
Journal of Information Hiding and Multimedia Signal Processing c⃝2010 ISSN 2073-4212

Ubiquitous International Volume 1, Number 3, July 2010

A Survey of VQ Codebook Generation

Tzu-Chuen Lu

Department of Information Management
Chaoyang University of Technology
Taichung 41349, Taiwan, R.O.C.

tclu@cyut.edu.tw

Ching-Yun Chang

Computer Laboratory
University of Cambridge

Trinity Lane, Cambridge CB2 1TN,UK
Ching-Yun.Chang@cl.cam.ac.uk

Received March 2010; revised April 2010

Abstract. One of the key roles of Vector Quantization (VQ) is how to generate a good
codebook such that the distortion between the original image and the reconstructed image
is the minimum. In the past years, many improved algorithms of VQ codebook generation
approaches have been developed. In this paper, we present a snapshot of the recent de-
veloped schemes. The discussed schemes include mean-distance-ordered partial codebook
search (MPS), enhance LBG (ELBG), neural network based techniques, genetic-based
algorithms, principal component analysis (PCA) approaches, tabu search (TS) schemes,
codeword displacement methods and so on.
Keywords: Vector Quantization, LBG, ELBG, Principal Component Analysis, Tabu
Search

1. Introduction. Vector Quantization (VQ) is an efficient and simple approach for data
compression. Since it is simple and easy to implement, VQ has been widely used in
different applications, such as pattern recognition, image compression, speech recognition,
face detection and so on [11].
For the purpose of image compression, the operations of VQ include dividing an image

into several vectors (or blocks) and each vector is mapped to the codewords of a codebook
to find its reproduction vector. In other words, the objective of VQ is the representation
of vectors X ⊆ Rk by a set of reference vectors CB = {C1, C2, . . . , CN} in Rk in which Rk

is the k-dimension Euclidean space. CB is a codebook which has a set of reproduction
codewords and Cj = {c1, c2, . . . , ck} is the j-th codeword. The total number of codewords
in CB is N and the number of dimensions of each codeword is k.
There are three major procedures in VQ, namely codebook generation, encoding pro-

cedure and decoding procedure. In the codebook generation process, various images are
divided into several k-dimension training vectors. The representative codebook is gener-
ated from these training vectors by the clustering techniques. In the encoding procedure,
an original image is divided into several k-dimension vectors and each vector is encoded
by the index of codeword by a table look-up method. The encoded results are called
an index table. During the decoding procedure, the receiver uses the same codebook to
translate the index back to its corresponding codeword for reconstructing the image.
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Fig. 1 shows an example of encoding and decoding an image by VQ. In Fig. 1, an
original image is divided into four blocks sized 2 × 2. Each block is then translated to
a vector with four dimensions. The first vector X1 = (7, 10, 14, 6) is mapped to the
7th codeword of the codebook. The index of the 7th codeword replaces the vector to
represent the block. When the receiver receives the index table, he uses the 7th codeword
c7 = (9, 6, 9, 9) to reconstruct the first block. The final recovered image is called the
reconstructed image.

 

Figure 1. An Example of Encoding and Decoding by VQ

One of the key points of VQ is to generate a good codebook such that the distortion
between the original image and the reconstructed image is the minimum. Moreover,
since the codebook generation procedure is a time consuming process, how to reduce the
computation time is another important issue for the VQ codebook generation. The most
commonly used method in VQ is the Generalized Lloyd Algorithm (GLA) which is also
called Linde-Buzo-Gary (LBG) algorithm. However, LBG has the local optimal problem,
and the utility of each codeword in the codebook is low. The local optimal problem is that
the codebook guarantees local minimum distortion but not global minimum distortion [4].
Therefore, many researchers have proposed different methods to solve the problems and
speed up the process of finding the optimal solution. In this paper, we present a snapshot
of the recent developed schemes. The discussed schemes include mean-distance-ordered
partial codebook search (MPS), enhance LBG (ELBG), neural network based techniques,
genetic-based algorithms, principal component analysis (PCA) approaches, tabu search
(TS) schemes, codeword displacement methods and so on.

