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Abstract. This paper presents a method for generalizing human facial expressions by
means of a statistical analysis of human facial expressions coming from various per-
sons. The data used for the statistical analysis are obtained by tracking a generic facial
wireframe model in video sequences depicting the formation of the different human fa-
cial expressions, starting from a neutral state. Wireframe node tracking is performed
by a pyramidal variant of the well-known Kanade-Lucas-Tomasi (KLT) tracker. The
loss of tracked features is handled through a model deformation procedure that increases
the robustness of the tracking algorithm. Tracking initialization is performed in a semi-
automatic fashion, i.e., the facial wireframe model is fitted to an image representing a
neutral facial expression, exploiting physics-based deformable shape modeling. The dy-
namic facial expression output model is MPEG-4 compliant. The method has been tested
on a variety of sequences with very good results, including a database of video sequences
representing human faces changing from the neutral state to the one that represents a
fully formed human facial expression.
Keywords: Facial expressions, facial expression analysis, tracking, deformable model,
MPEG-4, statistical analysis.

1. Introduction. Facial analysis and synthesis have become two very important goals
for human-centered interface applications [1, 2, 3]. Facial analysis refers to the extrac-
tion of information concerning head location, pose and facial feature movement, notably
movement of the eyes and mouth from video sequences [4, 5]. Facial synthesis refers
to the reverse process of animating a facial model using a set of high-level parameters
that control facial pose, expression and gaze [6, 7]. Facial analysis would be useful for
several applications, such as eye-tracking, facial expression recognition [8, 9, 10, 11] and
visual speech understanding [12], whereas facial synthesis would be useful for animating
virtual characters or digital actors [7, 13, 14, 15]. Together, facial analysis and synthe-
sis in tandem would be useful for model-based coding applications, such as video email
and video-teleconferencing, as well as for the representative human facial expressions
[16, 17, 18, 19].
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The human process of producing expressions is very complex. It involves subtle move-
ments of facial features such as eyes, eyebrows, cheeks, the mouth, etc, driven by con-
traction and relaxation of muscles. Moreover, the human ability of perceiving facial
expressions is so accurate that even a trivial displacement of a facial feature can be de-
tected immediately. Therefore, it is very difficult to fully automatically analyze facial
expressions.
The human facial expression analysis is based on the motion extraction, which can

be classified in three categories: dense optical flow, difference-images and feature point
tracking. Dense optical flow has been applied both locally and holistically:

• Holistic dense optical flow approaches allow for whole-face analysis. Lien [20]
analyzed holistic face motion with the aid of wavelet-based, multi-resolution dense
optical flow.

• Local dense optical flow: Region-based dense optical flow was used by Mase and
Pentland [21] in order to estimate the activity of 12 of the totally 44 facial muscles.
Otsuka and Ohya [22] estimated facial motion in local regions surrounding the eyes
and the mouth. Feature vectors were obtained by taking 2D Fourier transforms of the
vertical and horizontal optical flow fields. Yoneyama et al. [23] divided normalized
test faces into 8 × 10 regions, where local dense optical flow was computed and
quantified region-wise into ternary feature vectors (+1/0/-1), indicating upwards,
none and downwards movements, while neglecting horizontal facial movements.

Apart from a certain vulnerability to image noise and non-uniform lighting, holistic
dense optical flow methods often result in prodigious computational requirements and
tend to be sensitive to motion discontinuities (iconic changes) as well as non-rigid motion.
Optical flow analysis can also be done in conjunction with motion models that allow
for increased stability and better interpretation of extracted facial motion, e.g. muscle
activations:

• Holistic motion models: Terzopoulos and Waters [24] have been used eleven
principal deformable contours (also known as “snakes”) to track lip and facial fea-
tures throughout image sequences with the aid of a force field, which is computed
from gradients found in the images. Only frontal faces were allowed and some facial
make-up was used to enhance contrast. DeCarlo and Metaxas [25] presented a for-
mal methodology for the integration of optical flow and 3D deformable models and
applied it to human face shapes and facial motion estimation.

• Local motion models: Black and Yacoob [26] as well as Yacoob and Davis [27]
introduced local parametric motion models that allow, within local regions in space
and time, to not only accurately model non-rigid facial motions, but to provide also
a concise description of the motion associated with the edges of the mouth, nose,
eyelids and eyebrows in terms of a small number of parameters.

