 bps in comparison with normal decoding and more
than 33 bps compared with any other proposal robust to MP3 at 64 kbps, Sec. 8.

It is worth to mention that there are very high payload techniques for data hiding in
audio which achieve embedding rates of 689 bps in [25], 2996 bps in [26] and 11000 bps
in [27] but they are not robust to MP3 of 64 kbps.

Finally, the last two Sections, 9 and 10, are dedicated to the audio quality and conclu-
sions respectively.

2. Problem Statement and Preliminaries. Digital watermarking has a trade-off be-
tween watermark robustness, embedding capacity and audio quality. That is, if one of
them is increased the other two will be affected.

On the other hand MP3 represents a very popular audio format. However, it is consid-
ered as one of the strongest attacks for audio watermarking.

Assuming that in a certain watermarking scheme the audio quality and the watermark
robustness is fixed, would be desirable to obtain the highest reliable payload. This paper
addressed how to develop audio watermarking algorithms with high embedding capacity
but also robust to MP3 with bit rate of 64 kbps. Fig. 1 pictures the considered scenario.

Bold letters, e.g. X or x, represent vectors and Xi or xi refer to their respective ith
element.

3. Dither Modulation. Dither modulation (DM) is a data hiding algorithm based on
quantization and proposed by Chen et ál. [15]. DM is a practical and low-complexity
implementation of QIM with scalar and uniform quantizers.
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Figure 1. General diagram of the studied system.

DM uses only one base quantizer Q and two dithered parameters if the watermark is
binary. The first dithered parameter v(0) is generated in pseudo-random way with an
uniform distribution between [−∆/2,∆/2], where ∆ is the quantization step size. The
second parameter v(1) is computed according to:

v(1) =

{
v(0) + (∆/2) if v(0) < 0

v(0)− (∆/2) if v(0) ≥ 0.

In that way, it is ensured that both dithered parameters differ in ∆/2 each other.
DM embedding function is represented by:

X̂i = Q
(
Xi + v(mi),∆

)
− v(mi),

where X = X1, X2, . . . is the host signal, m = m1,m2, . . . is a binary watermark and
X̂ = X̂1, X̂2 . . . is the watermarked host signal.

Watermark extraction is conveyed by measuring the distance between the watermarked
sample Yi and its closest reconstruction point, where Y = Y1, Y2, . . . is the watermarked
audio with noise. The recovered bit, m̂i ∈ {0, 1}, is the argument which minimizes:

m̂i = arg min
j
|Yi −Q

(
Yi + v(j),∆

)
+ v(j)| for j = 0, 1.

4. Repercussions of MP3 on Wavelet Domain. When a signal is analyzed, some
of its characteristics may be not readily seen in time domain. Mathematical transforma-
tions are tools which allow us to represent signals in other spaces where some specific
information is more readily available.

Wavelet is a mathematical transform which provides a time-frequency representation.
Unlike Fourier transform, wavelet transform produces more accurate information about
the signal’s frequencies and its position on time, specially for non-stationary signals like
audio files. Although the wavelet natural representation is based on scale-time, the rep-
resentation of the information in frequency-time is straightforward.

Wavelet transform offers a decomposition oriented toward low-frequencies. In other
words, if we picture the wavelet decomposition as binary tree, where the left node repre-
sents the low-frequencies and right node the high-frequencies then, the decomposition is
applied always to the left node and the right node keeps without any further decompo-
sition. Wavelet packet offers richer analysis by decomposing not only the left node but
also the right one. In each level, both nodes are decomposed until a desired level.

In this paper, we are focused in one of the most popular manipulation on audio files,
MP3 compression. The key to MP3 is lossy. Nonetheless, this algorithm can give trans-
parent, perceptually lossless compression. To achieve this transparency, the compression
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is done according to the human auditory system which has different responses depending
on the frequency. Therefore, it is expected that different range of frequencies of the audio
files will be affected with different intensity.

When the audio file is decomposed with wavelet packet, each sub-band represents a
different range of frequencies. We are interested in measuring the distortion on different
sub-bands after MP3 compression to find suitable sub-bands for embedding.