2. The LBG Algorithm. In 1980, Linde et al. proposed a Generalized Lloyd Algorithm
(GLA) which is also called Linde-Buzo-Gary (LBG) algorithm. They used a mapping
function to partition training vectors into N clusters. The mapping function is defined as
Rk → CB. Let X = (x1, x2, . . . , xk) be a training vector and d(X, Y ) be the Euclidean
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distance between any two vectors. The iteration of GLA for a codebook generation is
given as follows:

Step 1: Randomly generate an initial codebook CB0.
Step 2: i = 0.
Step 3: Perform the following process for each training vector.

• Compute the Euclidean distances between the training vector and the codewords
in CBi. The Euclidean distance is defined as

d(X,C) =

√√√√ k∑
t=1

(xt − ct)2 (1)

• Search the nearest codeword among CBi.
Step 4: Partition the codebook into N cells.
Step 5: Compute the centroid of each cell to obtain the new codebook CBi+1.
Step 6: Compute the average distortion for CBi+1. If it is changed by a small enough
amount since the last iteration, the codebook may converge and the procedure stops.
Otherwise, i = i+ 1 and go to Step 3.

Here, we use five training vectors as an example to demonstrate how to train a codebook.
The training vectors are shown in Fig. 2. Suppose the total number of the codewords
in a codebook is three, namely N = 3. First, we randomly generate an initial codebook
CB0 as shown in Table 1.
Next, the scheme computes the distances between the training vector and the codewords

among CB0. For example, the distance between X1 and C1 is
d(X1, C1) =

√
(241− 32)2 + (192− 177)2 + . . .+ (156− 210)2 = 248.41. From Table 1,

we can see that the nearest code of X1 is C3 for i = 0.
The training vectors which have the same nearest codeword are partitioned into the

same cell. The scheme computes the centroid of each cell to obtain the new codebook. In
this example, X1 and X4 that have the same nearest codeword C3 are partitioned into the
same cell. The centroid of the two vectors is (203, 150, 88, 98.5) that is the third codeword
of the new generated codebook CB1. The procedure is repeated until the codebook is
converged. The final codebook is CB3.

x1 x2 x3 x4

X1 241 192 21 156
X2 212 76 123 36
X3 10 220 108 233
X4 165 108 155 41
X5 109 52 19 247

Figure 2. Five Training Vectors

LBG is an easy and rapid algorithm. However, it has the local optimal problem which
is that for a given initial solution, it always converges to the nearest local minimum.
In other words, LBG is a local optimization procedure. Therefore, scholars proposed
many approaches to solve this problem, such as directed-search binary-splitting (DSBS),
mean-distance-ordered partial codebook search (MPS), double test of principal compo-
nents (DTPC), enhance LBG (ELBG), centroid neural network adaptive resonance theory
(CNN-ART), fast-searching algorithm using projection and inequality (FAUPI), GA-based
algorithm, evolution-based tabu search approach (ETSA), PNM, codebook generation al-
gorithm using codeword displacement (CGAUCD) and so on. The discussed schemes
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Table 1. An Example of GLA Algorithm

 

are shown in Fig. 3. Some of them are designed to improve the distortion of the recon-
structed image and the others are designed to reduce the computation time of the training
procedure.

