
Journal of Information Hiding and Multimedia Signal Processing c©2010 ISSN 2073-4212

Ubiquitous International Volume 1, Number 4, October 2010

Approach for VHDL and FPGA Implementation of
Communication Controller of FlexRay Controller

Milind Khanapurkar1, Jayant Y. Hande2 and Dr. Preeti Bajaj1

1Assistant Professor & Research Associate, IEEE Member, ECE Dept.
2Research Student, ECE Dept.

3Professor and Senior Member IEEE,
G. H. Raisoni College of Engineering, Nagpur, India

1m khanapurkar@rediffmail.com
2hande jayant@rediffmail.com

Received April 2010; revised July 2010

Abstract. The FlexRay communication system is an emerging standard for advanced
automotive control applications, such as drive-by-wire. The detailed micro-architectural
level of the FlexRay specification facilitates implementations where the internal operation
closely reflects the protocol specification definitions. Corresponding functional coverage
models in the verification environment can also be defined relative to the FlexRay spec-
ification which enables consistent understanding, easier maintenance and better reuse.
This paper explores the general issues of functional coverage pertaining to the FlexRay
specifications. VHDL simulation & FPGA synthesis results of communication controller
of flexray controller are tested on xilinix and lenardo Spectrum tool are presented.
Keywords: ECU V Electronic Control Units, FPGA: Field Programmable Gate Ar-
ray, LIN: Local Interconnect Network, CAN: Controller Area Network, TDMA: Time
Division Multiple Access,CC: Communication Controller.

1. Introduction. Electronics in vehicles is increasing at a phenomenal rate every year,
every now and then new born applications are arriving and existing applications are get-
ting modified with sophisticated recent technologies such as soft computing tools, VHDL/
VLSI tools, advanced tools for designing real time embedded systems. Intra-vehicular
communication describes as exchange of data within the ECUs of the vehicle which are
involved in vehicular applications. FlexRay is a new communication protocol designed
to provide large bunches of data to be exchanged in real-time and with high dependabil-
ity between electronic control units (ECU), sensors and actuators. It features data-rates
up to 10 Mb/s and is accounting for time and event triggered transmissions. FlexRay
serves as the next step beyond CAN and LIN, enabling the reliable management of many
more safety and comfort features. In some node designs, the host and controller part can
be combined into one entity if the microcontroller has an integrated FlexRay controller.
This combination allows the designer to implement the FlexRay protocol using a single
chip without the need for companion devices. This paper discusses data communication
controller, its states and input and output signals. First two sections discuss a brief
overview of the FlexRay ECU along with flex-ray data frame and block diagram of a
flex-ray communication node. Followed by VHDL simulation and FPGA synthesis results
of communication controller of FlexRay.

325

326 M. Khanapurkar, J. Y. Hande and Dr. P. Bajaj

1.1. Architecture of FlexRay ECU. Each flexRay node consists of a host, commu-
nication controller, power supply unit, two bus guardians, and two bus drivers. Each
communication channel has one bus driver to connect the node to the channel. The Host
is an embedded microprocessor running the software which controls the communication
process. Communication Controller provides the operation (via the Bus Driver) and is
responsible for synchronization. Bus Guardian provides mainly the error detection, gen-
erating interrupts and blocking the line when critical problems occur. Flex-Ray node is
equipped with two physical Channels V A and B.

1.1 Architecture of FlexRay ECU:
Each flexRay node consists of a host, communication controller, power supply unit, two bus
guardians, and two bus drivers. Each communication channel has one bus driver to connect the
node to the channel. The Host is an embedded microprocessor running the software which
controls the communication process. Communication Controller provides the operation (via the
Bus Driver) and is responsible for synchronization. Bus Guardian provides mainly the error
detection, generating interrupts and blocking the line when critical problems occur. Flex-Ray node
is equipped with two physical Channels – A and B.

Figure 1. Architecture of Flex-ray Node

Figure 2. Flex ray Frame Format

0 ---- 254 Bytes 24 Bits 6 Bits 11 Bits 07 Bits 11 Bits

D-0 D-1 D-2 D-n ----- CRC CRC CRC Frame ID Payload
Length

Header
CRC

Cycle
Count

Reserved Bit (1 bit)

Payload Indicator (1 bit)

Null Frame Indicator (1 bit)

Sync Frame Indicator (1 bit)

Startup Frame Indicator (1 bit)

Header Segment Payload Segment Trailer Segment

FLEXRAY FRAME

Figure 1. Architecture of Flex-ray Node.