The audio files were divided in blocks of 512 samples and wavelet packet decomposition
was applied to each block using 5 levels. Simple Haar was used as mother wavelet.
After decomposition, 32 wavelet sub-bands are obtained. Then, the binary watermark
was embedded in each sub-band individually using DM and repetition codes, no other
ECC was involved. Finally, the audio files were reconstructed and attacked with MP3
compression at 64 kbps.

Two experiments were conducted. First, Fig. 2a shows the error percentage of each
wavelet sub-band for three different embedding rates 10.76, 21.53 and 43.06 bps. Classic
music: Egmont Op. 84 mono, 44.1 kHz/16 bits and with 8 minutes long was used. Second,
Fig. 2b shows the bit error percentage of each wavelet sub-band for three different music
genres with an embedding rate of 21.53 bps. Every music gender was a cluster with 10
different audio files of 2 minutes long each.

Figure 2. Error percent for different wavelet sub-bands after MP3 at
64 kbps. “a” using different embedding rates and “b” for different music.

In both results the wavelet sub-bands 25, 26, 27 and 28 obtained better robustness
against compression, those sub-bands belong to frequencies ranging from 11 kHz to
13.7 kHz.

With Fig. 2a is guaranteed that the sub-band robustness behaves similar for different
embedding rates, and then, the result is expanded to different music with Fig. 2b. In
the simulations, ∆ was fixed according to SNR > 30 dB. We define SNR as the ratio
between original audio signal power and that of the audio file with information embedded,
SNR = 10 log10(σ2

X/σ
2
S), where S = X̂−X.



96 R. Mart́ınez-Noriega, M. Nakano, B. Kurkoski and K. Yamaguchi

5. Proposed Method. The main idea is to embed a coded-watermark inside wavelet
domain using DM. The coded-watermark is obtained by concatenation of an outer LDPC
code and inner repetition codes. The watermark is decoded by retrieving soft-information
with DM, computing the metric and finally decoding the metric with sum-product [28]
algorithm. The statistics of the channel noise, noise variance σ2, are involved in the
computation of the metric and the performance of the sum-product algorithm depends
highly in a good estimation of σ2. These ideas are summarized as block diagram in Fig. 3.

Two different decoding strategies are introduced. The first one considers general sta-
tistics of the channel noise to compute the metric, i.e. the log-likelihood ratio llr, and the
second one computes independent statistics about the noise for different segments along
the audio file.

Figure 3. General watermarking scheme.

5.1. Embedding. In the embedding process, the audio file in time domain X is divided
in non-overlapped blocks, Th, of 512 samples. Wavelet packet decomposition is applied
in five levels using simple Haar wavelet. From each time-domain block Th, 32 wavelet
sub-bands with 16 coefficients each are obtained. According to Sec. 4, only coefficients
from the sub-bands 25 to 28 will be used for embedding. From now on, we will use the
notation “25-28” to means wavelet sub-bands from 25 to 28. Frequency coefficients from
25-28 are arranged in a vector x = x1, x2, . . . , xn which contains not only the coefficients
from the block Th but from all blocks ordered according to time.

The binary watermark m = m1,m2, . . . is firstly encoded with a Margulis half-rate
LDPC code with code length of 2640. The output of the LDPC encoder is again encoded
with an inner repetition code of length l, the output is permuted with an interleaving and
finally the coded-watermark m̄ = m̄1, m̄2, . . . , m̄n is obtained.

The watermark robustness is variable depending solely on the repetition code because
the LDPC code will be the same and also the quantization step size ∆ is fixed. If the
repetition code is larger then the robustness is better but the embedding capacity is lower
and vice versa.

Each bit from the coded-watermark m̄ is embedded in one coefficient xi using DM,
x̂i = Q

(
xi + v(m̄i),∆

)
− v(m̄i) where Q represents the quantization function with step

∆, v(m̄i) is a dithered parameter that modulates the watermark symbol m̄i and x̂i is
the watermarked coefficient. Then x is replaced with x̂ and the inverse wavelet packet
transform is applied.

The watermarked audio X̂ is susceptible to suffer any sort of degradation due to common
signal manipulations, e.g. MP3 compression, or direct attacks which attempt to destroy
the watermark. Therefore, Y is the watermarked audio with degradations or attacks.