Year Proposed Scheme 

1986 LBG 

|  

1993 MPS, DSBS  

|   

1997 DTPC 

|   

2001 ELBG 

|   

2003 CNN-ART 

2004 FAUPI 

2005 GA-based algorithm 

|   

2007 ETSA, PNM 

2008 CGAUCD 

 

Figure 3. VQ Codebook Generation Schemes
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3. Mean-distance-ordered Partial Codebook Search (MPS). Ra and Kim pro-
posed a fast mean-distance-ordered partial codebook search algorithm in 1993 [10]. They
used squared mean distance (SMD) to filter false candidate codewords. The definition of

SMD is dSMD(X,C) = (
∑k

t=1 xt −
∑k

t=1 ct)
2. In their scheme, if the codeword C whose

|
∑k

t=1 xt−
∑k

t=1 ct| is larger than
√

kd(X,Cmin), it will not be the nearest neighbor to X.
In other words, its SMD is larger than the Euclidean distance, dSMD(X,C) ≥ d(X,Cmin)
is the Euclidean distance between X and the tentative matching codeword which has
minimum |

∑k
t=1 xt −

∑k
t=1 ct| in the current stage.

Let us consider Fig. 4 as an example codebook to illustrate the MPS scheme. First, the
scheme computes the sum of all dimensions for each codeword and sorts the sum values
in increasing order. For a training vector X = (109, 52, 19, 247), they calculate the mean

distances |
∑k

t=1 xt−
∑k

t=1 ct| and find the tentative matching codeword. In this case, the
fifth codeword C5 is the tentative matching codeword with the minimum mean distance.
Next, the scheme computes the Euclidean distance
d(X,Cmin) =

√
(109− 111)2 + (52− 137)2 + . . .+ (247− 51)2 ≈ 238.497 between X and

C5. We can see that the codewords C1, C2, and C8 for which |
∑k

t=1 xt −
∑k

t=1 ct| is
larger than

√
kd(X,Cmin) =

√
4× 238.497 ≈ 30.887 can be eliminated. Next, the scheme

performs full searching algorithm for C3, C4, C5, C6 and C7 to calculate the distances and
update d(X,Cmin).

 

Figure 4. An Example Codebook for MPS Algorithm

4. Enhance LBG (ELBG). Patane and Russo proposed a clustering algorithm called
enhanced LBG (ELBG) in 2001. They used the concept of utility of a codeword to
overcome the local optimal problem of LBG. The utility is defined as follow:

Uj =
Dj

Dmean

, (2)

in which Dj is the total distortion of the j-th cluster and Dmean is the mean value of all
the clusters that is computed by

Umean =
1

N

N∑
j=1

Dj. (3)

They divide the codewords in the codebook into two cells, HC and LC. The codeword
whose Uj is higher than 1 is classified into HC cell. Otherwise, the codeword is classified
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into LC cell. Next, the codeword CL with the smallest distortion in LC cell is heuristically
shifted to a nearby codeword CH in HC cell.

Assume that the training vectors assigned to CH are bounded in a hyper box HT =
[x1m, x1M ] × [x2m, x2M ] × . . . × [xkm, xkM ] in which xtm and xtM are the minimum and
maximum values of t-th dimension of all training vectors belonging to HC. CH is the
centroid vector of HT . They recalculate the codewords CL and CH by
C ′

L = [x1m + 1
4
(x1M − x1m), x2m + 1

4
(x2M − x2m), . . . , xkm + 1

4
(xkM − xkm)] and

C ′
H = [x1m − 1

4
(x1M − x1m), x2m − 1

4
(x2M − x2m), . . . , xkm − 1

4
(xkM − xkm)], respectively,

for shifting CL to CH . After codeword shifting, the scheme performs the traditional LBG
to re-cluster all the training vectors by C ′

L and C ′
H .

An example is shown in Table 2. First, they apply the LBG algorithm to train the
training vectors as shown in Fig. 2. X3 and X5 are classified into C1, X1 and X4 are
grouped into C3, and X2 belongs to C2. The total distortions Dj of C1, C2, and C3 are
259.63, 99.64, and 303.9, respectively. Dmean is 221.06 since Dmean = 1

3
(259.63 + 99.64 +

303.9) ≈ 221.06. The utilities Uj of each cluster are 1.17, 0.45 and 1.37, respectively.
Since U2 is less than 1, C2 is classified into LC cell. Meanwhile, C1 and C3 are classified
into HC cell.