1.1 Architecture of FlexRay ECU:
Each flexRay node consists of a host, communication controller, power supply unit, two bus
guardians, and two bus drivers. Each communication channel has one bus driver to connect the
node to the channel. The Host is an embedded microprocessor running the software which
controls the communication process. Communication Controller provides the operation (via the
Bus Driver) and is responsible for synchronization. Bus Guardian provides mainly the error
detection, generating interrupts and blocking the line when critical problems occur. Flex-Ray node
is equipped with two physical Channels – A and B.

Figure 1. Architecture of Flex-ray Node

Figure 2. Flex ray Frame Format

0 ---- 254 Bytes 24 Bits 6 Bits 11 Bits 07 Bits 11 Bits

D-0 D-1 D-2 D-n ----- CRC CRC CRC Frame ID Payload
Length

Header
CRC

Cycle
Count

Reserved Bit (1 bit)

Payload Indicator (1 bit)

Null Frame Indicator (1 bit)

Sync Frame Indicator (1 bit)

Startup Frame Indicator (1 bit)

Header Segment Payload Segment Trailer Segment

FLEXRAY FRAME

Figure 2. Flex ray Frame Format.

1.2. Flex-Ray Frame. Flex-Ray protocol is based on frames, containing data organized
in bytes, but transmitted serially. Figure 2 shows the flex-ray frame, consists of 3 seg-
mentsVheader, Payload and Trailer.

• The Header begins with 5 indicators Vthe single bits defining basic features of the
frame.

Approach for VHDL and FPGA Implementation of Communication Controller of FlexRay Controller 327

• Payload section contains the main data; its length may be variable between 0 and
254 bytes.

• The Trailer section contains 24 bits of CRC, calculated for the Header and Payload
section together.

Each cycle is a complex structure, containing static segment, dynamic segment, symbol
window and idle time. Static segment the first part of cycle contains series of static slots
each of these slots is allotted to transmit a single frame. Another part of the cycle is the
dynamic segment consists of mini slots. This part of cycle may be used for the frames
transmission again but the amount of time allotted a current frame may vary, depending
on its length.

2. Communication Controller. Communication controller (CC) is responsible for im-
plementing the protocol aspects of the Flex Ray communication system. It performs all
communications tasks such as reception and transmission of messages in a TTP cluster
without interaction of the host CPU. Communication controller (CC) provides status
information to the host and delivers payload data received from communication frames.

2.1. Flex ray Protocol Operation and Control. The flexRay communication proto-
col uses TDMA (time-division multiple access) to the media for providing communication
between nodes which must be synchronous for participation in data exchange process. In
the paper we have considered two processes viz wakeup and startup.

I.2 Flex-Ray Frame:

Flex-Ray protocol is based on frames, containing data organized in bytes, but transmitted serially.
Figure 2 shows the flex-ray frame, consists of 3 segments –header, Payload and Trailer.

Ø The Header begins with 5 indicators –the single bits defining basic features of the frame.
Ø Payload section contains the main data; its length may be variable between 0 and 254

bytes.
Ø The Trailer section contains 24 bits of CRC, calculated for the Header and Payload section

together.
Each cycle is a complex structure, containing static segment, dynamic segment, symbol window
and idle time. Static segment the first part of cycle contains series of static slots each of these
slots is allotted to transmit a single frame. Another part of the cycle is the dynamic segment
consists of mini slots. This part of cycle may be used for the frames transmission again but the
amount of time allotted a current frame may vary, depending on its length.

2. Communication Controller

Communication controller (CC) is responsible for implementing the protocol aspects of the Flex
Ray communication system. It performs all communications tasks such as reception and
transmission of messages in a TTP cluster without interaction of the host CPU. Communication
controller (CC) provides status information to the host and delivers payload data received from
communication frames.

2.1 Flex ray Protocol Operation and Control:

 The flexRay communication protocol uses TDMA (time-division multiple access) to the media for
providing communication between nodes which must be synchronous for participation in data
exchange process. In the paper we have considered two processes viz wakeup and startup.

Figure 3 Block Diagram of Communication Controller

Receiver Transmit

To/From HOST

Controller HOST Interface

Protocol Operation Control

M A C

Frame &
Symbol

Clock
Synchronization

Coding / Decoding channel

PHYSICAL LAYER

CC

Figure 3. Block Diagram of Communication Controller.

