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Abstract. The present work describes a robust, high-capacity methodology for hiding
secret information underneath a Modern Greek cover text by applying shallow syntactic
transformations to it. Unlike similar approaches to linguistic steganography, the transfor-
mations are extracted automatically by making use of limited external resources, render-
ing the process easily portable to other free-phrase-order languages. Their shallow nature
and restricted locality does not affect grammaticality, i.e. steganographic security, on the
one hand, and, on the other, it ensures higher capacity values than the ones reported in
the literature by steganographic systems that are based on syntactic transformations.
Keywords: Linguistic Steganography, Syntactic Transformations, capacity, security,
statistical significance testing, supervised learning, Modern Greek

1. Introduction. Linguistic steganography [22, 3, 7] studies the insertion of secret in-
formation underneath a cover text in order to enable its transmission in an unremarkable
way, i.e. without it being detectable by a third party. Linguistic steganography is a
relatively new, interdisciplinary field “at the intersection of natural language processing
and information security” [15]. The linguistic redundancy, which arises due to the numer-
ous different syntactic and semantic structures a certain meaning can be expressed with,
allows for the assignment of a bit sequence to each structure and its insertion within a
sentence simply by changing the syntax or choice of words.

The primary goal of steganography is the transmission of the hidden message without
arousing any suspicion to its existence by a human or a computer warden. Steganographic
communication [8] has succeeded if a third party is unable to detect anything unnatural
to the transmitted text that points to it carrying any sort of extra hidden information. If
the existence of a secret message is detected, steganographic communication has failed,
even though there are ways to ensure that the message will not be extractable.

Previous approaches to linguistic steganography present two significant weaknesses.
First, the available bandwidth for transmitting secret information, i.e. the amount of
hidden information within a given size of cover text, or steganographic capacity, is limited.
Approaches that perform syntactic transformations to the cover text take advantage of
the multiple applicable syntactic rules to each sentence to hide secret bits within the text.
The syntactic transformations may vary from shallow [17] to quite elaborate [15, 20].
Although many rules may be applicable, only one may be applied to the sentence at a
given moment. Therefore, capacity is limited to at most one secret bit per cover sentence.
Approaches that choose to alter the set of words of the cover text and express its original
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meaning using semantically similar words (i.e. synonym substitution) take advantage of
the number of synonyms of the words in the original (cover) sentence to hide the secret
bits. Synonym sets may be hand-crafted [5, 23, 4], or automatically extracted, e.g. making
use of WordNet synsets. The goal is to find the synonym that maximizes the probability
as a substitute for the original word across all senses [17, 24, 21, 2]. Several words in a
sentence may have one or more synonyms, and synonym replacement may be performed on
more than one words simultaneously. Thereby, more than one secret bits may be hidden
within a single sentence, leading to higher capacity than syntactic transformations.
A second weakness pertains to the required resources by the linguistic steganography

systems. Approaches are knowledge-rich, i.e. they necessitate hand-crafted Grammars of
syntactic transformation rules, lexica of paraphrases, parallel corpora, synonym thesauri
(e.g. WordNet), and word sense disambiguation tools to perform the desired alterations.
This prevents linguistic steganography approaches from being easily applicable to lan-
guages that are not adequately equipped with such resources. Furthermore, it affects the
robustness of the generated system; sophisticated resources are normally domain-specific
and genre-dependent. They perform decently only on specific types of text and limited
thematic domains.
The present work describes a methodology for steganographic communication by per-

forming shallow local syntactic transformations on Modern Greek (MG) text. Unlike pre-
vious approaches that make use of handcrafted syntactic rules to perform the necessary
transformations (e.g. [11]), the transformations described here are learned automatically
in two phases. First, statistical significance testing is used to identify phrase bigrams that
are ‘swappable’, i.e. the two phrases forming the bigram may swap places (they appear
in both orderings with a statistically significant frequency). In a second phase, erroneous
bigrams are learned using supervised classification and filtered out. Finally, the final set of
‘swappable’ bigrams is used for robust, capacity-rich and secure information embedding.
The approach is knowledge-poor. In contrast to previous knowledge-rich approaches,

it requires limited resources, i.e.