C2 is the codeword with the smallest distortion in LC cell, hence it is shifted to the
codeword C3 with the largest distortion in HC cell. The hyper boxes of C2 and C3 are
shown in ”Hyper Box” column of Table 2. The scheme recalculates the codewords C2 and
C3 by
C ′

2 = [212 + 1
4
(212− 212), 76 + 1

4
(76− 76), . . . , 212 + 1

4
(36− 36)] and

C ′
3 = [165− 1

4
(241− 165), 108− 1

4
(192− 108), . . . , 41 + 1

4
(156− 41)], respectively,

for shifting C2 to C3. After codeword shifting, the scheme performs the traditional LBG
to re-cluster all the training vectors by C ′

2 and C ′
3. The initial codebook is SCB0. After

shifting and retraining procedures, we can get the final C ′
2 and C ′

3 in SCB1. The scheme
resets the codewords to their original positions. The process is repeated until the codebook
is converged.

5. Principal Component Analysis (PCA). Principal component analysis (PCA) is a
statistical method that transforms a number of possibly correlated variables into a smaller
number of uncorrelated variables that is therefore called principal components. PCA has
been widely and successfully applied in many applications including pattern recognition,
time series prediction, image processing, exploratory data analysis, data compression and
so on.

Since it is a well-established technique for dimensionality reduction and multivariate
analysis, PCA has been used in VQ. For example, Huang and Harris proposed a directed-
search binary-splitting (DSBS) method in 1993 [4]. In their scheme, PCA is used to select
the initial codebook to reduce the dimension of the training vectors. After that, Han et
al. also used PCA to select seed [3].

In 1997, Chang et al. proposed an improved codebook search algorithm which is called
double test of principal components (DTPC), by using PCA [1]. Let us use Fig. 4 as an
example to demonstrate their algorithm. First of all, they generate the covariance matrix
for the codewords. The covariance matrix is shown in Fig. 5. Next, the scheme calculates
eigenvalues and its corresponding eigenvectors. Let λ1, λ2, . . . , λk be the eigenvalues of
the covariance matrix in which λ1 ≥ λ2 ≥ . . . ≥ λk. EV1, EV2, . . . , EVk denote the
corresponding eigenvectors. The eigvalues and its corresponding eigenvectors of Fig. 4
are shown in Fig. 6. The first eigenvector EV1 represents most of preserved information,
since 50% ≈ ( 9439.9

9439.9+7693.7+1226.5+377.3
). Hence, the authors take EV1 = (-0.3391, 0.8359,

-0.4305, -0.0311) as a project vector. The codewords in the codebook are projected to
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Table 2. An Example of ELBG Algorithm

 

EV1 for computing the projected values. The scheme shorts the codewords according to
the projected values. The shorted results are shown in Table 3.
Next, the scheme projects each training vector into EV1 for computing the projected

value. For example, the projected value of the training vector X = (241, 192, 21, 156) is
64.88, since 156 = (241×−0.3391 + 192× 0.8359 + . . .+ 156×−0.0311).
The closest codeword is C ′

7 with projected value 65.4469. C ′
6 and C ′

8 are the neighbor-
ing codewords of C ′

7, so they have high possibility to be the candidate codewords too.
Therefore, the scheme computes the Euclidean distances between X1 and C ′

6, C
′
7, C

′
8,

respectively. The distances are 204.37, 222.92 and 235.15. The distance between X1 and
C ′

6 is the smallest one. Hence, the encoded result of X1 is the original index of C ′
6 and

that is 5.

 

Figure 5. Covariance Matrix of the Codewords

6. Neural Network. Lin and Yu [8] proposed a centroid neural network adaptive res-
onance theory (CNN-ART) algorithm to generate a codebook in 2003. The CNN-ART
network contains of an input layer and an output layer. The total number of neurons in
the input layer is the same as the total number of dimension of the training vector. Each
neuron in the input layer has connections to the neurons in the output layer. The total
number of neurons in the output layer is that of the codewords in the codebook.