The node shall enter the default config state when the node is supplied with power.
In this state static configuration of the communication controller is performed. Host
configures number of channels, media specification, etc. The state is left as soon as the
bus driver receives a wakeup event which can be an external wakeup event or receiving
the wakeup pattern on its channel.

In the config state, the host configures the communication controller. Then the host
checks wakeup event, based on this information decides what state will be next. If the

328 M. Khanapurkar, J. Y. Hande and Dr. P. Bajaj

bus driver has received an external wakeup event, the host must command to wakeup
other nodes on an attached channel. Otherwise, if the bus driver has received a wakeup
pattern from the channel, the host may command to wakeup the second channel, or to
proceed to startup state.

In the wakeup state, the node tries to wakeup the defined channel. If errors occur
during the wakeup state, the communication controller informs the host and the node
switches to the config state. Otherwise the node switches to startup state.

In the startup state, the node checks for ongoing communication on the media. If
the bus driver detects communication signals on the attached channel, then the node
integrates to the cluster communication, otherwise the node starts the startup procedure.
After startup, node proceeds to the normal active state.

2.2. Communication Controller States. The states of communication controller and
respective commands are as in state table (figure 4) and the state flow is as described in
state diagram shown in figure 5. Its frame structure by frame table (figure 7) and protocol
operation for particular states using operation table (figure 8).

The node shall enter the default config state when the node is supplied with power. In this state
static configuration of the communication controller is performed. Host configures number of
channels, media specification, etc. The state is left as soon as the bus driver receives a wakeup
event which can be an external wakeup event or receiving the wakeup pattern on its channel.

In the config state, the host configures the communication controller. Then the host checks
wakeup event, based on this information decides what state will be next. If the bus driver has
received an external wakeup event, the host must command to wakeup other nodes on an
attached channel. Otherwise, if the bus driver has received a wakeup pattern from the channel,
the host may command to wakeup the second channel, or to proceed to startup state.

 In the wakeup state, the node tries to wakeup the defined channel. If errors occur during the
wakeup state, the communication controller informs the host and the node switches to the config
state. Otherwise the node switches to startup state.
In the startup state, the node checks for ongoing communication on the media. If the bus driver
detects communication signals on the attached channel, then the node integrates to the cluster
communication, otherwise the node starts the startup procedure. After startup, node proceeds to
the normal active state.

2.2 COMMUNICATION CONTROLLER STATES:
The states of communication controller and respective commands are as in state table (figure 4)
and the state flow is as described in state diagram shown in figure 5. Its frame structure by frame
table (figure 7) and protocol operation for particular states using operation table (figure 8).

STATE_TYPE

COMMAND [4-0]

DEFAULT_CONFIG 00000
CONFIG 00001
READY 00010
HALT 00011
WAKEUP_LISTEN 00100
WAKEUP_SEND 00101
WAKEUP_DETECT 00110
COLDSTART_LISTEN 00111
INTEGRATION_LISTEN 01000
INITIALIZE_SCHEDULE 01001
NORMAL_ACTIVE 01010
NORMAL_PASSIVE 01011
COLDSTART_COLLISION_RESOLUTION 01100
INTEGRATION_COLDSTART_CHECK 01101
INTEGRATION_CONSISTENCY_CHECK- 01110
COLDSTART_CONSISTANCY_CHECK 01111
COLDSTART_JOIN 10000
COLDSTART_GAP 10001

Figure.4 State Table

Ø DEFAULT_CONFIG state: The CC enters this state when leaving hard reset or when

exiting from HALT state. To leave DEFAULT_CONFIG state, the Host has to write
Command [4:0] = "00001” then transits to CONFIG state.

Ø CONFIG state: The CC enters this state when exiting from DEFAULT_CONFIG state or
when exiting from READY state. After unlocking CONFIG state and writing command [4:0]
= "00010" the CC enters READY state. From this state the CC can transit to WAKEUP

Figure 4. State Table.

• DEFAULT CONFIG state: The CC enters this state when leaving hard reset or
when exiting from HALT state. To leave DEFAULT CONFIG state, the Host has
to write Command [4:0] = “00001”’ then transits to CONFIG state.