• a basic phrase chunker that utilizes a small keyword lexicon containing 450 closed-
class words and a lexicon of 300 of the most common word suffixes in MG

• a list of the closed set of twelve relative adverbs and
• a list of the five most common copular verbs in MG.

No use of Grammars, syntactic parsers, paraphrase lexica, parallel corpora, semantic lex-
ica and thesauri of any kind is made. Therefore, the alterations are easily portable to lan-
guages that have similar syntactic properties to MG, and domain- and genre-independent.
A significant attribute of the proposed information insertion and extraction process

is the shallow nature and the restricted locality of the employed alterations. It enables
the simultaneous application of more than one alterations to the same sentence, i.e. the
insertion of more than one secret bits within a single sentence, allowing thereby for higher
steganographic capacity. The capacity value achieved is significantly higher compared
to other approaches that utilize syntactic transformations for information hiding, and
comparable to the one reported by synonym substitution approaches.
The rest of the paper is organized as follows. Section 2 describes the two-phase process

of extracting the ‘swappable’ bigrams. Section 3 shows the use of the extracted alterations
in information embedding and extraction for steganographic communication. A concrete
step-by-step example of the message insertion/extraction process is presented in Section
4. Section 5 describes the experimental setup and the evaluation process for the presented
methodology. A discussion regarding security and capacity aspects follows in section 6
and the paper concludes in section 7.
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2. Syntactic Transformations. MG is a highly inflectional language. While the posi-
tioning of the words within a phrase is relatively strict, the rich morphology allows for
a large degree of freedom in the ordering of the phrases within a sentence. This phrase
ordering freedom enables paraphrase generation merely by changing the phrase order.

Example 2.1. MG sentence: [H ϵταιρία] [χάρισϵ] [στoυς υπαλλήλoυς] [απó ϵ́να δώρo]
English translation: [The company] [gave] [to the employees] [a gift].

All possible permutations of the phrases in the Greek example 2.1 above result in
grammatically correct sentences that are semantically identical to the original sentence.
Subject-verb and verb-object dependencies are determined by the morphology of the par-
ticipating constituents rather than their position in the sentence. Certain permutations
(see example 2.2) may not be common in everyday language, due to their stylistic prop-
erties (i.e. they are ‘poetic’ or ‘theatrical’), but they remain perfectly grammatical, and
only in rare occasions do they sound weird or suspicious.

Example 2.2. MG sentence: [απó ϵ́να δώρo] [η ϵταιρία] [στoυς υπαλλήλoυς] [χάρισϵ].

There are several other free phrase-order languages, like MG: Hungarian [12], Urdu [1],
Bengali [9], Arrernte [14], etc. A significant number of these languages is not adequately
equipped with linguistic resources [9], thus increasing the importance of the knowledge-
poor policy and the relatively easy portability of the proposed methodology.

This idiosyncrasy led to the idea of generating paraphrases merely by swapping the
position between two consecutive phrases (chunks). The process focuses on consecutive
chunks in order to minimize the probability of an erroneous swap: the longer the distance
between the phrases to be swapped, the more likely it is for long distance syntactic depen-
dencies to be affected, and therefore for syntactic errors to appear. Long distance phrase
swaps would be safer if the methodology employed linguistic tools for deep processing.

However, not all phrase pairs are ‘swappable’. The statistical significance of the cooc-
currence of two phrases in both orderings ([PhraseA][PhraseB] and [PhraseB][PhraseA])
is used to determine automatically phrase pairs that may be swapped. Actually, the
cooccurrence significance of phrase type pairs is estimated. Phrases are abstracted into
phrase types by performing de-lexicalisation, i.e. striping phrases from information that is
not relevant to the task at hand. Noun phrase (NP) types retain the grammatical case of
the head noun, verb phrase (VP) types retain the verb voice, the conjunction introducing
them (if any) and their copularity, prepositional phrase (PP) types retain the preposition
introducing them, while conjunctions (CON) and adverbial phrase (ADP) types retain
their type (coordinating or subordinating conjunction, relative adverb or not).