VQ Codebook Generation 197

1EV  (-0.3391,0.8359,-0.4305,-0.0311) 1λ  9439.90 

2EV  (0.0184,0.3218,0.6594,-0.6792) 2λ  7693.70 

3EV  (-0.7478,-0.0328,0.4933,0.4431) 3λ  1226.50 

4EV  (-0.5705,-0.4435,-0.3695,-0.5843) 4λ  377.30 

 

Figure 6. The Eigvalues and Its Corresponding Eigenvectors of Fig. 2

Table 3. The Sorted Projected Values and Its Codeword

 

In their scheme, the first input training vector X1 is selected as the centroid of the
first neuron, and then the next input vector is compared to the neuron. If the Euclidean
distance between the neuron and the next vector is higher than a predefined threshold,
the input vector forms the centroid of a new neuron. The procedure is repeated for all
the training vectors. The algorithm is shown in the following.

Step 1: The initial weight of the network is equal to the values of the first training
vector. The number of neuron in the network is 1.

Step 2: Input the training vector to the network and compute Euclidean distance
between the vector and existing weights.

Step 3: If the smallest Euclidean distance is greater than the predefined threshold and
the number of neuron is less than the total number of codewords, then generate a
new neuron. The weight of the neuron is equal to the values of the input vector. Go
to Step 2.

Step 4: Reward the weights of the winner neuron and punish the loser neurons.
Step 5: Go to Step 2 until the network is converged. The weights in the neurons are
considered as the codewords.

In 2007, Han et al. proposed a hybrid scheme called PNM based on Lin and Yu’s
CNN-ART algorithm, PCA and mean shift (MS) operation to improve traditional LBG
approach [3]. The CNN-ART algorithm is used to generate the initial cluster results,
the MS operation is perform on each cluster to refine the codeword and PCA technique
is applied to resetting the seed of the codebook for avoiding the local optimal problem.
They calculate the sample distribution by using PCA and replace the codeword with low
utility by a new seed.

In Han et al.’s scheme, they compute the covariance matrix for the training vectors first.
Next, the major k eigenvectors corresponding with the largest k eigenvalues are selected.
The training vectors are projected to the k eigenvectors to obtain the temporary points
with scalar values. They cluster the temporary points by k-mean clustering method and
compute the center for each cluster to get the candidate codeword.

The PNM algorithm is shown as follow:
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Step 1: Apply CNN-ART algorithm to generate the cluster result.
Step 2: Compute the mean shift vector for each cluster and shift it to the next position.
Step 3: Resetting the seed by PCA scheme.

• Split or merge cluster based on the codeword utility.
• For each split cluster

a: Compute the eigenvectors and eigenvalues.
b: Project the vectors in the cluster to the first three eigenvectors.
c: Cluster the vectors by 1D projected value for each eigenvector.
d: Select some candidate centers with the smallest variances to be the new

seeds.
• Delete codewords with low utility.

Step 4: Go to Step 1 until the codebook is converged.

The comparison results among LBG, CNN-ART, ELBG and PNM are shown in Table
4.

Table 4. The Comparison Results among LBG, CNN-ART, ELBG and
PNM (unit: dB)

N  LBG CNN-ART ELBG PNM 

32 25.77 26.47 27.85 28.86 

64 27.65 28.05 28.93 30.54 

128 28.74 28.94 29.80 31.66 

256 30.19 30.69 32.10 32.76 

 