In addition to low-level dense optical flow, there are also higher level variants that focus
either on the movements of generic feature points, patterns or markers:

• Feature point tracking: Here, motion estimation is obtained only for a selected
set of prominent facial features [28, 29]. In order to reduce the risk of tracking loss,
feature points are places into areas of high contrast, preferably around intransient fa-
cial features. Hence, facial movements can be measured by tracking the displacement
of corresponding feature points.

• Marker tracking: It is possible to determine facial actions with more reliability
than with previously discussed methods, namely by measuring deformation in areas,
where underlying muscles interact. Unfortunately, these are mostly skin region with
relatively poor texture. Highlighting is necessary and can be done by either applying
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color to salient facial features and skin [30] or by affixing colored plastic dots to
predefined locations on the subject’s face.

Yet another way of how to extract image motion are difference-images: Specifically
for facial expression analysis, difference-images are mostly created by subtracting a given
facial image from a previously registered reference image, containing a neutral face of
the same subject. However, in comparison to optical flow approaches, no flow direction
can be extracted, but only differences of image intensities. In addition, accurate face
normalization procedures are necessary in order to align reference faces onto the test
faces. Holistic difference-image based motion extraction was employed in [31, 32].

Furthermore, another way to analyze the facial expressions is to use the well-known
principal component analysis (PCA) [33] or kernel discriminant analysis (KDA) [34]. Pan
et al. [34] exploit a variation of the KDA in order to analyze the facial expression, while Li
et al. [35] use a variation of the locality preserving projection (LPP) technique to extract
and analyze the facial features.

Our approach was motivated by the lack of a facial expression analysis system that is
able to perform and exploit statistical analysis of the dynamic human facial expressions,
i.e., of their formation from the neutral state to the fully expressive one. Statistical
analysis of the facial expressions offers the opportunity to personalize expressions on an
individual, with respect to nationality and social class, instead of just transferring a
person’s expression to another person. Furthermore, in our approach, the aforementioned
process is a dynamic one and takes into account the entire video sequence of each facial
expression from the neutral state to the fully expressive one. It is not restricted to a
single video frame of the expression of interest. All video frames are used and combined
to achieve a better result. The statistical analysis is based on the use of displacement
vectors. The idea of using displacement vectors was inspired by the Facial Animation
Parameters (FAPs) of the MPEG-4 standard. Finally, the portability of the results is
achieved through their casting in an MPEG-4 format. Hence, they can be used in any
MPEG-4 application.

The introduced algorithm, initially fits and subsequently tracks a facial wireframe model
[36] in video sequences containing the formation of a dynamic human facial expression
from the neutral state to the fully expressive one [37]. The facial wireframe model fitting
on the face depicted on the initial frame of the video sequences is performed using a
semi-automatic algorithm opposed to other fully manual algorithms lie in the literature.
This method needs only 5-8 manually selected correspondences between model and the
facial features depicted on the image. These correspondences are used in combination
with a deformable model to fit the rest of the wireframe model on the image. Following,
the facial features are tracked in the video sequence using a variant of KLT tracker [38].
If needed, model deformations are performed by mesh fitting at the intermediate steps
of the tracking algorithm. Such deformations provide robustness and tracking accuracy
contrary to the methods exploiting only the KLT tracker [38]. The extracted dynamic
mesh deformation data can be used to calculate representative (or average) dynamic facial
expressions for groups of people (e.g. of the same nation and social class), who express
themselves in a similar way.

The MPEG-4 standard [39] - [43] is exploited in order to describe the results of our
method. It specifies a way of modeling facial expressions, which is strongly influenced by
neurophysiological and psychological studies [44, 45]. It employs the Facial Animation
Parameters (FAPs) operating on a set of FDP (Facial Definition Parameter) facial feature
points. The FDPs define the three dimensional [x, y, z] location of 84 points on a neutral
face. In our work, we shall use only the x and y dimensions since our video data are
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inherently 2D. However, the full 3D coordinate system can be used if we possess 3D data
(e.g. through a range camera). FDPs usually correspond to facial features and, therefore,
can roughly outline the shape of the face. The FAPs specify FDP displacements, which
model actual facial feature movements that a realistic human face would make, covering
many natural facial expressions, as well as exaggerated expressions to some extent (e.g.
for cartoon characters). All FAPs involving translational movement are expressed in terms
of Facial Animation Parameters Units (FAPUs). Thus, they correspond to fractions of
distances between some essential facial features (e.g. eye distance).
Before proceeding to the analysis of our method, we should provide some necessary