The four most commonly used statistical significance metrics, i.e. the t-test, the log
likelihood ratio (LLR), the chi-squared metric (χ2) and pointwise mutual information
(MI), were used to detect phrase type pairs that occur more often together in the ordering
[PhraseA][PhraseB] than would be expected by chance, and the same for the ordering
[PhraseB][PhraseA]. For each metric, the top N (e.g. N=50, 100, 200 etc.) scores are
selected. Phrase type pairs that occur in both orderings among these top N results for a
given metric, are considered permissible phrase swaps, as both orderings show significant
correlation between the phrase types forming them. These phrase type pairs form the
initial swap set, which differs depending on the metric.

2.1. Filtering. The automatic nature of the proposed procedure for identifying ‘swap-
pable’ phrase type pairs, as well as its restricted visibility (only two consecutive chunks
are taken into account, disregarding the surrounding context) lead inevitably to the se-
lection of phrase bigrams that result in erroneous swaps. A Support Vector Machines
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(SVMs) learner is used to classify the swaps of the high-statistical-significance phrase
type pairs on input sentences as valid (grammatically correct) or invalid (erroneous), by
taking into account the syntactic context surrounding the swap position. A swap position
is the position between two ‘swappable’ phrase types in a sentence.
In more detail, a learning vector is created for every input sentence and each swap

position. The features forming the vector encode syntactic information for the phrase
right before the swap position, as well as two phrases to the left and two phrases to the
right (a total of five phrases). Thereby, context information is taken into account. So even
though the visibility of the swaps is limited to only two consecutive chunks, the filtering
phase broadens the focus on the context surrounding the swap. Each of the five phrases
is represented through a set of six features encoding the phrase category (NP, VP, PP,
etc.), the morphological case, the presence of a pronoun or a genitive element in an NP,
the copularity and the introductory conjunction of a VP, the preposition introducing a
PP, the word introducing a CON or an ADP and their length (number of words they
contain). Each swap position is represented by a vector of 30 features, and is manually
annotated by language experts with the correct value of the binary target class (valid or
invalid swap).
The correlation of each swap pair (vector) with the target class is estimated next.

The swap pairs that appear more frequently in negative (invalid) than in positive (valid)
vectors are to be removed from the initial swap set, forming thus the final swap set.

3. Message Insertion and Extraction. The final swap set is used for embedding and
extracting secret information. To achieve this, the two parties that wish to communicate
in secret need to agree on some crucial decisions beforehand:

• The two parties need to share a secret symmetric key, known only to them.
• The two parties share the same final swap set.
• Each pair in the final swap set needs to have its two sides marked, as all swaps are
bidirectional (can be performed in both directions). Each side of the pairs is marked
with the value of one bit (‘0’ or ‘1’). Unlike approaches [15] that apply uniform
marking (e.g. all left hand sides are marked with ‘0’ and right hand sides with ‘1’),
the marking proposed here is performed using the key, and thus more difficult to
form a pattern that may be detectable by a third party. A ‘1001’ key, for example,
could indicate that the left-hand side of the first and fourth swap pairs is marked
with ‘1’, while the right-hand side of the second and third swap pairs is marked with
‘1’.

The message insertion process is then performed following the steps described next.

1. For every sentence the applicable phrase swaps are selected from the swap set.
• If the sentence does not allow for any swap, it remains unchanged, and is not
used for information embedding.

• If it does, a selection is possible either in a round-robin fashion, or using the
secret symmetric key. For example, a secret key ‘1001’ could indicate that the
pairs in the first and fourth swap positions in the cover sentence are chosen to
hide secret bits (to be considered for swapping), while the pairs in the second
and third swap positions will be disregarded. It should be noted that at least
two phrases need to intervene between two selected swap positions, in order to
ensure that one swap does not affect the other.

2. If the bit to be hidden in a given swap position matches the marking of the selected
applicable swap, the swap is not applied; otherwise it is applied. Assuming, for
example, that the secret message is ‘10’, and the pair [PhraseA][PhraseB] is observed
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around the first selected swap position, and given that the a-priori marking of this
pair is

[PhraseA][PhraseB] 0
[PhraseB][PhraseA] 1

the marking of the observed pair (‘0’) does not match the first bit to be hidden
(‘1’), so the two phrases in the sentence are swapped.