5.2. Decoding. Y is divided in blocks T̂h of 512 samples and wavelet packet in five
levels is computed. Watermarked coefficients from 25-28 are extracted and arranged as
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the vector y = y1, y2, . . . , yn. The distance d = d1, d2, . . . , dn is computed as the absolute
value of y and its closest reconstruction point with respect to v(0):

di =
∣∣yi −Q(yi + v(0),∆

)
+ v(0)

∣∣.
The soft information r = r1, r2, . . . , rn is computed with r = d − ∆/4. At this point

hard-decision decoding, i.e. raw decision between zeros and ones, could be applied by
defining m̂i = 1 if ri > 0 or m̂i = 0 otherwise. However, it is well-known that soft-decision
performs better, therefore hard-decision decoding will not be treated in this paper.

LDPC decoder uses the llr = llr1, llr2, . . . , llrn as metric for sum-product algorithm.
The llri of a embedded bit m̄i is computed as the ratio between the probability that a
given value ri could be 1 (represented by ∆/4) or 0 (represented by −∆/4):

llri = ln
P (m̄i = ∆/4|ri)
P (m̄i = −∆/4|ri)

. (1)

Knowledge of statistics of the channel noise are needed to compute (1). Heuristically,
we have seen that the noise, due to MP3, in the coefficients of 25-28 behave very similar
to a Gaussian distribution. Therefore, the llr is computed with a Gaussian kernel:

llri = ln

 1√
2πσ2

exp
(
− (ri−(∆/4))2

2σ2

)
1√

2πσ2
exp

(
− (ri+(∆/4))2

2σ2

)
 ,

=
∆ri
2σ2

,

where σ2 is the noise variance.
In the next Subsections, two different decoding variations are explained. However all

the steps explained above are common for them both.

5.2.1. Global Noise Variance. A good estimation of the noise variance σ2 is important to
obtain good performance. In traditional communications many sources of noise can be
modelled as Gaussian, moreover in many of them a single noise variance characterizes the
channel. Digital watermarking has been shown to be a form of communications and also
the noise in wavelet coefficients, due to MP3, behave similar to Gaussian. Therefore, this
approach is an analogy to those communication systems which use a single noise variance
to model the noise in the whole channel.

Log-likelihood ratio is computed straightforward with:

llr =
∆r

2σ2
. (2)

De-interleaving is applied to llr and then the repetition code, of length l, is decoded with:

LLRk =
lk∑

i=l(k−1)+1

llri. (3)

Finally, LLR = LLR1, LLR2, . . . is forwarded to the LDPC decoder and the watermark
m̂ is recovered.

5.2.2. Particular Noise Variance. MP3 takes into account the human auditory system,
then the compression is not constant for every segment along the audio because it is
not a stationary signal. Therefore, different amount of distortion is expected in different
segments of the audio along time.

Fig. 4 shows the histograms of the soft-information r for different segments along the
audio after MP3 at 128 kbps. In those graphs, we can distinguish between soft-information
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which belongs to the embedded bits m̄i = 1 with solid lines and m̄i = 0 with dotted lines.
Fig. 4a represents the density when all the frequency coefficients from a certain audio
are taken into account. That is, the coefficients of 25-28 from all the blocks T̂h are used.
Figs. 4b, 4c and 4d, are densities from small continuous segments of a certain audio
file. These segments contain only 320 frequency coefficients, that is, the equivalent to 5
continuous blocks T̂h. The segments were chosen randomly along the audio file.

The audio used to generate Fig. 4 was A change of season by Dream Theater sampled
at 44.1 kHz with 16 bits. The binary information was embedded in sub-bands 25-28 using
DM with only repetition codes of length 4, ∆ was set to .01.

Figure 4. Histograms of the soft-information obtained from frequency co-
efficients after MP3. “a” using the whole audio file. “b”, “c” and “d” are
histograms using random segments of 320 frequency coefficients.

Figs. 4b, 4c and 4d show that the noise in the audio file due to MP3 is not constant.
For example in Fig. 4d, the difference between ones and zeros is perfectly distinguishable
and therefore, a decoding without errors is expected. Other regions like Fig. 4b suffered
more distortion and probably many errors will be produced. Nevertheless, if the statistics
of the channel noise are computed using the whole audio file, Fig. 4a, the reliability is not
good.