• CONFIG state: The CC enters this state when exiting from DEFAULT CONFIG
state or when exiting from READY state. After unlocking CONFIG state and
writing command [4:0] = “00010”’ the CC enters READY state. From this state the
CC can transit to WAKEUP state and perform a cluster wakeup or to STARTUP
state to perform a cold start or to integrate into a running cluster. The CC enters
this state

• Ready State: When exiting from CONFIG, WAKEUP, STARTUP, NORMAL ACTIVE,
or NORMAL PASSIVE state by writing command [4:0] = “00010”’ (READY com-
mand). The CC exits from this state To CONFIG state by writing command [4:0] =
“00001” (CONFIG command) and To WAKEUP state by writing command [4:0] =

Approach for VHDL and FPGA Implementation of Communication Controller of FlexRay Controller 329

state and perform a cluster wakeup or to STARTUP state to perform a cold start or to
integrate into a running cluster. The CC enters this state

Figure.5 Overview of Protocol Operation Control

Ø Ready State: When exiting from CONFIG, WAKEUP, STARTUP, NORMAL_ACTIVE, or

NORMAL_PASSIVE state by writing command [4:0] = "00010" (READY command). The
CC exits from this state To CONFIG state by writing command [4:0] = "00001" (CONFIG
command) and To WAKEUP state by writing command [4:0] = "00100" (WAKEUP
command) and To STARTUP state by writing command [4:0] = "00111" (STARTUP
command).

Ø WAKEUP State: CC enters this state when exiting from READY state by writing command
[4:0] = "00100" (WAKEUP command). The CC exits from this state to READY state after
complete non-aborted transmission of wakeup pattern or after WUP reception or after
detecting a WUP collision or after reception of a frame header or by writing command [4:0]
= "00010" (READY command)

Ø The WAKEUP_LISTEN state is controlled by the wakeup timer and the wakeup noise timer.
The two timers are controlled by the parameters listen timeout and listen timeout noise.
Listen timeout enables a fast cluster wakeup in case of a noise free environment, while
listen timeout noise enables wakeup under more difficult conditions regarding noise
interference. In WAKEUP_SEND state the CC transmits the wakeup pattern on the
configured channel and checks for collisions. After return from wakeup the Host has to
bring the CC into STARTUP state by CHI command RUN. In WAKEUP_DETECT state the
CC attempts to identify the reason for the wakeup collision detected in WAKEUP_SEND
state.

Figure 5. Overview of Protocol Operation Control.

“00100” (WAKEUP command) and To STARTUP state by writing command [4:0]
= “00111” (STARTUP command).

• WAKEUP State: CC enters this state when exiting from READY state by writing
command [4:0] = “00100” (WAKEUP command). The CC exits from this state to
READY state after complete non-aborted transmission of wakeup pattern or after
WUP reception or after detecting a WUP collision or after reception of a frame
header or by writing command [4:0] = “00010” (READY command)

• The WAKEUP LISTEN state is controlled by the wakeup timer and the wakeup
noise timer. The two timers are controlled by the parameters listen timeout and
listen timeout noise. Listen timeout enables a fast cluster wakeup in case of a noise
free environment, while listen timeout noise enables wakeup under more difficult
conditions regarding noise interference. In WAKEUP SEND state the CC transmits
the wakeup pattern on the configured channel and checks for collisions. After return
from wakeup the Host has to bring the CC into STARTUP state by CHI command
RUN. In WAKEUP DETECT state the CC attempts to identify the reason for the
wakeup collision detected in WAKEUP SEND state.

• STARTUP State: Any node entering STARTUP state that has cold start capability
should assure that both channels attached have been awakened before initiating cold
start.

• NORMAL ACTIVE state: Cold start path initiating the schedule synchronization
or Cold start path joining other cold start nodes or Integration path integrating into
an existing communication schedule (all other nodes). A cold start attempt begins
with the transmission of a collision avoidance symbol (CAS). Only a cold start node

330 M. Khanapurkar, J. Y. Hande and Dr. P. Bajaj

Ø STARTUP State: Any node entering STARTUP state that has cold start capability should
assure that both channels attached have been awakened before initiating cold start.