definitions. More specifically, a dynamic facial expression model is the set of frame facial
expression models (grids) that describe the formation of a facial expression through time.
Accordingly, the term frame facial expression model corresponds to a grid that is single
instance of the dynamic model on a particular video frame.
The main novelty of this paper is the statistical analysis performed on the dynamic

facial expression models coming from the video sequences of each of the six human fa-
cial expressions that depict each expression from the neutral state to the fully expressive
one. Facial grid displacement vectors, inspired by the MPEG-4 standard, were used to
perform the statistical analysis, thus avoiding the direct registration of the data (human
facial wireframe models). Another novelty of this paper is the presentation and imple-
mentation of a MPEG-4 compliant system that is able to perform statistical analysis
(facial grid location and dispersion estimation) of the dynamic human facial expressions.
Furthermore, the extraction of the generalized median dynamic facial expression models
for each of the six human facial expressions could form and show the differences on facial
expressions for different racial groups. In other words, the generalized median dynamic
facial expression models not only could help us to generalized the expressions of a racial
group, but it could also point-out the expression differences among different racial groups.
Also, this system could be used to develop avatars not only for teleconferencing, but also
for more advanced systems, such as virtual environments.
The remainder of the paper is organized as follows. The method of fitting the wireframe

facial model to a facial image is presented in Section 2. Section 3 introduces the tracking
algorithm [38] exploiting a physics-based deformation method to compensate for lost
features. The statistical facial expression analysis of the data is introduced in Section 4.
Finally, experimental results are illustrated in Section 5, while conclusions are drawn in
Section 6.

2. Wireframe-Based Model Fitting. In this Section, our goal is focused on fitting
a facial wireframe model to a face image in a video frame. It is performed in a semi-
automatic way for attaining speed, reliability and robustness of the fitting procedure.
The facial wireframe model that is used throughout this paper, is the well-known Candide
wireframe model [36, 46]. Candide is a parameterized face mask specifically developed for
model-based coding of human faces. A frontal and a profile view of the model can be seen
in Figure 1. The Candide model is superset of the MPEG-4 facial model pattern illustrated
in Figure 2. The MPEG-4 facial features that are not comprised in Candide model
(e.g. ear), are ignored, since they are of no particular significance for facial expression
recognition.
The fitting procedure consists of the following steps. First, the facial model is randomly

initialized on the face image. The model is assumed to be in its neutral state. As soon
as the model is initialized, a number of point correspondences are manually selected, i.e.,
model nodes are manually matched against facial features in the actual face image. The
model nodes of greater significance are chosen to be matched. It has been empirically
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Figure 1. Frontal and profile views of the Candide wireframe model.
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(a) (b)

Figure 2. (a) The MPEG-4 facial animation parameter units (FAPUs),
and (b) the FDPs diagram.

determined that 5-8 correspondences are enough for a good model fitting. These corre-
spondences are used as the driving power which deforms the rest of the model and matches
its nodes against face image points. The facial model is assumed to be a deformable 2D
mesh model. The driving forces, needed to deform the model, are determined based on
the point correspondences between the facial model nodes and the face image features.
Each force is defined to be proportional to the Euclidean distance between the model
nodes and their corresponding matched feature points on the face image.
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Subsequently, the deformation algorithm deforms the facial model and translates the
model nodes close to their true position on the face image. As previously mentioned,
only a small number (about 5-8 pairs) of point correspondences, is enough to fit the
model fairly well to a face image. If the scale difference between the used facial model
and the face represented in the image is large, then the number of the required pairs
of point correspondences increases to compensate for scale changes. For example, it has
been experimentally found that if the model size is 1.5 times larger or smaller than that
of the face image, 15 pair point correspondences are needed in order to produce good
deformations. This problem can be solved by a preprocessing scaling procedure that
scales the model to the size of the face image.
An example of the facial model fitting procedure on a face image is illustrated in Figure

3. Model fitting was performed using only 7 correspondences between model nodes and
face image features. Figure 3a depicts the correspondences between the model nodes and
image features, while Figure 3b illustrates the model after deformation. As can be clearly
seen in Figure 3, the model nodes were fitted to image features with high accuracy, using
few initial correspondences and exploiting the deformation process to accurately match
the remaining model nodes to their corresponding image features. In case of any outlying
nodes after deformations, their position can be manually changed to achieve the best
possible model fitting.

(a) (b)

Figure 3. An example of mesh model fitting on a face image exploiting
deformations. (a) The randomly initialized model on the face image, and
the 7 manually defined correspondences between model nodes and face image
features. (b) The model position after deformation.