7. Genetic-based Approach. Genetic algorithm (GA) is another approach to avoid
local optimal problem from finding the globally optimal solution [2, 12]. For example,
Zhang et al. used genetic algorithm to design codebook and applied it to speaker identi-
fication [12]. In their scheme, the codewords are regarded as the chromosomes. The set
of the codewords is the population. The fitness value of each chromosome is the total
number of the training vectors in the chromosome.
First, they randomly generate a population of chromosomes. Next, the scheme performs

crossover and mutation operations to evolve the offspring population. Then, the training
vectors are assigned to the nearest chromosome in the population. The scheme computes
the fitness values for the chromosomes and sorts each chromosome in terms of the fitness
values. The best N chromosomes are selected to be the new population in the next
generation. The diagram of GA is shown in Fig. 7.
Pan and Cheng applied tabu search to develop an evolution-based codebook genera-

tion approach in 2007 which is called evolution-based tabu search approach (ETSA) [9].
Their scheme is similar to the GA-based algorithm. In the training procedure, a parent
population P with N codewords is randomly generated firstly. Then, they use sexual
and asexual reproduction operators to generate the sexual offspring population Ps and
the asexual offspring Pa, respectively. The procedures are similar to the crossover and
mutation operators in GA. Next, two offspring populations Ps and Pa are combined in
order to form a new population Po = {Ps ∪ Pa}. Hence, the total number of codewords
in Po is 2×N .
The scheme computes the fitness value which combines with the distortion and tabu-

distance for each codeword in Po. The best N offspring from Po are selected as the
next parent population to evolve. The process is terminated at a predefined number of
generations. The flowchart of their scheme is shown in Fig. 8.
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Figure 7. The Diagram of GA

 

Figure 8. The Flowchart of ETSA Scheme

8. Codeword Displacement. Lai and Liaw proposed a fast-searching algorithm using
projection and inequality (FAUPI) in 2004 [5]. They used two inequalities to reduce
the distortion computation and reject the unlikely codewords. The first equation is used
to terminate the searching process and the second equation is to delete the impossible
codewords.

After that, Lai et al. proposed a codebook generation algorithm using codeword dis-
placement which is called codebook generation algorithm using codeword displacement
(CGAUCD) [7]. In their scheme, the codewords are grouped into two clusters which are
static cluster and active cluster. The codeword categorized in the static cluster means the
value of the codeword is the same as that of the codeword in the last iteration. Otherwise,
the codeword is categorized into the active cluster. If a training vector is in a static clus-
ter, then they only need to calculate the distances between the vector and the codewords
in the active cluster to find the nearest codeword. In addition, they also applied other
fast search algorithms, such as MPS, FAUPI and so on to reduce the computation time.
The algorithm of their scheme is shown as below.
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Step 1: Randomly generate an initial codebook CB0 and preprocess all training vec-
tors for fast search.

Step 2: i = 1.
Step 3: Calculate the closest distance r′1 and the second closest distance r′2 for each
training vector and generate a new codebook CBi.

Step 4: Group the codewords of CBi into two clusters which are static cluster and
active cluster.

Step 5: Perform the following process for each training vector.
• If the training vector is in a static cluster, then search the nearest codeword from
the active cluster.

• If the training vector is in an active cluster and the current distance r between the
vector and the center codeword is less than r′2, then search the nearest codeword
from the active cluster.

• Otherwise, search all codewords from CBi to find the nearest codeword.
Step 6: i = i+ 1.
Step 7: Go to Step 3 until the codebook is converged.

Let us use the same example to describe Lai et al.’s algorithm. Fig. 2 shows the training
vectors. The initial generated codebook CB0 is shown in Table 5. In the first step, the
scheme performs full searching to compute the distance for each training vector. The
column ”Distance” records whether the training vector needs to compute the distance
with the center codeword Cj or not. The column recorded 1 means that the scheme needs
to compute the distance between the vector and the center codeword.
In the next step, the scheme calculates the closest distance r′1 and the second closest

distance r′2 for each training vector. For example, the distances among the first training
vector X1 and three codewords C1, C2 and C3 are 248.40, 225.94, and 216.96, respectively.
Hence, the closest distance r′1 is 216.96 and the second closest distance r′2 is 225.94. Next,
the scheme partitions the training vectors into three cells and computes the centroid of
each cell to generate the new codebook CB1. For example, because both of X1 and X4