Figure.6 Overview of State Operation

Ø NORMAL_ACTIVE state: Cold start path initiating the schedule synchronization or Cold

start path joining other cold start nodes or Integration path integrating into an existing
communication schedule (all other nodes). A cold start attempt begins with the
transmission of a collision avoidance symbol (CAS). Only a cold start node that had
transmitted the CAS transmits frames in the first four cycles after the CAS, it is then joined
firstly by the other cold start nodes and afterwards by all other nodes. In the frame header
of the startup frame the startup frame indicator bit is set. In clusters consisting of three or
more nodes, at least three nodes shall be configured to be cold start nodes. In clusters
consisting of two nodes, both nodes must be cold start nodes. Each startup frame must
also be a sync frame; therefore each cold start node will also be a sync node. A non-cold
start node requires at least two startup frames from distinct nodes for integration. It may
start integration before the cold start nodes have finished their startup. It will not finish its
startup until at least two cold start nodes have finished their startup.

Figure 6. Overview of State Operation.

that had transmitted the CAS transmits frames in the first four cycles after the
CAS, it is then joined firstly by the other cold start nodes and afterwards by all
other nodes. In the frame header of the startup frame the startup frame indicator
bit is set. In clusters consisting of three or more nodes, at least three nodes shall be
configured to be cold start nodes. In clusters consisting of two nodes, both nodes
must be cold start nodes. Each startup frame must also be a sync frame; therefore
each cold start node will also be a sync node. A non-cold start node requires at
least two startup frames from distinct nodes for integration. It may start integration
before the cold start nodes have finished their startup. It will not finish its startup
until at least two cold start nodes have finished their startup.

3. VHDL Simulation and Synthesis Results. The communication controller is de-
signed by FSM methodology. The states coding and command sequence as per state table,
frame structure and protocol operation using VHDL code on XILINX tool (simulation
and synthesis) and Leonardo Spectrum (Synthesis) tool are shown below.

1. DefaultConfig to Wakeup State: In the default config to wakeup stage the
POC awaits the explicit command from the host to enable configuration. The global
clock pulse starts from initially and reset changes from HIGH to LOW. In default config
stage command (4:0) value is “00000,” values of frame header, payload length, header
CRC, data (3 to 0) all remains null. From config state to wakeup state data values
changes from null values to state related values.

2. Startup State to Normal Active State: From this stage actual working of CC
is start, in wakeup state CC listen the channel and gives proper indication to Host. Host
gives ready command to POC, then after startup command to POC, these indicate the

Approach for VHDL and FPGA Implementation of Communication Controller of FlexRay Controller 331

Figure.7 Overview of Protocol Frame Figure.8 Overview of Protocol Operation

3.VHDL SIMULATION AND SYNTHESIS RESULTS
The communication controller is designed by FSM methodology. The states coding and command
sequence as per state table, frame structure and protocol operation using VHDL code on XILINX
tool (simulation and synthesis) and Leonardo Spectrum (Synthesis) tool are shown below.

1. Default_Config to Wakeup State: In the default config to wakeup stage the POC awaits
the explicit command from the host to enable configuration. The global clock pulse starts
from initially and reset changes from HIGH to LOW. In default config stage command (4:0)
value is “00000”, values of frame header, payload length, header CRC, data (3 to 0) all
remains null. From config state to wakeup state data values changes from null values to
state related values.

Figure 9. Default_Config To Wakeup State

2. Startup State to Normal Active State: From this stage actual working of CC is start, in
wakeup state CC listen the channel and gives proper indication to Host. Host gives ready
command to POC, then after startup command to POC, these indicate the CC enters in
cold start node. The cold start nodes can initiate the cluster start up. From startup stage
actual communication done between channel and Host. Startup has stages: Cold start

Figure 7. Overview
of Protocol Frame.

Figure.7 Overview of Protocol Frame Figure.8 Overview of Protocol Operation

3.VHDL SIMULATION AND SYNTHESIS RESULTS
The communication controller is designed by FSM methodology. The states coding and command
sequence as per state table, frame structure and protocol operation using VHDL code on XILINX
tool (simulation and synthesis) and Leonardo Spectrum (Synthesis) tool are shown below.

1. Default_Config to Wakeup State: In the default config to wakeup stage the POC awaits
the explicit command from the host to enable configuration. The global clock pulse starts
from initially and reset changes from HIGH to LOW. In default config stage command (4:0)
value is “00000”, values of frame header, payload length, header CRC, data (3 to 0) all
remains null. From config state to wakeup state data values changes from null values to
state related values.

Figure 9. Default_Config To Wakeup State

2. Startup State to Normal Active State: From this stage actual working of CC is start, in
wakeup state CC listen the channel and gives proper indication to Host. Host gives ready
command to POC, then after startup command to POC, these indicate the CC enters in
cold start node. The cold start nodes can initiate the cluster start up. From startup stage
actual communication done between channel and Host. Startup has stages: Cold start

Figure 8. Overview
of Protocol Opera-
tion.