On the other end, the extractor receives the final text. Having at his disposal the
same swap set, he is able to identify the swaps that may be applied to each sentence.
Sharing the same secret key, he is able to select the same swap positions used in
the insertion process. For example, reading [PhraseB][PhraseA] around a selected
position, and knowing that this sequence indicates a ‘1’ marking, he correctly decides
on ‘1’ to be the first secret bit. Reading [PhraseA][PhraseB] would have meant a ‘0’
marking and he would have decided on ‘0’ to be the first secret bit.

4. An Example. This section presents an example for a better understanding of the
secret message insertion and extraction process. Let the following three sentences of
Figure 1 constitute the initial message. Each sentence is chunked and followed by its
word-for-word English translation (the English words in brackets are implied and omitted
in the Greek sentences)

Figure 1. Initial text.

Table 1 shows the marked final swap set that is used in the current example.

Table 1. Example of a marked final swap set.

Final swap set Marking
(1) [VPpassive/copular][NPnominative] ‘0’
(2) [VPactive/non-copular][PPσϵ] ‘1’
(3) [PPσϵ][ADPnon-relative] ‘1’
(4) [ADPnon-relative][VPpassive/non-copular] ‘0’

The applicable swap pairs for the given text are: for sentence A pair (1), for sentence
B pairs (2), (3) and (4), and for sentence C no pair. Actually, pair (4) may be applied to
sentence B twice. The respective swap positions are shown in the sentences with integers
in boxes. However, due to the at-least-two-phrases-intervening requirement in sentence
B, only swap positions 1 and 3, 1 and 4, 2 and 3, and 2 and 4 may be considered for bit
insertion. So, even though there are four candidate swap positions, no more than two bits
may be embedded in sentence B, so as to minimize the probability of grammatical errors.

Suppose that the message to be hidden is the bit sequence ‘101’, and that the shared key
is ‘1001’. The two communicating parties have agreed on a ‘0’ bit in the key to indicate
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disregarding the position, while a ‘1’ bit indicates using the position for information
insertion. So, for embedding the secret message, position 1 in sentence A is considered.
The marking of the pair that is applicable at this position is being checked, according
to Table 1. The applicable swap pair is pair (1), which appears in the sentence in the
ordering [VPpassive/copular][NPnominative] (i.e. marking ‘1’). The first secret bit is
‘1’, the two bits match, so the swap does not take place. Similarly, according to the key,
position 1 in sentence B will also be considered for bit insertion. The applicable swap pair
is pair (2), which appears in the sentence in the ordering [VPactive/non-copular][PPσϵ]
(i.e. marking ‘0’). The second secret bit is ‘0’, the two bits match, so the swap does
not take place. Positions 2 and 3 in sentence B are disregarded. The next position to
be considered is position 4 in sentence B. The applicable swap pair is (4), which appears
in the ordering [VPpassive/non-copular][ADPnon-relative] (i.e. marking ‘0’). The last
secret bit is ‘1’, the two bits do not match so the swap takes place. The final text to be
sent is shown in Figure 2.

Figure 2. Transmitted text.

The receiver gets this text. Applying the reverse process, and having at his disposal
the same marked swap set and the same secret key, he knows position 1 in sentence
A1 is hiding a secret bit. The applicable swap is swap (1). He reads the sequence
[VPpassive/copular][NPnominative] (i.e. marking ‘1’), and chooses ‘1’ to be the first
secret bit. The second position hiding a secret bit is position 1 in sentence B1. The
applicable swap is swap (2). Reading [VPactive/non-copular][PPσϵ] (i.e. marking ‘0’), he
chooses ‘0’ to be the second secret bit, and so on.
The example shows clearly the potential of the proposed algorithm to embed more than

one secret bits within a single sentence (i.e. sentence B), even though the use of syntactic
transformations for linguistic steganography has so far been known to allow for at most
one bit insertion per sentence.

