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Abstract. We investigate AdaBoost and bipartite version of RankBoost abilities to
minimize AUC and its application for score level fusion in multimodal biometric sys-
tems. To do this, we customize two methods of weak learner training. Empirical results
show comparable AUC for AdaBoost and RankBoost.B which previously was addressed
theoretically. We demonstrate exhaustive results among state of the art classifiers and
techniques, e.g., SVM, GMM and SUM rule in this area. AdaBoost and RankBoost.B
achieve significant performance improvement compared to GMM and SUM rule, and the
performance comparable to SVM. Besides empirical results, we show that, instead of
adding a constant weak learner in order to maximize AUC using AdaBoost, instances
could be weighted initially in each class inversely proportional to the number of instances
in the corresponding classes.
Keywords: Multimodal, Biometrics, AUC, Boosting.

1. Introduction. Nowadays, as a result of advancement in computation power and stor-
age capacity of computers, fusion of many source of information become more accessible.
Also verification systems are influenced by this progression and tend to use several bio-
metrics instead of one biometric.

Using multimodal arises the question that how to fuse biometrics information. Re-
searches in recent years show that fusion can be done in different levels and the score
level fusion is the best in sense of simplicity and amount of information which supposed
to be combined. Generally, there are three approaches to score fusion: 1) transforma-
tion based score fusion, 2) density based score fusion, 3) classifier based score fusion.
Transformation based methods usually are applied after score normalization step. Sum
rule, Product rule, Min rule and Max rule belong to this category, amongst them, Sum
rule shows the best experimental results [1]. Density based score fusion methods are
based on score distribution estimation. Well-known density estimation models like Näıve
Bayesian [2] and Gaussian Mixture Model (GMM) [3] have been used for fusion. Classifier
based score fusion treat scores as features and try to find the best decision boundary like
the case of binary classification binary classification problem [4, 5]. For instance, in [6]
Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) have been used for
classifier based score fusion. Multivariate polynomials of hyperbolic functions [7] and its
combination with GradientBoost [8] have been applied for score level fusion.

Besides this taxonomy, some algorithms are introduced which try to minimize ranking
error and therefore improving Receiver Operating Characteristic (ROC) curve, which is
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based on maximizing Area under the Curve (AUC) of ROC. In [9], Toh et al. developed
least square error based framework to do this, and examined their algorithm for score
level fusion. Optimizing AUC in kernel based model was presented in [10], and Freund et
al. introduced RankBoost [11] for this purpose. Continuing development of RankBoost,
Rudin et al. [12] introduced margin based and coordinate descent of RankBoost. Also,
they have proved that AdaBoost not only minimize classification error, but also under
certain condition, can optimize AUC. Latest discoveries on AdaBoost capability is inspir-
ing to exploit AdaBoost as a credible algorithm for score fusion. As a consequence, in
this paper, we investigate boosting based method not only as a classifier, but also as an
algorithm to optimize AUC in multimodal biometrics.

We organized the paper as follows: in Section 2 we bring a brief introduction to AUC
criteria. In Section 3, we explain bipartite version of RankBoost and reformulate weak
learners score level fusion. Also, we demonstrate the reasons for using boosting methods
in score level fusion. In Section 4, we present experimental results over XM2VTS and
NIST databases. Finally, Section 5, is dedicated to conclusion.

2. AUC of ROC curve. In many cases, in a binary classification problem cost of errors
for two classes are not equal, thus, global measures like minimum total error rate does not
reflect the real error. As a consequence, changing decision threshold to satisfy imposed
cost is inevitable. ROC is a very comprehensive measure, to show how classifiers could
deal with this problem. In addition, ROC curve helps to validate classifier performance for
undetermined threshold and variable error cost situations [13]. ROC can be understood
as a plot of True acceptance rate (TAR) versus false acceptance rate (FAR). In fact, for
each possible value of decision threshold, it shows a pair of TAR and FAR values, thus,
ROC curve can be determined completely by varying the decision threshold.