3. Model Based Tracking. In this Section, an algorithm is presented that is used for
tracking the facial feature points of the wireframe model of interest in a video sequence.
The algorithm is based on tracking a large number of previously selected feature points in
the facial region. Although, feature points can be selected automatically [47, 48], in our
case, the tracked feature points are the output of the previous process (Section 2), i.e., they
are the nodes of the fitted face model. The test video sequences depict an initially neutral
human face, which gradually deforms to produce a particular facial expression. The result
of the tracking algorithm is the position of the facial model nodes at intermediate video
frames.
Feature points are tracked using a pyramidal implementation of the well-known Kanade-

Lucas-Tomasi (KLT) algorithm [38, 47, 48]. A modification of this algorithm that uses a
pyramidal representation of the images of interest, is adopted in this paper [38].
As soon as the tracking algorithm computes the displacement of all the tracked features

(i.e., the model nodes), the resulting configuration (containing the new positions of the
model nodes) is deformed. All model nodes are feature points. The displacements of model
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nodes, that have not been lost (after tracking), are assumed to be the driving forces of the
model deformation, thereby providing an accurate and robust model based facial feature
tracking method. This solves a major problem of feature-based tracking algorithms, the
gradual elimination of features points with respect to time. In the modified tracking
algorithm, the incorporation of the deformation step enables the tracking of features that
would have been lost otherwise. Furthermore, feature displacements are enforced to have
a uniform distribution considering the features with extreme displacement as lost and
their displacement is handled by the deformation procedure. This part of the modified
tracking algorithm is used due to that fact that a lot of features are located on plain
skin. The tracking algorithm provides a dynamic facial expression model for each video
sequence, which consists of a series of frame facial expression models, one for each video
frame.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Model-based facial feature tracking on various video sequences,
corresponding to different facial expressions (one expression per row). The
left column depicts the first frame of the video sequences, while the right
column corresponds to the last frame.

The proposed tracking algorithm has been applied to various video sequences, as illus-
trated in Figures 4 and 5. The test video sequences comprise of more than 10 frames
and demonstrate a gradual change from a neutral state to a particular fully formed facial
expression (i.e., laughter, anger, etc.). Figures 4a, 4c and 4e depict the model fitted to the
neutral face image (i.e., the first frame of the video sequence), while Figures 4b, 4d and
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Model-based tracking in six uniformly sampled frames of a video
sequence showing the full formation of a facial expression.

4f illustrate the result of model tracking at a fully formed facial expression (last frame of
the video sequence). Moreover, Figure 5 illustrates the results of model tracking at six
uniformly sampled frames of a video sequence that depicts a face from the neutral state
to a fully formed facial expression.
Furthermore, we have performed an error analysis of the tracking method used by our

algorithm. For this experiment we used video sequences containing 24 frames. The feature
points (Candide model nodes) of interest were manually tracked for a number of video
sequences. The error used in this experiment is defined as:

ϵ =
1

N

N∑
i=1

√
(xm

i − xi)2 + (ymi − yi)2, (1)

where N is the number of tracked feature points, xm = [xm, ym]T is the location of
a manually tracked feature point (ground truth), while x = [x, y]T is the location of
the correspondent automatically tracked feature point. Figure 6 illustrates the errors
performed by the tracking method used in our algorithm as well as the error occurred by
the same tracking method without deforming the tracked feature points after each tracking
iteration. It is clearly depicted that both errors are very low, proving the robustness of the
tracking algorithm used. Furthermore, as it is obvious in Figure 6, the tracking method
exploiting deformations after each iteration produces lower tracking errors. Furthermore,
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the tracking without model deformation tends to produce error accumulation over time
that can possibly cause a collapse of the entire tracking procedure.
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Figure 6. Node position errors (in pixels) produced by the tracking pro-
cedure, with (solid line) and without (dotted line) deformations, in video
sequences comprising of 24 frames.

4. Statistical Analysis of Facial Expression Grids. In this Section, the statistical
analysis of facial expression grids is exploited in order to derive a representative dynamic
facial expression model for a set of different dynamic facial expression models correspond-
ing to the formation of a specific facial expression on different persons. The dynamic
models of interest are firstly normalized and subsequently subjected to an outlier rejec-
tion process. Finally, the representative dynamic facial expression models are extracted
and their dispersion is studied. Both the outlier rejection process and the extraction of
the representative dynamic model are performed in a variety of ways in order to deter-
mine the most accurate one, which achieves the best dynamic facial expression model
representation.