5. Experimental Setup. The ILSP/ELEFTHEROTYPIA corpus [10] used in the ex-
periments consists of 5244 sentences, is manually annotated with morphological informa-
tion, and balanced in genre. Phrase structure information is obtained automatically by
the chunker described in [19]. During chunking, non-overlapping NPs, VPs, PPs, ADPs
and CONs are detected via multi-pass parsing. The chunker exploits minimal linguistic
resources: a keyword lexicon containing 450 closed-class words (articles, prepositions etc.)
and a lexicon of 300 of the most common word suffixes in MG. The chunker identifies
basic phrase constructions during the first passes (e.g. adjective-nouns, article-nouns),
and combines smaller phrases into longer ones in later passes (e.g. coordination, inclusion
of genitive modifiers, compound phrases).
De-lexicalisation leads to 156 phrase types. Applying statistical significance testing to

type pairs, using all four metrics, led to the pair sets shown in Figure 3 for various top
N values. The average number of swaps that are permitted per sentence for each phrase
swap set in Figure 3 is shown in Figure 4.
Two native speakers judged 882 randomly selected sentences and their produced para-

phrases, according to grammaticality. The judgment process was blind, i.e. the experts



253 Katia Lida Kermanidis

were not familiar with the original sentence. They were simply shown a set of sentences
and asked to decide whether they were grammatical, or they required a phrase swap to be-
come grammatical. Inter-expert agreement exceeded 94% using the kappa statistic. The
percentage of paraphrases (sentences) that required one or more manual phrase swaps
from the human judges in order to become grammatical is shown in Figure 5 for every
swap set. It should be noted that an average of 6% of the reported errors were on the
original sentences, an indication of an upper bound for the performance of the specific
task.

It is possible for a swap to result in a grammatically correct, but semantically different
sentence compared to the initial one. While in steganography the cover text meaning
itself is not important (unlike watermarking), discourse cohesion is, i.e. the sequence
of transmitted sentences needs to make sense, so as not to arouse any suspicion that
something is wrong. A second ‘non-blind’ series of experiments was conducted, where the
experts where shown the original sentence and its paraphrases, and were asked to judge
whether the latter present a difference in meaning, compared to the original sentences.
An average of 1.4% of the paraphrases presented a difference in meaning: a very low
rate, that does not affect the given task. It should be noted that a difference in meaning
does not necessarily imply a discourse cohesion inconsistency, making this phenomenon
even less problematic for the task. Furthermore, the style or naturalness of all the original
sentences remained intact when they were paraphrased, due to the locality of the syntactic
alterations, thus not affecting imperceptibility in the least. But even if the style were
affected, it would not necessarily mean that a third party’s suspicion would be aroused to
the existence of an anomaly in the text in front of them. It should be kept in mind that
the corpus is comprised of texts of varying genre and style. In other words, the proposed
process is ‘trained’ to cope robustly with any text style.

Each of the four metrics has idiosyncratic properties that affect the resulting swap sets.
MI, due to its relation to Information Theory, returns a more diverse set of swap pairs,
i.e. a set that contains ‘exclusive’ (‘surprising’, not very frequent) phrase types, that
are not included (or included scarcely) in the sets returned by the other metrics. Such
phrase types are relative ADPs, genitive NPs, unusual PPs (e.g. PPs introduced by the
preposition ως - until). This set leads to a small average number of swaps per sentence,
and a high error rate. T-test returns an extensive set of swap pairs that consist of more
frequent (usual) phrase types and results in the smallest error rate. The use of the T-test
for testing the significance of word co occurrence has been contested, due to its assumption
that the data is normally distributed [18]. The good results in the current approach are
attributed to the fact that the statistical significance of phrase types’- rather than words’-
co occurrence is tested, and the distribution of phrase types is not as heavily tailed as
the Zipfian distribution (the distribution of words), due to the ‘de-lexicalisation’ process.
The χ2 metric relies heavily on the sample size. Our corpus, though balanced and varying
in style is not large enough for the metric to produce as small an error rate as the T-test.
The LLR, like the MI, is again biased towards rare, extreme events, i.e. unusual phrase
types, that, when included in a swap set, tend to result in erroneous transformations.

A significant part of the errors is attributed to the automatic nature and the low level
of the chunking process: Erroneous phrase splitting, incorrect attachment of punctuation
marks, and the inability to identify certain relative, adverbial and idiomatic expressions,
and to resolve PP attachment ambiguities and subordination dependencies lead to swap-
ping errors that would have been avoided by applying more sophisticated parsing.