To reduce ROC curve to a single scaler value, AUC is used as a measure which can
grant our request. AUC is a performance metric that is invariant to unequal error cost
and unbalanced class sample size. For example, AUC of base classifier is 0.5 and that of
ideal classifier is 1 independent of inequality in error cost and sample size between two
classes. AUC can be calculated as follows:

AUC =
∑x0∑x1 I(h(x1)) > h(x0))

∣X0∣∣X1∣
(1)

where ∣X0∣ and ∣X1∣ denote the number of instances for each class in binary classification
problem, and I(u) denotes the indicator function. According to the Equation 1, it can be
inferred that misranking error is an affine transform of AUC [12] and therefore minimizing
misranking error will increase AUC. Hence minimizing misranking error is the key concept
of AUC optimization and until now, wide variety of methods have been developed to train
classifiers in order to optimize AUC. In this paper we focus on boosting based algorithms
which optimize AUC.

3. Boosting based score fusion scheme. As mentioned before, one approach to score
level fusion is to exploit classifiers for finding the best decision boundary between genuine

and imposter instances. Let x(n) = [x
(n)
1 , x

(n)
2 , ..., x

(n)
N ] denote the scores of N different

biometric matchers for n’th instance, and y(n) ⊆ −1,1 denotes its corresponding label.
Note that −1 and 1 refer to imposter and genuine classes, respectively. The goal is to find
a decision function like H ∶ RN → −1,1 to recognize labels of unseen instances. Through
boosting based algorithms we seek a function that minimize classification error.

In this section, we investigate the idea of using boosting in multimodal biometrics.
AdaBoost and bipartite version of RankBoost are those boosting based methods which
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here will be examined. Up to now AdaBoost as a powerful classifier has not been con-
sidered enough in score level fusion problems. There is only one paper in literature that
uses AdaBoost to combine palm data with tokenised random numbers [14]. Also, Ad-
aBoost capability in optimizing AUC, proved by Rudin et. al. [12], makes it an appealing
method in such area. On the other hand, RankBoost and its bipartite version have been
designed to minimize misranking error explicitly [11]. Here, we bring an overview on
Bipartite RankBoost, then we explain condition under which AdaBoost optimizes AUC.
Also, definitions which are necessary to describe this condition are presented.

3.1. Bipartite RankBoost. Freund et al. introduced RankBoost in detail and re-
ported the experimental results of applying this algorithm for meta-searching and movie-
recommendation problems [11]. Similar to AdaBoost, this algorithm attempts to find a
combination of “weak rankers” to create highly accurate single ranker. Furthermore, they
described efficient implementation version of RankBoost, i.e., RankBoost.B, for bipartite
feedback. Broadly speaking, the term of bipartite feedback is used when there are two
sets of instances and the problem is to rank all instances of one set over another set.
Since minimizing ranking error implies optimizing AUC of ROC curve and due to similar-
ity of bipartite feedback and binary classification problems, which are cost-sensitive and
has unbalanced classes, this special case of Rankboost algorithm can be applied to such
classification problems in which optimization should be done over wide range of decision
thresholds.

The pseudocode for Rankboost.B is shown in Figure 1. As it can be inferred from
this figure, despite similarity of AdaBoost and RankBoost.B, there are some discrepancies
between them. Although final output in two cases is a linear combination of weak learners,
training of weak learners and computing of αt’s are accomplished in different ways.

Algorithm RankBoost.B
Given: disjoint subset X0 and X1 of X.
Initialize:

v1(x) = {
1/∣X1∣ if x ∈X1

1/∣X0∣ if x ∈X0

For t=1, ..., T:

● Train weak learner using distribution
Dt = vt(x0)vt(x1)

● Get weak ranking ht ∶X ∈ R
● Choose αt ∈ R
● Update:

vt+1(x) =

⎧⎪⎪
⎨
⎪⎪⎩

vt(x)exp(−αt(x)

Z1
t

if x ∈X1

vt(x)exp(αt(x)

Z0
t

if x ∈X0

Where Z1
t and Z0

t normalize vt over X1 and X0:

Z0
t = ∑

x∈X0

vt(x)exp(−αtht(x))

Z1
t = ∑

x∈X1

vt(x)exp(αtht(x))

Output the final ranking: H(x) = ∑
T
t=1αtht(x).