Based on the previous experiment, will be more reliable to compute individual noise
variances for different segments along the audio file. The decoding proposal in this Section
aims to compute independent noise variances along time to obtain a better model of the
noise produced by MP3.

The log-likelihood ratio llr is computed with:

llri =
∆ri
2ς2

, (4)



High Payload Audio Watermarking 99

where ς2 = ς2
1 , ς

2
2 , . . . ς

2
p is estimated by dividing the soft-information r in p blocks and

computing an individual noise variance for each block. For example, if ri belongs to
the block j therefore llri = (∆ri)/(2ς

2
j ). Then, de-interleaving is applied to llr and the

repetition code is decoded with (3). The LLR is forwarded to the LDPC decoder and
the watermark m̂ is recovered.

6. Main Results. This Section is divided in two parts: decoding for semi-blind schemes
and decoding for blind schemes. This division is because an accurate estimation of the
noise variance is needed at the decoding part, therefore the difference between them
is about how to compute the noise variance. With the semi-blind scheme the decoder
has knowledge of the watermarked audio X̂ and it is capable to compute the real noise
generated in the audio due to MP3. Semi-blind decoding was developed to show the
potential of this proposal.

In blind decoding, an estimation of the noise is needed. Several techniques about
channel estimation have been proposed and implemented in practical communications
schemes, e.g. “training symbols”, “least-squares” or even more complex techniques which
involves “turbo equalization”.

Our aim in this paper is to develop reliable watermarking techniques rather that focus
on describing the noise generated by MP3 compression. Therefore, we propose a blind
detection using a basic technique with pilot symbols, nevertheless our blind decoding
produces better performance than, in our knowledge, most of the previous watermarking
schemes for MP3 at 64 kbps.

The audio files used in the simulations have the next characteristics: WAVE files, mono
and sampled at 44.1 kHz with 16 bits. All the results are an average of simulations based
on three audio files, classic: Egmont Op. 84 (7 minutes), pop: Billie Jean by M. Jackson
(4 minutes) and rock: A change of seasons by Dream Theater (8 minutes). Those audio
pieces were chosen because its rich variety of sounds, silent passages and abrupt changes.

The step ∆, which is different for each audio file, was decided according to SNR > 40 dB.

6.1. Semi-blind decoding. In Section 5.2 were defined two decoding strategies: global
noise variance and particular noise variance. In this Section we will show results of them
both using X̂ to compute the noise variance.

Let us assume that Y is the watermarked audio after compression. x̂ and y are fre-
quency coefficients taken from 25-28 of X̂ and Y respectively, and they are properly
ordered according to time.

For global noise variance method, the statistics of channel noise are computed with:

σ2 =
1

n

n∑
i=1

(
(x̂i − yi)− (x̂− y)

)2
. (5)

This unique σ2 is used to compute (2).
An alternative way, particular noise variance method, to compute the noise variance is

dividing the frequency coefficients x̂ and y in blocks x̆p, y̆p and computing independent
statistics about the channel noise:

ς2
p =

1

j

jp∑
i=jp−j+1

(
(x̂i − yi)− (x̆p − y̆p)

)2
, (6)

where j is the number of samples for each block x̆p, y̆p and ς2
p is its noise variance. x̆p

and y̆p are vectors with elements from jp− j + 1 to jp, i.e. x̆p = x̂jp−j+1, . . . , x̂jp.
The next step is to decide how many samples j are needed to estimate a reliable ς2

p . Our

proposal divides the audio file in blocks T̂h of 512 samples. From each time-domain block
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T̂h, 64 frequency coefficients are obtained considering that only elements from 25-28 are
taken. Therefore, the number of elements j is preferable to be a multiple of 64 because
in that way the system keeps relation with the division on time domain.

Fig. 5 is a simulation for particular noise variance method using different number of
samples j to compute the noise variance after compression with MP3. The best per-
formance is achieved when ς2

p is computed using j = 64 frequency coefficients which is

equivalent to estimate an independent noise variance for each block T̂h of 512 samples. If
the number of samples j is increased the performance tends to decrease. Therefore, the
best way to characterize the noise produced by MP3 is to compute independent statistics
of the channel noise according to the division in time domain.

Figure 5. Particular noise variance scheme using different number of sam-
ples j to compute the noise variance ς2

p .