4.1. Dynamic Facial Expression Model Normalization. A three-step normalization
procedure is performed on the set of acquired dynamic facial expression models (grids), so
that all dynamic models consist of the same number of frame models and have the same
orientation position and size. The facial expression video sequences, and, as a result, the
extracted dynamic facial expression models, do not necessarily have the same number of
frames. It has been empirically determined that five frames are sufficient to describe an
expression without loss of accuracy. In other words, five frames and their corresponding
frame facial expression models accurately describe the gradual changes required to form
the full facial expression, starting from the neutral state. Thus, each dynamic facial
expression model is constrained to contain only five frame facial expression models, one
per frame. If needed, more frame models could be acquired by interpolating the existing
ones. This assumption was proven to be a valid one by interpolating the normalized
dynamic models from the chosen five frame models, so as to contain the same number
of frames as the original ones. Table 1 shows the interpolation error statistics of grid
node position (in pixels) for different numbers of missing frames (first column of Table 1)
between existing frames so that they get the same number of frames as the original ones.
For example, if the original video sequence contains 17 frames, and we want to interpolate
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the normalized dynamic facial expression model (consisting of five frames), so as to have
the same number of frames as the original one, 3 frames are necessary to be interpolated
for each pair of frames of the normalized dynamic model, whilst if the original video
contains 25 frames, 5 frames should be interpolated. As can be seen, median and mean
errors are less than 0.2 pixels, while maximum errors are slightly larger than 1.5 pixel,
proving the validity of the aforementioned assumption.

Table 1. Interpolation error statistics for facial frame models versus
skipped frame number from the normalized dynamic models.

interp. frames median maximum mean ± s. dev.

0 0.0000 0.0000 0.0000 ± 0.0000
1 0.1049 0.7961 0.1397 ± 0.0334
2 0.0676 1.7784 0.1270 ± 0.1164
3 0.0625 1.5565 0.0910 ± 0.0850
4 0.1196 1.8802 0.1574 ± 0.1313
5 0.0835 1.8965 0.1194 ± 0.1400

The second step of the normalization procedure is to normalize the frame facial expres-
sion models with respect to orientation. This normalization is necessary, among others,
for FAP file extraction. We assume that our videos have only frontal pose. More specif-
ically, model rotation around the y axis is performed in frame facial expression models
normalization, so that all frame models are vertical [4]. The vertical bisector of the tri-
angle formed by the pupils of eyes and the middle point of the horizontal mouth axis is
used (Figure 7) to determine the rotation needed to bring the frame model to a vertical
position. The mass center of the model is supposed to be the center of the rotation.
Furthermore, the proposed procedure is translation invariant, since, as will be described
below, it calculates and uses displacement vectors among the frame model nodes. More-
over, the frame model of the dynamic facial expression models are inherently registered
by their acquisition way.

y

x

è

Figure 7. Compensation of the orientation of the wireframe facial model.
It is based on the triangular formed by the eyes and mouth centers.

The last step of the normalization procedure is to normalize the frame facial expression
models with respect to size, so that all models have the same FAPUs (Figure 2a). Hence,
they are scaled in such a way that their facial animation parameter units (FAPUs) are
equal. The chosen scaling factor along the x axis is equal to the average of the scaling
factors produced by ES0 and MW0 line segments shown in Figure 2a. We enforce them
to be equal in all the frame models of all the dynamic facial expression models under
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examination. We use the same procedure for scale normalization along the y axis. The
line segments IRISD0, ENS0 and MNS0 (Figure 2a) are used to this end.

4.2. Definition of Facial Expression Model Distances. As soon as all dynamic
facial expression models are normalized, their statistical analysis can be performed. The
aim of this study is to find a representative dynamic facial expression model for a set of
dynamic facial expression models corresponding to different persons posing a specific facial
expression. A direct model analysis would require geometric model registration, which
may suffer from certain problems. For example, it is difficult to distinguish between scale
changes due to camera position or due to the actual size of the head of a person. Instead,
an indirect method is applied, which is based on the fact that dynamic facial expression
is an “incremental” deformation of the face from the neutral state to the fully expressive
one. Therefore, the displacements of the facial features from one video frame to the next
one carry sufficient information to characterize a dynamic facial expression model. More
specifically, model registration is by-passed by using the model node displacement vectors :

τ i
m(k) =

−−−−−−−−−−−→
M i

m(k)M
i
m+1(k), (2)

where M i is the dynamic facial expression model under examination, M i
m is the m-th

frame model of the dynamic model M i and M i
m(k) denotes the k-th node of the model