To evaluate the filtering impact on the error rate, the positions of possible phrase swaps
in the input sentences were identified according to the T-test swap set. The swap set for
the top 100 results was selected, as its error rate turned out to be significantly lower than
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that of the top 200 and top 300 swap sets, and the average number of paraphrases it
returned higher than the top 50 set. The experts manually annotated (assigned the class
label value: valid or invalid paraphrase) the instances (vectors), corresponding to the
882 original sentences (5104 instances) already used for the evaluation of the statistical
significance testing process. The parameters of the SVMs classification algorithm were
set to a first degree polynomial kernel function, and the sequential minimal optimization
algorithm for training. 10-fold cross validation was chosen as the evaluation method.
SVMs were selected because they are known to cope well with high data sparseness and
multiple attribute problems, both valid in the present dataset. Classification performance
reached 82% precision and 86.2% recall. Swap pairs that occur more frequently with the
negative (invalid paraphrase) than with the positive (valid paraphrase) class are removed,
seven in number.
The reduced swap set was evaluated against a held-out test set (100 new corpus sen-

tences, not included in the training data of the filtering phase) and reached an error rate
of 17.2%. Against the 882-sentence training set, the error rate dropped to 13.8%.
Comparing these results with previous supervised learning approaches to paraphrase

identification is not straightforward. In [13] a learning example represents a pair of sen-
tences through a set of features that denote lexico-semantic similarity between the two
sentences, like shared word sequences, word similarity etc. The goal is to decide whether
one of the two sentences is a paraphrase of the other. In the current approach, the
presented dataset consists of learning examples, each one representing a single sentence.
Each learning example corresponds to a swap position, and the example’s features encode
morphosyntactic information regarding the context surrounding the position. The goal
here is to decide whether the two phrases surrounding the given position may or may not
be swapped. Lexico-semantic features like the ones mentioned previously are out of the
scope of the present methodology and not abiding by its low resource policy. The authors
in [13] (even though no direct comparison would be meaningful as their methodology and
dataset are very different) report 100% precision and 66.49% recall for knowledge-rich
paraphrase identification with an SVMs classifier.
When comparing these results to previous approaches, one needs to take into account

all aspects of each work in question, including the required resources. In the most recent
linguistic steganography system for English that employs syntactic transformations [6],
a paraphrase dictionary (based on a parallel corpus and statistical machine translation
techniques), a Combinatory Categorial Grammar parser, as well as the Google N-gram
Data are required for generating and confirming the grammaticality of paraphrases. The
authors in [6] report an error rate (1 minus accuracy) between 32% and 59%, depending
on the value of N (the number of words in the phrase to be replaced by its paraphrase) and
the phrase’s context size to be taken into account. Another approach that performs syn-
tactic transformations on Turkish for hiding secret bits by applying twenty hand-crafted
rules and making use of rather sophisticated resources (Turkish Treebank, WordNet, Dic-
tionary) is described in [16]. The authors report an average error rate of 12.7% on the
applied rules.

6. Security and Capacity. In the presented approach, security is addressed in a number
of ways:

• The number of permissible swaps. The average number of permissible syntactic
alterations per sentence is greater compared to similar previous approaches [15] due
to their shallow nature, and the linguistic properties of MG that allow for relatively
free phrase swapping. Unlike approaches that allow for the application of at most
one rule to a sentence, the proposed methodology allows for the application of more
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than one phrase swaps at various positions to a sentence. The greater-than-average
number of legitimate alterations makes it difficult for an eavesdropper to decide upon
the correct one.

Figure 3. The size of the swap sets for various statistical significance metrics.

Figure 4. The applicability of the various swap sets.
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Figure 5. Error rate for all swap sets.

• Unlike similar previous approaches that perform static marking on the left and right
hand side of their syntactic alterations [16], the swap set marking presented here
is based on a cryptographic key. Thereby only the two communicating parties can
‘interpret’ the presence of a specific phrase bigram as indicating a bit value ‘0’ or
‘1’. A third party, not familiar with the key, even if he got a hold of the swap set,
would have to try out all possible markings, in all possible swap positions of the
transmitted text, a process of significant complexity.