The proposed methods, global noise variance and particular noise variance using semi-
blind decoding are compared in Fig. 6, together with another two helpful simulations. In
“Full-band repetition code”, the watermark was embedded in all wavelet sub-bands, from
1 to 32, and only repetition codes were used. The performance is the worst and we were
unable to obtain lower BER.

“Full-band” uses a concatenation of outer LDPC code with inner repetition code to
encode the watermark. The coded-watermark was embedded in all wavelet sub-bands.
With this method low BER was achieved but the performance is still poor. The LDPC
decoder uses semi-blind estimation of the noise variance.

“Global noise variance” is the method described in Sec. 5.2.1, the watermark is only
embedded in 25-28 achieving an embedding capacity of 23.56 bps.

Finally “Particular noise variance”, proposed in Sec. 5.2.2, is the best method. In
this case, the watermark was embedded in 25-28 as well. The payload is 204.2 bps with
probability of error lower than 10−5. This method embeds 8.2 more bits per second than
the proposal in [18].



High Payload Audio Watermarking 101

Figure 6. Performance of the proposed methods using semi-blind decoding.

6.2. Blind decoding. In the previous Section the watermarked audio X̂ is needed to
estimate the noise. However blind decoding systems are desirable because audio files,
specially in WAVE format, need considerable storage space. Therefore, we propose a
blind algorithm using pilot symbols only for particular noise variance method which was
the best method from Sec. 6.1.

In pilot symbols approach, a few bits are known for both encoder and decoder. Thus,
the decoder is capable to estimate the noise variance with the those bits.

The pilot bits are multiplexed with the encoded-watermark m̄ and embedded in the
audio file. We have seen that particular noise variance performs better, therefore the
noise variance must be computed individually for each block in time domain.

Let us assume that Th represents a block of 512 audio samples in time domain. After
wavelet packet transformation of Th and gathering only coefficients from 25-28, a block Fh
with 64 frequency coefficients is obtained. The coded-watermark m̄ is divided in blocks
Wh of 64 − j elements. Then, j pilot bits are generated in pseudo-random way using a
secret key. The block Wh is multiplexed with the j pilot bits and the result is embedded
in Fh using DM. The output of this process will be the watermarked frequency coefficients
which include the watermark and the pilot bits, Fig. 7.

The decoder uses a demultiplexer to separate the noisy version of the pilot bits and the
watermark. Since the decoder has perfect knowledge of the pilot bits, and estimate ς2

h is

computed for each block F̂h and the log-likelihood ratio is obtained with (4).
However there is a trade-off between the number of pilot bits j and the watermark pay-

load. That is, the more pilot bits per block Fh, the better channel estimation that results
in a better decoding. But, the more pilot bits the lower redundancy of the watermark
and therefore weaker watermarks.

Fig. 8 is a comparison of blind decoding of particular noise variance method using a
different number of pilot bits j after MP3 at 64 kbps. With a few pilot bits, j = 5,
per block Fh the performance is the worst. Choosing j = 20 produces a good channel
estimation, however the watermark is weak and MP3 generates many errors. The best
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Figure 7. Embedding pilot bits and the coded-watermark.

performance is achieved when j = 10 pilot bits per block are used to compute the noise
variance ς2

h. The embedding capacity of this proposal using blind decoding is 155 bps.

Figure 8. Particular noise variance method using different number of
pilot bits j per block Fh.

The difference between blind decoding and semi-blind decoding for particular noise
variance method is shown in Fig. 9, they differ in 49.2 bps. The gap between both
methods can be reduced if more advanced techniques to compute the noise variance are
implemented in the blind method. Nevertheless our blind proposal achieves similar pay-
load than, in our knowledge, the highest payload algorithm [18] from the literature for
blind audio watermarking with attacks of MP3 at 64 kbps.

7. Increasing The Embedding Capacity with Erasures. Error correcting codes are
capable to correct twice erasures than errors, if the non-erased bits are correct. An erasure
means that no information about a certain bit is provided. For example, erasure of the
bit m̄i can be represented with ri = 0.