Figure 1. Pseudocode of RankBoost for bipartite feedback.
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3.2. Computing α. In our experiments we use a weak learner training algorithm which
generate weak learner ht with output {0,1}. Thus according to [11], there exist two
methods to compute αt which are applicable here. Before presenting these methods it
should be noticed that an upper bound for ranking error can be obtained as follows:

rlossD(H) ≤ ΠT
t=1Zt

where:
Zt = Z

0
t Z

1
t

where Z0
t and Z1

t normalize instance weights overX1 andX0 respectively. Both of methods
for computing α are based on minimizing Zt or an approximation of it. In addition, these
methods guarantee that Zt ≤ 1.

First method : in this case, h(x) has the range of 0,1. For b ∈ {−1,0,1}, let:

Wb = ∑
x0,x1

Dt(x0x1)I(ht(x0) − ht(x1) = b) (2)

Dropping subscript t and replacing W−1, W+1 with W− and W+, respectively, we have:

Z =W0 +W−e
−α +W+e

α (3)

by taking derivative of Z with respect to α and set it to zero, value of α can be computed
as:

α =
1

2
ln(

W−
W+

) (4)

which means that:
Z =W0 + 2

√
W−W+ (5)

To determine the weak learner, we should minimize Z in Equation (5), and set the value
of α using Equation (4).

Second method: unlike the first method, here, h(x) takes continuous values in range
[0,1]. Also, it should be considered that this method can be used when h(x) takes one of
the discrete values of 0 or 1. In [11], it has been shown that:

Z ≤ (
1 − r

2
) eα + (

1 + r

2
) e−α (6)

where:
r = ∑

x0,x1

D(x0,1)(h(x0 − h(x1)) (7)

In bipartite version, r can be rewritten as follows:

r =∑
x

d(x)s(x)h(x) (8)

where:

s(x) = {
+1 if x ∈X1

−1 if x ∈X0

and:
d(x) = v(x) ∑

x′ ∶s(x)≠(x′)

v(x
′

) (9)

The upper bound for Z in Equation (6) is minimized when:

α =
1

2
ln(

1 + r

1 − r
) (10)

It can be revealed that calculating α according to Equation (10), results that Z <
√

1 − r2.
Also, to minimize Z, it is adequate to maximize ∣r∣ as defined in Equation (7) (Equation(8)
in Bipartite case) and then set α according to Equation (10). It should be noticed that
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having W− <W+, in the first method, and having negative value of r, in the second method
implies negative values for α. This yields that decision boundary of weak learner and
final learner are negatively correlated. However, we prevent ht with negative α’s, since,
as explained in [11], it will cause poor generalization performance of the final classifier.

3.3. weak learner. In this section, we describe weak learners and their training algo-
rithms and reformulate weak learner algorithms in the case of scores level fusion. Similar
to boosting based algorithm, Rankboost also includes training weak learner subroutine
with slight difference. In RankBoost, weak learner gives weak ranking instead of weak
classification. Also, in contrast with the previous ranking application,i.e.,meta-searching
and movie-recommendation [11], in multimodal biometrics scores are meaningful, and
weak learner always has value for each instance. Thus, h(x) is defined as follows

h(x) = {
1 if w.xi − θ > 0
0 if w.xi − θ ≤ 0

where w ∈ {−1,1}. As have been seen, in RankBoost algorithm, how to compute α
and what range h(x) has, determines how to train weak learner. Thus, according to this
definition of h(x), we rewrite weak learner training algorithm. Figure 2 shows pseudocode
of weak learner training algorithm based on defined h(x) and second method of computing
α. For abbreviation we neglect writing the pseudocode of the algorithm based on first
method of computing α. In second method, calculation of r is very costly. Although in
bipartite case computations are reduced, we find out that r can be calculated in simpler
fashion with that of Equation(8). Since for c ∈ {0,1}:

∑
xc

v(xc) = 1

then Equation (9) is reduced to:
d(x) = v(x)

consequently we can rewrite r as follows:

r = ∑
x∶w.xi>θ

h(x)v(x)s(x) + ∑
x∶w.xi≤θ

h(x)v(x)s(x)

= ∑
x∶w.xi>θ

v(x)s(x)
(11)

3.4. AdaBoost optimization. In [12], it has been shown that under specific conditions,
AdaBoost will optimize AUC as Bipartite RankBoost does. Rudin et al. showed that if
F-skew takes zero value, any sequence of αt which minimize Adaboost’s objective, also
minimize Rankboost’s objective, consequently, Adaboost and Rankboost achieve the same
AUC. In a binary classification problem “Skew”is a quantity which measures the unbalance
between positive and negative instances. “F-Skew” shows difference between contribution
of positive instances and negative instances in AdaBoost’s objective function. Zero value
of F-Skew means equally contribution of both classes. Moreover, they proved that if the
constant weak hypothesis h0(x) = 1 is included in the set of AdaBoost’s weak classifiers,
then limt →∞ F-skew = 0.

In fact, this condition is equal to weighting instances in each class inversely proportional
to the number of instances in the corresponding classes which has been used in unbalanced
data classification problems. In the following, we show this equivalence.

We introduce Hw(x) as the final classifier which is trained using weighted instances and
Hc(x) as the final classifier which has the constant weak hypothesis h0(x) = 1 in its set of
weak classifiers. If we set the first weak learner as follows:

h0(x) = 1
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Algorithm WeakLearn.B
Given: distribution over X × X .
set of scores {xi}N

i=1

for each score xi, set of candidate thresholds {θj}J
j=1 such that θ1 ≥ ... ≥ θJ

Initialize:
r∗ = 0
π(x) = s(x)v(x)
w1 = 1, w2 = −1
For i = 1, ..., N :
1. For k = 1, 2 :
2. L = 0
3. θ0 = ∞
4. For j = 1, ..., J :
5. L = L +

∑
x:θj−1≥wkxi>θj

π(x)

6. if L > r∗

7. r∗ = L
8. i∗ = i
9. θ∗ = θj

10. w∗ = wi

Output weak ranking (xi∗ , θ∗, w∗)

Figure 2. The weak learner.

3.4. AdaBoost optimization. In [12], it has been shown that under specific conditions, AdaBoost will
optimize AUC as Bipartite RankBoost does. Rudin et al. showed that if F-skew takes zero value, any
sequence of αt which minimize Adaboost’s objective, also minimize Rankboost’s objective, consequently,
Adaboost and Rankboost achieve the same AUC. In a binary classification problem ”Skew” is a quan-
tity which measures the unbalance between positive and negative instances. ”F-Skew” shows difference
between contribution of positive instances and negative instances in AdaBoost’s objective function. Zero
value of F-Skew means equally contribution of both classes. Moreover, they proved that if the constant
weak hypothesis h0(x) = 1 is included in the set of AdaBoost’s weak classifiers, then limt→∞ F-skew = 0.

In fact, this condition is equal to weighting instances in each class inversely proportional to the number
of instances in the corresponding classes which has been used in unbalanced data classification problems.
In the following, we show this equivalence.

We introduce Hw(x) as the final classifier which is trained using weighted instances and Hc(x) as the
final classifier which has the constant weak hypothesis h0(x) = 1 in its set of weak classifiers. If we set
the first weak learner as follows:

h0(x) = 1

then the weighted training error of h0 is:

ϵ0 =
|X0|

|X0| + |X1|
and α0 can be computed as follows:

α0 =
1

2
ln

(
1 − ϵ0

ϵ0

)
=

1

2
ln

( |X1|
|X0|

)
(12)

From AdaBoost algorithm we know that:

D0(n) =
1

|X0| + |X1|
(13)

D1(n) =
D0(n) exp(−α0y

(n)h0(x
(n)))

Z0
(14)

Z0 =
∑

x

D0(n) exp(−α0y
(n)h0(x

(n))) (15)

Figure 2. The weak learner.

then the weighted training error of h0 is:

ε0 =
∣X0∣

∣X0∣ + ∣X1∣

and α0 can be computed as follows:

α0 =
1

2
ln(

1 − ε0
ε0

) =
1

2
ln(

∣X1∣

∣X0∣
) (12)

From AdaBoost algorithm we know that:

D0(n) =
1

∣X0∣ + ∣X1∣
(13)

D1(n) =
D0(n)exp(−α0y(n)h0(x(n)))

Z0

(14)

Z0 =∑
x

D0(n)exp(−α0y
(n)h0(x

(n))) (15)

plugging Equations (12), (13) and (15) into (14), we obtain D1(n) as follows:

D1(n) = {
1/2∣X0∣ if x ∈X0

1/2∣X1∣ if x ∈X1

It states that:

Hc(x) = α0 +Hw(x)

It can be easily seen that these two classifiers have identical ROC curve. Although
adding a constant value to the output of the classifier modifies decision threshold, it does
not alter ROC curve.
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Figure 3. ROC curves of AdaBoost based fusion, LLR based fusion, SUM
based fusion, and SVM with linear kernel over NIST database.
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Table 1. HTER of different fusion techniques over XM2VTS and NIST databases

SUM Linear SVM AdaBoost RankBoost LLR

XM2VTS 1.6335 1.1258 1.5615 1.3252 2.2536
NIST 0.4646 0.4826 0.4099 0.4551 0.4580

4. Experimental results. In order to evaluate performance of boosting-based fusion methods, ex-
perimental tests over different databases have been run and different fusion techniques have been used.
XM2VTS-Benchmark database [15] for score level fusion, and fing-face part of NIST-bssr1 [16] were used.
In XM2VTS training and test set partitioning is already defined and there is no need to do partitioning
randomly. In case of NIST partitioning randomly for ten times. Cross-validation algorithm with ten folds
is run over 32 part of XM2VTS and each partition of NIST. According to mentioned taxonomy for score
level fusion techniques, we selected benchmark methods from each category. From transformation based
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4. Experimental results. In order to evaluate performance of boosting-based fusion methods, ex-
perimental tests over different databases have been run and different fusion techniques have been used.
XM2VTS-Benchmark database [15] for score level fusion, and fing-face part of NIST-bssr1 [16] were used.
In XM2VTS training and test set partitioning is already defined and there is no need to do partitioning
randomly. In case of NIST partitioning randomly for ten times. Cross-validation algorithm with ten folds
is run over 32 part of XM2VTS and each partition of NIST. According to mentioned taxonomy for score
level fusion techniques, we selected benchmark methods from each category. From transformation based

4. Experimental results. In order to evaluate performance of boosting-based fusion
methods, experimental tests over different databases have been run and different fusion
techniques have been used. XM2VTS-Benchmark database [15] for score level fusion, and
fing-face part of NIST-bssr1 [16] were used. In XM2VTS training and test set partitioning
is already defined and there is no need to do partitioning randomly. In case of NIST
partitioning randomly for ten times. Cross-validation algorithm with ten folds is run over
32 part of XM2VTS and each partition of NIST. According to mentioned taxonomy for
score level fusion techniques, we selected benchmark methods from each category. From
transformation based methods, SUM rule with min-max normalization, from density based
methods, GMM, and from classifier based methods, SVM were selected. To compare
AdaBoost with other classifier based methods, we evaluated SVM. We used linear SVM
because in our experiments SVM with radial basis function kernel did not perform well
as SVM with linear kernel. In this paper we used GMM fitting algorithm proposed in
[17] and SVM light [18]. Also we used implemented version of AdaBoost from Statistical
Pattern Recognition Toolbox (STPRTool) [19]. To satisfy AUC optimization condition we
weighted instances inversely proportional to number of instances in corresponding classes.