have the same nearest codeword C3, they are partitioned into the same cell. Hence, the
centroid of the two vectors is (203, 150, 88, 98.5) that is the third codeword of the new
generated codebook CB1. Because the values of the codewords in CB1 are not the same
as that of the codewords in CB0, no codeword is categorized into the static cluster. All
of the codewords are in the active cluster.
In the fourth step, the scheme compares each training vector with the codewords in

the proper cluster for searching the nearest codeword. For example, in the last stage
X1 is close to C3 which is in an active cluster. Therefore, the scheme calculates the
distance r between X1 and C3. Since r = 104.90 < r′2 = 225.94, the scheme searches the
nearest codeword from the active cluster. In this example, all codewords are in the active
cluster. Therefore, the scheme still needs to compute the distances between X1 and all
the codewords.
Next, the scheme goes back to the step 3 to calculate r′1 and r′2, and generate the new

codebook CB2. Since the value of C1 in CB2 is the same as that of C1 in CB1, C1 is
categorized into static cluster.
In this stage, the schemes does not need to refer to the codewords in a static cluster

except the training vector is in an active cluster and r ≥ r′2. For example, for i = 2,
X1 is in an active cluster and r = 0 < r′2 = 197.74, the scheme only needs to search
the nearest codeword from the active cluster. C1 is in the static cluster, so the scheme
skip the codeword. The procedure is repeated until the codebook is converged. The final
codebook is CB3.
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In CGAUCD scheme, the initial codebook is randomly generated. In order to speed up
the clustering process, Lai et al. applied kd-tree to generate the cluster center as the initial
codebook [6]. In addition, they also used the kd-tree to determine the nearest neighbors.
We use the example as shown in Fig. 2 to illustrate their improvement algorithm.

First, they find the median value of the first dimension x1 to split the five training
vectors. In this example, the median value of x1 is 165. Because the values of x1 are
lesser than the median value, X3 and X5 are split into the left side. On the contrary, X1,
X2 and X4 are split into the right side. The tree structure is shown in Fig. 9. Next,
they use the median values of the second dimension x2 in the different sides to split the
vectors. The splitting procedure repeats until every vector becomes a leaf node. The final
kd-tree is shown in Fig. 10.

The total number of codewords in the initial codebook is three, so they choose three
significant nodes from the tree structure to be the codewords. The selected nodes are X3,
X5 and the centroid ofX1, X2 and X4. The initial codebook CB0 is shown in Table 6.
After the initial codebook is generated, they apply CGAUCD scheme to train the final
codebook. The training process is shown in Table 6. Because CB1 is the same as CB0,
all codewords are moved into the static cluster.

The codebook is converged in the first round by the improvement algorithm. That
means the improvement algorithm is faster than CGAUCD scheme. However, the algo-
rithm still has local optimal problem.

Table 5. An Example of Lai et al.’s Algorithm

 

9. Conclusions. In this paper, we present a snapshot of the recent developed VQ code-
book generation schemes. The discussed schemes include MPS, DSBS, DTPC, ELBG,
CNN-ART, FAUPI, GA-based algorithms, ETSA, PNM and CGAUCD.
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Figure 9. The Tree Structure of kd-tree in the First Step

 

Figure 10. The Final Tree Structure of kd-tree

Table 6. An Example of Lai et al.’s Improvement Algorithm

 

MPS, DSBS, DTPC, FAUPI and CGAUCD are designed to reduce the computation
time of LBG. Most of them can indeed speed up the training process. However, the
qualities of the reconstructed images of these schemes are worse than that of LBG. In
addition, some of them even have the block effects.
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ELBG, CNN-ART, ETSA, PNM and genetic-based algorithms are designed to overcome
the local optimal problem and prevent the premature convergence. However, most of them
need long runtime because candidate solutions must be fine tuned by LBG.
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