Figure.7 Overview of Protocol Frame Figure.8 Overview of Protocol Operation

3.VHDL SIMULATION AND SYNTHESIS RESULTS
The communication controller is designed by FSM methodology. The states coding and command
sequence as per state table, frame structure and protocol operation using VHDL code on XILINX
tool (simulation and synthesis) and Leonardo Spectrum (Synthesis) tool are shown below.

1. Default_Config to Wakeup State: In the default config to wakeup stage the POC awaits
the explicit command from the host to enable configuration. The global clock pulse starts
from initially and reset changes from HIGH to LOW. In default config stage command (4:0)
value is “00000”, values of frame header, payload length, header CRC, data (3 to 0) all
remains null. From config state to wakeup state data values changes from null values to
state related values.

Figure 9. Default_Config To Wakeup State

2. Startup State to Normal Active State: From this stage actual working of CC is start, in
wakeup state CC listen the channel and gives proper indication to Host. Host gives ready
command to POC, then after startup command to POC, these indicate the CC enters in
cold start node. The cold start nodes can initiate the cluster start up. From startup stage
actual communication done between channel and Host. Startup has stages: Cold start

Figure 9. Default Config To Wakeup State.

CC enters in cold start node. The cold start nodes can initiate the cluster start up. From
startup stage actual communication done between channel and Host. Startup has stages:
Cold start Listen State, Integration Listen State, Initialize Schedule State, Cold start
Collision Resolution State, Integration Cold start Check State, Integration Consistency
Check State, and Cold start Consistency Check.

3. Normal Active to Halt State: Normal Active state the POC performs a sequence
of tasks at the end of each communication cycle for the purpose of determining whether
the POC should change the modeling of the core mechanisms before the beginning of the
next communication cycle. The POC performs a sequence of tasks at the end of each
communication cycle if collision is done then POC enter in Normal Passive state. In
between CC get any fatal error or hang the process due to any problem POC enter in
Halt state, to stop all operation and reset the controller which provides security.

4. Frame Structure: The output of frame depends on input command (4-0), clock
and reset signal. The FlexRay frame is divided into three segments. The segments are
Header, Payload, and Trailer. All signals depends on the input data which is present
in frame. In header section 5 bit indicator, frame ID (11 bits), payload length (7 bits),

332 M. Khanapurkar, J. Y. Hande and Dr. P. Bajaj

Listen State, Integration Listen State, Initialize Schedule State, Cold start Collision
Resolution State, Integration Cold start Check State, Integration Consistency Check State,
and Cold start Consistency Check

Figure 10 Startup State to Normal Active State

3. Normal Active to Halt State:
Normal Active state the POC performs a sequence of tasks at the end of each communication
cycle for the purpose of determining whether the POC should change the modeling of the core
mechanisms before the beginning of the next communication cycle. The POC performs a
sequence of tasks at the end of each communication cycle if collision is done then POC enter in
Normal Passive state. In between CC get any fatal error or hang the process due to any
problem POC enter in Halt state, to stop all operation and reset the controller which provides
security.

Figure 11 Normal Active to Halt State

4. Frame Structure: The output of frame depends on input command (4-0), clock and reset
signal. The FlexRay frame is divided into three segments. The segments are Header, Payload,
and Trailer. All signals depends on the input data which is present in frame. In header section 5 bit
indicator, frame ID (11 bits), payload length (7 bits), header CRC (11 bits) where as in payload
data (0-254 bytes) 7 bits per data values and in trailer last tail part is present.

Figure 10. Startup State to Normal Active State.

Listen State, Integration Listen State, Initialize Schedule State, Cold start Collision
Resolution State, Integration Cold start Check State, Integration Consistency Check State,
and Cold start Consistency Check

Figure 10 Startup State to Normal Active State

3. Normal Active to Halt State:
Normal Active state the POC performs a sequence of tasks at the end of each communication
cycle for the purpose of determining whether the POC should change the modeling of the core
mechanisms before the beginning of the next communication cycle. The POC performs a
sequence of tasks at the end of each communication cycle if collision is done then POC enter in
Normal Passive state. In between CC get any fatal error or hang the process due to any
problem POC enter in Halt state, to stop all operation and reset the controller which provides
security.