M i
m. The idea of using the displacement vectors is inspired by the MPEG-4 standard

[39, 40, 42, 43] and FAP definition there in.
Let us, now, define the distance dv between two displacement vectors τ i

m(k) and τ j
m(k):

dv(τ
i
m(k), τ

j
m(k)) , ∥τ i

m(k)− τ j
m(k)∥, (3)

where ∥ · ∥ denotes either the Euclidean distance or relevant distance metrics, such as the
L1 norm (Manhattan distance) or the Chessboard distance [49]. Furthermore, the distance
df between two frame facial expression models M i

m and M j
m is defined as:

df (M
i
m,M

j
m) ,

1

N

N∑
k=1

dv(τ
i
m(k), τ

j
m(k)), (4)

where N is the number of facial model nodes. On the same basis, the distance d between
two dynamic facial expression models M i and M j is defined as:

d(M i,M j) =
1

N ′ − 1

N ′−1∑
m=1

df (M
i
m,M

j
m), (5)

where N ′ − 1 is the number of the displacement vectors sets corresponding to the N ′

frame facial expression models of each normalized dynamic model. It can be easily verified
that the above defined distances (3), (4) and (5) satisfy the three fundamental distance
properties, i.e., positivity, the permutational property and the triangle inequality.

4.3. Outlying Facial Expression Model Rejection. Before proceeding to the esti-
mation of the location and dispersion of the facial expression models, an outlier rejection
process has to be employed to remove outlying facial expression models. Let us assume
that we have N ′′ dynamic facial expression models, one for each facial expression se-
quence. Facial model distance definitions can be used for outlying facial expression model
rejection, before estimating their location and dispersion. The chosen outlier trimming
process is performed as follows [50]. A distance dt(M

i) of one dynamic facial expression
model M i from the rest of the models that belong in the same class is defined. Models
of each class are sorted according to dt(M

i) and a% of them that possess the largest of
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dt(M
i) are trimmed away, thereby freeing the model data from possible outliers. The

trimming process can be applied in three different ways:

• Trimming at the dynamic facial expression model level, i.e., α% of the dynamic
facial expression models that are located too far away from the rest are removed.
The distance between a dynamic facial model M i and the rest models that should
be maximized is defined as:

dt(M
i) =

1

N ′′ − 1

N ′′∑
j=1
j ̸=i

d(M i,M j), (6)

where N ′′ is the number of the available dynamic models.
• Trimming at the frame facial expression model level, i.e., α% of the models that are
located too far away from the rest are removed from the sets that are formed by
the frame facial expression models which correspond to the same video frame. The
distance between a frame facial expression model M i

m and the rest frame models
corresponding to the video frame m, is defined as:

dtf (M
i
m) =

1

N ′′ − 1

N ′′∑
j=1
j ̸=i

df (M
i
m,M

j
m). (7)

• Trimming at the displacement vector level, i.e., α% of the displacement vectors of
each frame model node of the dynamic facial expression models that are located too
far away from the rest are removed. The distance between a displacement vector
τ i
m(k) and the rest of the displacement vectors of the corresponding nodes at location

k in the same frame m is defined as:

dtv(τ
i
m(k)) =

1

N ′′ − 1

N ′′∑
j=1
j ̸=i

dv(τ
i
m(k), τ

j
m(k)). (8)

4.4. Estimation of Location and Dispersion of Dynamic Facial Expression Mod-
els. Once the facial expression model data have been freed from outliers, we can proceed
to the estimation of the location and dispersion of the facial expression model data. Loca-
tion estimation is essentially the estimation of a representative dynamic facial expression
model [51, 52, 53, 54] out of a set of dynamic facial expression models, e.g. of the six basic
facial human expressions as expressed by various humans. The same procedure can be
applied to find the representative dynamic facial expression of one particular expression
(e.g. smile) for one person in case we have multiple video sequences of the same person
while smiling. This can be done by finding the generalized median dynamic facial expres-
sion model [54, 55], which is defined as the dynamic model Mmed ∈ U that minimizes the
sum of distances to all dynamic models belonging to M, i.e.,

Mmed = arg min
M∈U

∑
M i∈M

d(M,M i), (9)

where U is the domain of all possible dynamic facial expression models, while M is the set
of all dynamic facial expression models of a particular class (e.g. dynamic smiles of many
persons, different smile sequences of the same person). The generalized median of graphs
has been investigated and found useful in the field of statistical graph analysis [55]. The
definition d(M,M i) depends on the distance metric used. It can be found using a greedy
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search algorithm [54]. If the search is constrained to the given set M, i.e., U = M, the
resulting dynamic model:

M̂ = arg min
M∈M

∑
M i∈M

d(M,M i), (10)

is called set dynamic median facial expression model of M.
Dynamic model dispersion can be measured by a facial expression model sample “vari-

ance” estimator defined appropriately in order to fit the dynamic facial expression model
data:

σ̂2 , 1

N ′′ − 1

N ′′∑
i=1

[
d(M i, M̄)

]2
, (11)

where N ′′ is the number of dynamic models under examination and M̄ is the dynamic
facial expression model for which each displacement vector k of each frame model m is
defined as:

τm(k) = arithmetic mean{τ 1
m(k), τ

2
m(k), . . . , τ

N ′′

m (k)}. (12)

The median medM of the distances of each dynamic facial expression model from the rest
dt(·) could be another dispersion metric of the dynamic facial expression models belonging
to the same class:

medM , median
{
dt(M

i)
}
. (13)

All the distances dt(M
i) are assumed to be ordered. As a third dispersion metric, we can

use a variant of the Median of the Absolute Deviations (MAD) estimator [56] modified
to fit the dynamic facial expression models:

σ̂MAD , med
{
d(M1,Mmed), . . . , d(M

N ′′
,Mmed)

}
, (14)

where Mmed is the generalized median dynamic facial expression model [50, 56, 57, 58,
59]. The above mentioned dispersion estimation metrics indicate the dispersion, i.e. the
dissimilarity of the various facial expression, e.g. among different persons. A flow chart of
the overall algorithm is illustrated in Figure 8. At the end of the entire procedure, MPEG-
4 FAP files describing the representative expressions and their progressive formation with
respect to time, are extracted.

5. Experimental Results. To evaluate our method, we use the well-known Cohn-
Kanade expression database [37] as input in our experiments. The database contains
image sequences of over 200 subjects in the age range of 18 to 50 years. 69% of them are
females, while 31% are males. 81% of the database subjects are Euro-Americans, 13% are
Afro-Americans, and 6% belong to other racial groups. The motivation for the selection
of this database originates from its content, i.e., the fact that image sequences depict the
formation of human facial expressions from the neutral state to the fully expressive one.

The first set of experiments shows the efficiency of the proposed algorithm with respect
to the extraction of representative dynamic facial expression models for each of the six
basic human facial expressions. Figure 9 illustrates the last frame model (fully expressed)
of the generalized dynamic facial expression median models for three expressions (anger,
smile and sadness). The generalized median models shown in this Figure are extracted
exploiting the Euclidian distance (L2 norm) and all three trimming alternatives described
in Section 4, namely, trimming at the dynamic model level (first column of Figure 9),
trimming at the frame model level (second column of Figure 9) and trimming at the
displacement vector level (third column of Figure 9). It can be noticed that there is no
large difference between the generalized median models obtained by the three trimming
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Figure 8. Flow diagrams. (a) Model fitting algorithm on a face image,
(b) Facial feature tracking algorithm, and (c) Overall algorithm.

Table 2. Dispersion σ̂2 of the dynamic facial expression models for the
six basic human facial expressions. The trimming cases are: (1st case)
without trimming, (2nd case) trimming at the dynamic model level, (3rd

case) trimming at the frame model level, and (4th case) trimming at the
displacement vector level.

Anger Disgust Fear Laughter Sadness Surprise

1st case 9,91 9,06 10,71 9,08 10,25 12,47
2nd case 9,56 8,86 10,34 8,74 10,01 11,94
3rd case 9,25 8,78 10,09 8,61 10,00 11,57
4th case 8,79 7,80 9,40 7,65 8,97 10,36

approaches. All the experiments described here are assumed to exploit the Euclidean dis-
tance. Furthermore, Tables 2, 3 and 4 show the dispersion of the dynamic models of the
six basic human facial expressions for each trimming case as they defined in (11), (13) and
(14). All the dispersion measures used correlate quite well. Laughter and disgust models
possess the least dispersion, while surprise models show the largest dispersion among in-
dividuals in the Cohn-Kanade expression database [37]. This can be explained by the fact
that surprise contains stronger node displacements. It is worth noticing that trimming
reduces class dispersion, as expected. Furthermore, Figure 10 shows the dispersion of
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Figure 9. Generalized median models using Euclidean distance visualized
in an MPEG-4 player for (a) anger, (b) smile and (c) sadness, at three
different trimming levels (dynamic model, frame model and displacement
vector level).