• The random manner of choosing the swaps to be performed, as well as the not-to-
be-performed swaps. The choice is again based on a cryptographic key, forcing the
eavesdropper (if he is familiar with the swap set) to test all possible alternatives
(perform all possible alterations to a transmitted sentence). Furthermore, this ‘ran-
domness’ does not allow for any kind of pattern in the insertion process (the set of
performed syntactic alterations) to be detectable by an outsider.

• The grammaticality of the swap set. The swap set evaluation in the previous section
proved to be comparable to state-of-the-art approaches, ensuring the generation of
correct paraphrases. Thereby, looking at a transmitted message, it is very difficult
for an eavesdropper to suspect whether it contains a hidden message or not.

Security has to be defined in relation to the profile of the attacker. An initial question is
whether the attacker is familiar with the resources, i.e. the utilized swap set. The degree
of freedom might make the informed attacker’s job difficult, but it is not impossible to
decode the hidden information, even if the possibilities are numerous. A way to improve
security further and address this shortcoming is the use of a separate secret bit string
(key), that has comparable length to that of the hidden message, to encode the message,
before embedding it, using a bitwise logical operation of equivalence (e.g. OR) [5]. After
extracting it, the recipient decodes the message by performing the reverse logical opera-
tion. The transformed (operated upon) secret message is now very difficult to extract by
a third party that is not aware of the keys employed.
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One significant aspect of the presented approach, as already mentioned, is the increased
bandwidth it offers, compared to other linguistic steganography approaches that utilize
syntactic alterations. Assuming an average word size of 6 bytes/word, and given that the
corpus consists of 166,000 words, the corpus size equals roughly 1 Million bytes. If only
one bit per paraphrase-able sentence were allowed (with the initial swap set), 4762 (5244
minus 482) secret bits would be able to be embedded in the corpus (the total number of
corpus sentences minus the number of sentences that cannot be paraphrased). In other
words, 1 bit would be able to be embedded every 1667 bits of cover text. Capacity drops
slightly after filtering, i.e. with the reduced swap set, to 1 embeddable bit every 1733
cover text bits.

Using the current implementation, however, where, depending on the secret key, more
than one sentence positions may hide a secret bit, capacity increases significantly. Ideally,
capacity would reach a maximum value if all swap positions were allowed to hide secret
bits. Given that the total number of swap positions in the text is around 32,600, this
means 1 embeddable bit every 246 cover text bits. Allowing, however, every swap position
to hide a secret bit threatens security. Too many alterations on the same sentence are
highly likely to affect grammaticality, semantics, and discourse cohesion. The trade-off
between capacity and security has been claimed and verified in previous work also [6]. The
stricter the syntactic schemata employed, the more accurate (high security) and the less
applicable they are (low capacity), and vice versa. So, choosing random swap positions
and taking care not to violate the at-least-two-phrases-intervening criterion, still results
in a higher capacity than all previous approaches performing syntactic alterations that
report a capacity of 0.5-1 bits/sentence [15]. The only line of approaches that lead to
higher capacity are the ones employing synonym substitution, due to the possibility of
multiple word substitutions within a sentence. For example the author in [5] reports a
capacity factor of 1 hidden bit for every 250 cover text bits. However, as mentioned
earlier, these approaches are very resource-demanding.

7. Conclusions. The presented methodology takes advantage of the phrase-ordering
freedom of MG in order to extract permissible shallow syntactic alterations that will
enable the embedding of secret information underneath a cover text for steganographic
communication. Unlike previous approaches that employ syntactic transformations for
linguistic steganography, the proposed methodology relies on minimal external linguistic
resources, and is therefore robust, domain independent, and easily applicable to other
free-phrase-order languages. Despite the shallow nature of the extracted alterations, their
grammaticality evaluation proved to be comparable to that of resource-demanding ap-
proaches, ensuring steganographic security. Furthermore, the presented approach is a
first implementation of a steganographic system that is characterized by high capacity,
even though it is based on syntactic transformations.
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