Figure 11 Normal Active to Halt State

4. Frame Structure: The output of frame depends on input command (4-0), clock and reset
signal. The FlexRay frame is divided into three segments. The segments are Header, Payload,
and Trailer. All signals depends on the input data which is present in frame. In header section 5 bit
indicator, frame ID (11 bits), payload length (7 bits), header CRC (11 bits) where as in payload
data (0-254 bytes) 7 bits per data values and in trailer last tail part is present.

Figure 11. Normal Active to Halt State.

header CRC (11 bits) where as in payload data (0-254 bytes) 7 bits per data values and
in trailer last tail part is present.

Commands apply by Host for respective state (“00000” to “10001”). Frame identity
and frame has present data or null all these information present in Frame ID.

 Commands apply by Host for respective state (“00000” to “10001”). Frame identity and frame has
present data or null all these information present in Frame_ID.

Figure12. RTL View of Frame Structure

Figure 13a and figure 13b shows the xilinx RTL synthesis and schematic synthesis structure of
communication controller of flexRay controller.

Figure 13 a Xilinx Synthesis Report

Figure 12. RTL View of Frame Structure.

Approach for VHDL and FPGA Implementation of Communication Controller of FlexRay Controller 333

Figure 13a and figure 13b shows the xilinx RTL synthesis and schematic synthesis
structure of communication controller of flexRay controller.

Figure 14a and figure 14b shows the Leonardo Spectrum RTL Synthesis along with
synthesis report.

THE LEONARDO SPECTRUM SYNTHESIS REPORT:

-- LOADING ARCHITECTURE RTL OF CONTROLLER_T INTO LIBRARY WORK

-- COMPILING ROOT ENTITY CONTROLLER_T(RTL)

"C:/CONTROLLER/CONTROLLER.VHD",LINE 573: W ARNING, OTHERS CLAUSE IS NEVER SELECTED.

USING WIRE TABLE: XIS230-6_AVG

-- START TIMING OPTIMIZATION FOR DESIGN .WORK.CONTROLLER_T.RTL

NO CRITICAL PATHS TO OPTIMIZE AT THIS LEVEL

CELL: CONTROLLER_T VIEW : RTL LIBRARY: WORK

NUMBER OF PORTS : 98

NUMBER OF NETS : 218

NUMBER OF INSTANCES : 211

NUMBER OF REFERENCES TO THIS VIEW : 0

TOTAL ACCUMULATED AREA :

NUMBER OF BUFGP : 1

NUMBER OF DFFS OR LATCHES : 5

NUMBER OF FUNCTION GENERATORS : 84

NUMBER OF IBUF : 6

NUMBER OF MUXF5 : 20

NUMBER OF MUXF6 : 2

NUMBER OF OBUF : 91

NUMBER OF ACCUMULATED INSTANCES : 211

DEVICE UTILIZATION FOR 2S30PQ208

RESOURCE USED AVAIL UTILIZATION

IOS 98 132 74.24%

FUNCTION GENERATORS 84 864 9.72%

CLB SLICES 42 432 9.72%

DFFS OR LATCHES 5 1296 0.39%

CLOCK FREQUENCY REPORT

CLOCK : FREQUENCY

CLOCK : 72.7 MHZ

CRITICAL PATH REPORT

CRITICAL PATH #1, (PATH SLACK = 6.2):

NAME GATE ARRIVAL LOAD

-----------------------------------COMMAND(0)/ 0.00 0.00 UP 1.90

COMMAND(0)_IBUF/O IBUF 2.55 2.55 UP 3.70

IX920_IX67_NX10/O LUT2 1.74 4.29 UP 2.50

IX920_IX51_NX16/O LUT4 1.91 6.21 UP 2.90

NX1042/O LUT4 1.48 7.69 UP 1.90

334 M. Khanapurkar, J. Y. Hande and Dr. P. Bajaj

 Commands apply by Host for respective state (“00000” to “10001”). Frame identity and frame has
present data or null all these information present in Frame_ID.

Figure12. RTL View of Frame Structure

Figure 13a and figure 13b shows the xilinx RTL synthesis and schematic synthesis structure of
communication controller of flexRay controller.

Figure 13 a Xilinx Synthesis Report

(a)

 Figure 13 b. Xilinx Synthesis Report
(b)

Figure 13. Xilinx Synthesis Report.