From Sec. 5.2.2 and also from Fig. 4, we have seen that certain parts of the audio files are
susceptible to produce more errors after MP3 compression. If there is a correlation related
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Figure 9. Performance of blind decoding versus semi-blind decoding for
particular noise variance method.

with the errors, we can define erasures in regions with high density of noise and avoid
many errors. Table 1 shows the correlation between the amount of noise in sub-bands
25-28 after MP3 and some characteristics of the audio file. High correlation is obtained
between the amount of noise and the average energy of sub-bands 25-28. Based on this
correlation, erasures can be defined in places with high average energy of sub-bands 25-28.

Table 1. Correlations related with the amount of noise in wavelet sub-
bands 25-28.

Amount of noise from Value of
sub-bands 25-28 and correlation

Variance (time) 0.193
Block energy (time) 0.193
Block av. energy (time) 0.190
Frequency (time) 0.651
Av. energy of sub-band 1-4 0.134
Av. energy of sub-band 5-8 0.572
Av. energy of sub-band 9-12 0.678
Av. energy of sub-band 13-16 0.715
Av. energy of sub-band 17-20 0.567
Av. energy of sub-band 21-24 0.609
Av. energy of sub-band 25-28 0.819
Av. energy of sub-band 29-32 0.782

The encoding method for this proposal is the same method already explained in this
paper. At the decoder, r is computed as in Sec. 5.2. For each block T̂h, the average energy
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eh of its wavelet sub-bands 25-28 is computed. If ri comes from a block where eh > t then
ri = 0 is defined as erasure, where t is a threshold. De-interleaving is applied to r and
the rest of the decoding process is exactly as Sec. 5.2.2.

Using erasures, the embedded capacity can be increased by more than 15 bps in com-
parison with normal decoding, that is without erasures, Fig. 10. The final embedding
capacity achieved is 229.7 bps.

Figure 10. Outperform of semi-blind particular noise variance scheme
using erasures at decoder.

Due to huge dynamic range of audio signals, we have not found a constant threshold t for
audio files, even for the same audio file the best threshold varies for different watermark
rates. So far, it has been noticed that the best threshold can be found in at most 10
iterations using a exhaustive search in the range from t = .001 to t = .05.

Even there is a strong noise-correlation, higher than .8, we have noticed that noisy
blocks F̂h only have a number of errors slightly higher than half of the total bits embedded.
The reason of this behavior is that DM only does a decoding mistake when mod (|x̂i −
yi|,∆/2) > (∆/4) and it is not strictly related with the noise strength. Therefore, when

the whole noisy block F̂h is defined as erasures, we are discarding erroneous information
that represents slightly more than half of the embedded bits in that block, but we are
also rejected a considerable amount of correct information.

Better schemes could be developed if there is a correlation between each wavelet coeffi-
cient itself and the errors. In that case, there would not be need to define the whole block
as erasures, only the most likely erroneous coefficients will be defined as erasures instead.

8. Comparison with related algorithms. MP3 is a challenging attack for audio wa-
termarking, and this fact is reflected in Table 2 where 71% percent of the reported algo-
rithms have a payload lower than 100 bps. In some cases, e.g. [6] and [14], the authors
claim that their algorithms are robust to compression but they did not report the BER.

Algorithms that overcome the barrier of 100 bps are reported in [10], [11], [17] and
[18]. However the achieved payload by [10] and [11] is not with compression of 64 kbps.
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Wu et ál. [17] proposed an interesting algorithm that achieves 172 bps for compression at
64 kbps with BER = 0.043. Our basic algorithm using pilot symbols achieves the same
payload, 172.3 bps with a lower BER = 0.025, see Fig. 9.

The best algorithm, in our knowledge, reported in the literature is the scheme proposed
in [18] by Bhat et ál. This algorithm has a payload of 196 bps and it is resistant to MP3
at 64 kbps although its BER = .01 is still high, because 1 of every 100 embedded bits
is erroneous. Our basic algorithm using pilot symbol has similar performance, achieving
193.8 bps with BER = .08. Using semi-blind decoding our algorithm embeds 8.2 bps
more than Bhat’s algorithm with an even much lower BER = 8.19×10−6, that is, around
8 erroneous bits of every million embedded bits, refers to Fig. 9.