The ROC curves of SUM rule, SVM with linear kernel, LLR, AdaBoost and RankBoost
over NIST database are depicted in Figure 3. As it can be seen, AdaBoost and RankBoost
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Figure 4. ROC curves of Boosting based fusion, LLR based fusion, SUM
based fusion, and SVM with linear kernel over XM2VTS database

methods, SUM rule with min-max normalization, from density based methods, GMM, and from classi-
fier based methods, SVM were selected. To compare AdaBoost with other classifier based methods, we
evaluated SVM. We used linear SVM because in our experiments SVM with radial basis function kernel
did not perform well as SVM with linear kernel. In this paper we used GMM fitting algorithm proposed
in [17] and SVM light [18]. Also we used implemented version of AdaBoost from Statistical Pattern
Recognition Toolbox (STPRTool) [19]. To satisfy AUC optimization condition we weighted instances
inversely proportional to number of instances in corresponding classes.

The ROC curves of SUM rule, SVM with linear kernel, LLR, AdaBoost and RankBoost over NIST
database are depicted in Figure 3. As it can be seen, AdaBoost and RankBoost reach higher performance
compared to LLR. In comparison with SUM rule and Linear SVM in bigger portion of FAR range ROC
of boosting approach are above that of SUM and Linear SVM. Furthermore, it can be seen, AdaBoost
achieves performance comparable to that of RankBoost. Also results in Table 1 shows that HTER of
boosting methods over NIST are lower than the other methods.

In Figure 4 ROC curves over XM2VTS have been depicted. It can be inferred that classifier based
methods outperformed SUM and LLR. In this case, boosting approaches have higher performance than
LLR and SUM, but they are not superior than Linear SVM. In addition, HTER in Table 1 proves these
statements. After Linear SVM which achieves lowest HTER, RankBoost and AdaBoost have lower HTER
respectively.

5. Conclusion. In this paper, we approved practically the theoretic equality of AdaBoost and Rank-
Boost.B in sense of AUC optimization. We applied RankBoost.B, and AdaBoost in multimodal biomet-
rics score level fusion with understanding its ability in AUC optimization. Also, we reformulated weak
learner used in RankBoost.B for applications in which scores are meaningful. We explained that weight-
ing instances inversely proportional to the number of instances in the corresponding classes is another
statement of the condition under which AdaBoost will optimize AUC. According to experimental results,

Figure 4. ROC curves of Boosting based fusion, LLR based fusion, SUM
based fusion, and SVM with linear kernel over XM2VTS database.

reach higher performance compared to LLR. In comparison with SUM rule and Linear
SVM in bigger portion of FAR range ROC of boosting approach are above that of SUM
and Linear SVM. Furthermore, it can be seen, AdaBoost achieves performance comparable
to that of RankBoost. Also results in Table 1 shows that HTER of boosting methods
over NIST are lower than the other methods.

In Figure 4 ROC curves over XM2VTS have been depicted. It can be inferred that
classifier based methods outperformed SUM and LLR. In this case, boosting approaches
have higher performance than LLR and SUM, but they are not superior than Linear SVM.
In addition, HTER in Table 1 proves these statements. After Linear SVM which achieves
lowest HTER, RankBoost and AdaBoost have lower HTER respectively.

5. Conclusion. In this paper, we approved practically the theoretic equality of Ad-
aBoost and Rank- Boost.B in sense of AUC optimization. We applied RankBoost.B, and
AdaBoost in multimodal biometrics score level fusion with understanding its ability in
AUC optimization. Also, we reformulated weak learner used in RankBoost.B for appli-
cations in which scores are meaningful. We explained that weighting instances inversely
proportional to the number of instances in the corresponding classes is another statement
of the condition under which AdaBoost will optimize AUC. According to experimental
results, AdaBoost and RankBoost.B reached higher performance compared to SUM rule,
LLR. Finally our experiment showed that boosting approach and SVM with linear kernel
have comparable performance. Based on these results we conclude the paper as follows:

● Classifier approach outperforms compared to transformation based score fusion and
density based score fusion.

● AdaBoost achieves the same level of performance compared to RankBoost.B



Boosting Approach for Score Level Fusion in Multimodal Biometrics Based on AUC Maximization 59

● Performance of SVM is comparable with boosting based algorithm which shows SVM
ability as a classifier based method for score level fusion.

● Weighting instances inversely proportional to the number of instances in the corre-
sponding classes is another statement of the condition under which AdaBoost will
optimize AUC
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