Approach for VHDL and FPGA Implementation of Communication Controller of FlexRay Controller 335

Figure 14a and figure 14b shows the Leonardo Spectrum RTL Synthesis along with synthesis
report. .

Figure 14a Leonardo RTL Synthesis

 Figure 14b Leonardo RTL Synthesis

THE LEONARDO SPECTRUM SYNTHESIS REPORT:

-- LOADING ARCHITECTURE RTL OF CONTROLLER_T INTO LIBRARY WORK
-- COMPILING ROOT ENTITY CONTROLLER_T(RTL)
"C:/CONTROLLER/CONTROLLER.VHD",LINE 573: WARNING, OTHERS CLAUSE IS NEVER SELECTED.
USING WIRE TABLE: XIS230-6_AVG
-- START TIMING OPTIMIZATION FOR DESIGN .WORK.CONTROLLER_T.RTL

(a)

Figure 14a and figure 14b shows the Leonardo Spectrum RTL Synthesis along with synthesis
report. .

Figure 14a Leonardo RTL Synthesis

 Figure 14b Leonardo RTL Synthesis

THE LEONARDO SPECTRUM SYNTHESIS REPORT:

-- LOADING ARCHITECTURE RTL OF CONTROLLER_T INTO LIBRARY WORK
-- COMPILING ROOT ENTITY CONTROLLER_T(RTL)
"C:/CONTROLLER/CONTROLLER.VHD",LINE 573: WARNING, OTHERS CLAUSE IS NEVER SELECTED.
USING WIRE TABLE: XIS230-6_AVG
-- START TIMING OPTIMIZATION FOR DESIGN .WORK.CONTROLLER_T.RTL

(b)

Figure 14. Leonardo RTL Synthesis.

NX1094/O LUT4 1.48 9.16 UP 1.90

IX1113/O MUXF5 1.18 10.34 UP 1.90

NX1041/O LUT4 1.48 11.82 UP 1.90

NX352/O LUT4 1.48 13.30 UP 1.90

REG_NEXT_STATE(1)/D FDC 0.00 13.30 UP 0.00

DATA ARRIVAL TIME 13.30

(DEFAULT SPECIFIED - SETUP TIME) 19.54

DATA REQUIRED TIME

336 M. Khanapurkar, J. Y. Hande and Dr. P. Bajaj

DATA REQUIRED TIME 19.54

DATA ARRIVAL TIME 13.30

SLACK 6.25

4. Conclusions and Future Scope. This paper has highlighted the concept of the
FlexRay protocol. Authors have designed the communication Controller of flex ray node
with FSM and the simulation and synthesis results on xilinx tool and synthesis results on
Leonardo synthesis tool are presented.

The presented work demonstrated that verification of automotive software is feasible.
However, feasibility alone is not sufficient for the method to become accepted by car
manufacturers. It is also the question of the development cost that is vital.

The VHDL model Bus guardian module of flex ray node is already designed and verified,
in future authors have planned to integrate communication controller and Bus Guardian
with suitable host and use this integrated assembly for some intra vehicular communica-
tion application.

REFERENCES

[1] Awani Gaidhane, Milind Khanapurkar, and Preeti Bajaj , Design approach for FPGA implemen-
tation of flex-ray controller using VHDL for intra vehicular communication application, Proc. of
International Conference ICETET, G. H. Raisoni College of Engineering, Nagpur, 2008.

[2] P. M. Szecowka, and M. A. Swiderski, On hardware implementation of FlexRay bus guardian module,
Proc. of the 12th MIXDES. FlexRay Communication System-Protocol Specification, v2.0, FlexRay
Consortium, 2007.

[3] FlexRay Consortium, Homepage, http://www.flexray-group.org
[4] FlexRay Consortium, FlexRay Communications System: Protocol Specification Version 2.0, 2004.
[5] FlexRay Communications System: Protocol Specification Version 2.1 Revision; FlexRay; Consor-

tium, 2006.
[6] FlexRay Communications System Data Link Layer Conformance Test Specification Version 2.1.1
[7] ISE 9.1i Release Notes and Installation Guide, Xilinx Corporation.
[8] TTP/C-C2 communication controller-preliminary data sheet, Rev. 16, May 2002.
[9] Message Handling Concept for a FlexRay Communication Controller-Special Edition FlexRay auto-

motive, 2004.
[10] Multiplexed Networks for Embedded Systems CAN, LIN, FlexRay, Safe-by-Wire, John Wiley & Sons

Ltd, 2007.