Moreover our best result, Fig. 10, has a benefit of 33.7 bps over Bhat’s algorithm. In
summary, our algorithms obtain a payload of 155 bps for the basic algorithm with pilot
symbols, in Sec. 6.2; 204.2 bps for the semi-blind algorithm of Sec. 6.1 and 229.7 bps for
the algorithm with erasures at decoder, described in Sec. 7.

Since the aim of this paper is not the channel estimation and for the sake of simplic-
ity, we introduced only a basic blind decoding which uses pilot symbols. However, our
semi-blind decoding algorithm could be easily converted to blind using a good channel
estimation technique, because X̂ is only required to compute the noise variance.

Table 2. BER and payload comparison of related algorithms against MP3 compression.

Algorithm MP3 Quality BER Payload
[kbps] [bps]

Cvejic [3], 2003 32 .0028 27.1
In-kwon [4], 2003 96 .0020 10
Wang [5], 2004 128 .0571 10.72
Wu [17], 2005 64 .0434 172
Chang [6], 2006 56 YES 86
Li [7], 2006 32 .0156 4.26
Xiang [8], 2007 128 .1500 3
Xiang [9], 2008 64 .1750 2
Erçelebi [10], 2008 128 .4900 170
Deshpande [11], 2008 96 .0025 220
Fan [12], 2009 48 .0347 86
Wang [13], 2009 64 .0100 Not reported
Meǵıas [14], 2010 96 YES 30.09
Bhat [18], 2010 64 .0100 196

Ours 64 1.323× 10−4 229.7

9. Audio Quality Test. Quality of the watermarked signal is important because a signal
with bad quality loses its commercial value. This aspect becomes even more important in
audio files because the human auditory system is more sensible to perceive changes than
other senses, e.g. the sight.

All the simulation presented in this paper produced watermarked audio with an average
SNR = 44.1 dB and variance of .02. However, SNR is not the most suitable metric for
measuring audible distortion. The quality of the watermarked audio is also measured with
the ITU-R BS.1116 standard [29] which is a subjective evaluation of small impairments
of high-quality perceptual audio codecs. The highest grade 5.0 refers to the best audio
quality and the lowest grade 1.0 means the poorest audio quality. The test was applied
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to 23 persons with three different audio files: classic, pop and rock music. The results are
shown in Table 3, in all of them the quality is higher than 4.0.

Table 3. Subjective evaluation of audio quality based on ITU-R BS.1116 standard.

Audio Score

Classic:
4.14

Egmont Op. 84
Pop:

4.78
Billie Jean by M. Jackson
Rock:

4.28
A change of seasons by Dream Theater

10. Conclusion. High payload algorithms for audio watermarking resilient to MP3 com-
pression have been proposed. Our algorithms embed a binary coded-watermark inside the
frequency of audio files using DM. The coded-watermark is generated with a concatenation
of LDPC codes with repetition codes.

Effects of MP3 on wavelet coefficients were analyzed. Coefficients from sub-bands 25
to 28 were found to suffer less distortion considering that the audio is decomposed with
wavelet packet until the fifth level. Sub-bands 25 to 28 belong to middle frequencies of
the audio, equivalent to frequencies from 11 kHz until 13.7 kHz.

The statistics of the channel noise were computed using independent estimations along
the audio file. This produced a more accurate variance of the channel noise.

Reflexions from the previous paragraphs allow us to propose an algorithm called par-
ticular noise variance which has an embedding capacity higher than all previous known
proposal resilient to MP3 at 64 kbps. This algorithm is capable to use semi-blind and
blind decoding. With semi-blind decoding the algorithm obtained a benefit of 8.2 bps
over the algorithm with the highest payload reported in literature [18] for MP3 of 64 kbps
and with blind decoding, our algorithm has similar performance to [18].

A strong correlation between the amount of noise and the average energy from sub-
bands 25-28 was found. This correlation was used to define erasures on places which are
likely to be noisy. This idea increased the embedding capacity of the particular noise
variance method by more than 15 bps. The final achieved payload was of 229.7 bps,
which overperforms the algorithm in [18] by 33.7 bps.

Finally, the distortion in the watermarked audio was evaluated. The quality of audio
was measured with two methods. The first one shows SNR higher than 40 dB. The
second one was a subjective evaluation with more than 20 persons. The results show a
score higher than 4 of 5 possible for the watermarked audio, where 5 represents the best
audio quality.
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