(a) (b)

Figure 10. The dispersion of some of the model nodes at full expression
(for all corresponding tested video sequences) represented by ellipses. Dis-
persion for (a) laughter and (b) surprise.

some of the model displacement vectors in the 2-D spatial space represented by ellipses
at full expression. This Figure clearly indicates how the model displacement vectors are
dispersed for laughter and surprise. As can be seen in Tables 2, 3 and 4 the minimum
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Two frames (frame 3 and 5) of the representative dynamic
facial expression model corresponding to (a) anger, (b) disgust, (c) fear,
(d) laughter, (e) sadness, and (f) surprise.

Table 3. Median medM of the dynamic facial expression models for the
six basic human facial expressions. The trimming cases are: (1st case)
without trimming, (2nd case) trimming at the dynamic model level, (3rd

case) trimming at the frame model level, and (4th case) trimming at the
displacement vector level.

Anger Disgust Fear Laughter Sadness Surprise

1st case 15,91 14,72 16,81 14,87 16,82 18,83
2nd case 15,49 14,52 16,36 14,57 16,65 17,39
3rd case 15,35 14,49 16,21 14,53 16,52 17,36
4th case 14,66 13,06 15,20 13,21 15,23 15,80

Table 4. Dispersion σ̂MAD of the dynamic facial expression models for
the six basic human facial expressions. The trimming cases are: (1st case)
without trimming, (2nd case) trimming at the dynamic model level, (3rd

case) trimming at the frame model level, and (4th case) trimming at the
displacement vector level.

Anger Disgust Fear Laughter Sadness Surprise

1st case 12,91 11,18 13,21 13,72 15,34 15,82
2nd case 11,54 10,11 11,70 11,17 14,01 14,53
3rd case 11,13 9,80 11,39 10,89 13,46 13,57
4th case 11,08 9,65 10,85 10,05 11,35 13,25

model dispersion for all expressions under examination is achieved by the method ex-
tracting the generalized dynamic facial expression median model after trimming at the
displacement vector level. However, a visual inspection of the full expressions, shown in
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Figure 9, leads us to the conclusion that the generalized dynamic facial expression median
model obtained after trimming at the frame model level achieves the best subjective rank-
ing. Unfortunately, it is impossible to show the entire dynamic facial expression sequence
played in an MPEG-4 player in the printed paper to justify this claim. The representa-
tive (generalized median) dynamic facial expression models have also been converted to
MPEG-4 FAP files, so that they can be displayed by any MPEG-4 player. In our case,
the facial model developed in the context of the European project ACTS MoMuSys [60]
was used to this end. Figure 11a shows two frames (frame 3 and 5) of the representative
dynamic facial expression model for anger, while Figures 11b, 11c, 11d, 11e and 11f illus-
trate the representative dynamic models for disgust, fear, laughter, sadness and surprise,
respectively, obtained using the generalized dynamic facial expression median model after
trimming at the frame model level. It has been found experimentally that this approach
produces the best subjective facial expression results. This is best noticed when observing
the entire MPEG-4 face animation sequence.

6. Conclusion. In this paper we presented a complete method for the statistical analysis
of human facial expressions. The analysis was performed in the framework of facial
expression analysis and produces results that are MPEG-4 compatible. The data used
for the statistical analysis were obtained by tracking a generic facial wireframe model in
video sequences depicting the formation of different human facial expressions, starting
from a neutral state to a fully expressive one, using a pyramidal variant of the well-known
Kanade-Lucas-Tomasi (KLT) tracker. Any loss of tracked features is handled through a
physics-based deformation stage, after each single tracking step, providing accuracy and
reliability. Tracking initialization is performed in a semi-automatic fashion. The facial
wireframe model is fitted to a neutral facial image using a deformable shape modeling
approach which is robust, fast and accurate. The output is MPEG-4 compliant and can be
utilized in any MPEG-4 player. The method has been tested on a variety of sequences with
very good results, including the Cohn-Kanade database of video sequences representing
human facial expressions. It has been shown that the proposed method performs a number
of intermediate steps in a reliable and accurate way and thus achieves a good statistical
analysis of facial expressions. Furthermore, the extraction of the generalized median
dynamic facial expression models for each of the six human facial expressions could lead
us to generalization of the expressions of a specific racial group, as well as to locate the
facial expression difference among different racial groups.
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